1
|
Bentley DL. Multiple Forms and Functions of Premature Termination by RNA Polymerase II. J Mol Biol 2025; 437:168743. [PMID: 39127140 PMCID: PMC11649484 DOI: 10.1016/j.jmb.2024.168743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Eukaryotic genomes are widely transcribed by RNA polymerase II (pol II) both within genes and in intergenic regions. POL II elongation complexes comprising the polymerase, the DNA template and nascent RNA transcript must be extremely processive in order to transcribe the longest genes which are over 1 megabase long and take many hours to traverse. Dedicated termination mechanisms are required to disrupt these highly stable complexes. Transcription termination occurs not only at the 3' ends of genes once a full length transcript has been made, but also within genes and in promiscuously transcribed intergenic regions. Termination at these latter positions is termed "premature" because it is not triggered in response to a specific signal that marks the 3' end of a gene, like a polyA site. One purpose of premature termination is to remove polymerases from intergenic regions where they are "not wanted" because they may interfere with transcription of overlapping genes or the progress of replication forks. Premature termination has recently been appreciated to occur at surprisingly high rates within genes where it is speculated to serve regulatory or quality control functions. In this review I summarize current understanding of the different mechanisms of premature termination and its potential functions.
Collapse
Affiliation(s)
- David L Bentley
- Dept. Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
2
|
Bhandare P, Narain A, Hofstetter J, Rummel T, Wenzel J, Schülein-Völk C, Lamer S, Eilers U, Schlosser A, Eilers M, Erhard F, Wolf E. Phenotypic screens identify SCAF1 as critical activator of RNAPII elongation and global transcription. Nucleic Acids Res 2024:gkae1219. [PMID: 39698826 DOI: 10.1093/nar/gkae1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Transcripts produced by RNA polymerase II (RNAPII) are fundamental for cellular responses to environmental changes. It is therefore no surprise that there exist multiple avenues for the regulation of this process. To explore the regulation mediated by RNAPII-interacting proteins, we used a small interfering RNA (siRNA)-based screen to systematically evaluate their influence on RNA synthesis. We identified several proteins that strongly affected RNAPII activity. We evaluated one of the top hits, SCAF1 (SR-related C-terminal domain-associated factor 1), using an auxin-inducible degradation system and sequencing approaches. In agreement with our screen results, acute depletion of SCAF1 decreased RNA synthesis, and showed an increase of Serine-2 phosphorylated-RNAPII (pS2-RNAPII). We found that the accumulation of pS2-RNAPII within the gene body occurred at GC-rich regions and was indicative of stalled RNAPII complexes. The accumulation of stalled RNAPII complexes was accompanied by reduced recruitment of initiating RNAPII, explaining the observed global decrease in transcriptional output. Furthermore, upon SCAF1 depletion, RNAPII complexes showed increased association with components of the proteasomal-degradation machinery. We concluded that in cells lacking SCAF1, RNAPII undergoes a rather interrupted passage, resulting in intervention by the proteasomal-degradation machinery to clear stalled RNAPII. While cells survive the compromised transcription caused by absence of SCAF1, further inhibition of proteasomal-degradation machinery is synthetically lethal.
Collapse
Affiliation(s)
- Pranjali Bhandare
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Straße 1, Kiel 24118, Germany
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Ashwin Narain
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Teresa Rummel
- Faculty for Informatics and Data Science, University of Regensburg, Bajuwarenstraße 4, Regensburg 93040, Germany
| | - Julia Wenzel
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Straße 1, Kiel 24118, Germany
| | - Christina Schülein-Völk
- Core Unit High-Content Microscopy, Biocenter, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Stephanie Lamer
- Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97080, Germany
| | - Ursula Eilers
- Core Unit High-Content Microscopy, Biocenter, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97080, Germany
| | - Martin Eilers
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Florian Erhard
- Faculty for Informatics and Data Science, University of Regensburg, Bajuwarenstraße 4, Regensburg 93040, Germany
| | - Elmar Wolf
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Straße 1, Kiel 24118, Germany
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
3
|
Ramadhin AR, Lee SH, Zhou D, Salmazo A, Gonzalo-Hansen C, van Sluis M, Blom CMA, Janssens RC, Raams A, Dekkers D, Bezstarosti K, Slade D, Vermeulen W, Pines A, Demmers JAA, Bernecky C, Sixma TK, Marteijn JA. STK19 drives transcription-coupled repair by stimulating repair complex stability, RNA Pol II ubiquitylation, and TFIIH recruitment. Mol Cell 2024; 84:4740-4757.e12. [PMID: 39547223 DOI: 10.1016/j.molcel.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/16/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) efficiently eliminates DNA damage that impedes gene transcription by RNA polymerase II (RNA Pol II). TC-NER is initiated by the recognition of lesion-stalled RNA Pol II by CSB, which recruits the CRL4CSA ubiquitin ligase and UVSSA. RNA Pol II ubiquitylation at RPB1-K1268 by CRL4CSA serves as a critical TC-NER checkpoint, governing RNA Pol II stability and initiating DNA damage excision by TFIIH recruitment. However, the precise regulatory mechanisms of CRL4CSA activity and TFIIH recruitment remain elusive. Here, we reveal human serine/threonine-protein kinase 19 (STK19) as a TC-NER factor, which is essential for correct DNA damage removal and subsequent transcription restart. Cryogenic electron microscopy (cryo-EM) studies demonstrate that STK19 is an integral part of the RNA Pol II-TC-NER complex, bridging CSA, UVSSA, RNA Pol II, and downstream DNA. STK19 stimulates TC-NER complex stability and CRL4CSA activity, resulting in efficient RNA Pol II ubiquitylation and correct UVSSA and TFIIH binding. These findings underscore the crucial role of STK19 as a core TC-NER component.
Collapse
Affiliation(s)
- Anisha R Ramadhin
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Shun-Hsiao Lee
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, the Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Anita Salmazo
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Marjolein van Sluis
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Cindy M A Blom
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Dick Dekkers
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Dea Slade
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, 1030 Vienna, Austria
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Carrie Bernecky
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Titia K Sixma
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, the Netherlands.
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Papantonis A, Antebi A, Partridge L, Beyer A. Age-associated changes in transcriptional elongation and their effects on homeostasis. Trends Cell Biol 2024:S0962-8924(24)00247-2. [PMID: 39706758 DOI: 10.1016/j.tcb.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024]
Abstract
Cellular homeostasis declines with age due to the declining fidelity of biosynthetic processes and the accumulation of molecular damage. Yet, it remains largely elusive how individual processes are affected during aging and what their specific contribution to age-related functional decline is. This review discusses a series of recent publications that has shown that transcription elongation is compromised during aging due to increasing DNA damage, stalling of RNA polymerase II (RNAPII), erroneous transcription initiation in gene bodies, and accelerated RNAPII elongation. Importantly, several of these perturbations likely arise from changes in chromatin organization with age. Thus, taken together, this work establishes a network of interlinked processes contributing to age-related decline in the quantity and quality of RNA production.
Collapse
Affiliation(s)
- Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Linda Partridge
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Andreas Beyer
- Cologne Excellence Cluster for Aging and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Jin Q, Harris E, Myers JA, Mehmood R, Cotton A, Shirnekhi HK, Baggett DW, Wen JQ, Schild AB, Bhansali RS, Klein J, Narina S, Pieters T, Yoshimi A, Pruett-Miller SM, Kriwacki R, Abdel-Wahab O, Malinge S, Ntziachristos P, Obeng EA, Crispino JD. Disruption of cotranscriptional splicing suggests RBM39 is a therapeutic target in acute lymphoblastic leukemia. Blood 2024; 144:2417-2431. [PMID: 39316649 PMCID: PMC11628860 DOI: 10.1182/blood.2024024281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/26/2024] Open
Abstract
ABSTRACT There are only a few options for patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL), thus, this is a major area of unmet medical need. In this study, we reveal that the inclusion of a poison exon in RBM39, which could be induced by both CDK9 or CDK9 independent cyclin-dependent kinases, mitogen-activated protein kinases, glycogen synthase kinases, CDC-like kinases (CMGC) kinase inhibition, is recognized by the nonsense-mediated messenger RNA decay pathway for degradation. Targeting this poison exon in RBM39 with CMGC inhibitors led to protein downregulation and the inhibition of ALL growth, particularly in relapsed/refractory B-ALL. Mechanistically, disruption of cotranscriptional splicing by the inhibition of CMGC kinases, including DYRK1A, or inhibition of CDK9, which phosphorylate the C-terminal domain of RNA polymerase II (Pol II), led to alteration in the SF3B1 and Pol II association. Disruption of SF3B1 and the transcriptional elongation complex altered Pol II pausing, which promoted the inclusion of a poison exon in RBM39. Moreover, RBM39 ablation suppressed the growth of human B-ALL, and targeting RBM39 with sulfonamides, which degrade RBM39 protein, showed strong antitumor activity in preclinical models. Our data reveal that relapsed/refractory B-ALL is susceptible to pharmacologic and genetic inhibition of RBM39 and provide 2 potential strategies to target this axis.
Collapse
Affiliation(s)
- Qi Jin
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ethan Harris
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Jacquelyn A. Myers
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rashid Mehmood
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Anitria Cotton
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hazheen K. Shirnekhi
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - David W. Baggett
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jeremy Qiang Wen
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Andrew B. Schild
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rahul S. Bhansali
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jonathon Klein
- Center for Advanced Genome Engineering and the Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Shilpa Narina
- Center for Advanced Genome Engineering and the Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Tim Pieters
- Department of Biomolecular Medicine, Center for Medical Genetics and Cancer Research Institute, Ghent University, Ghent, Belgium
| | - Akihide Yoshimi
- Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering and the Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sebastien Malinge
- Translational Genomics in Leukemia, Cancer Centre, The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Center for Medical Genetics and Cancer Research Institute, Ghent University, Ghent, Belgium
| | - Esther A. Obeng
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
6
|
Ferdoush J, Kadir RA, Ogle M, Saha A. Regulation of eukaryotic transcription initiation in response to cellular stress. Gene 2024; 924:148616. [PMID: 38795856 DOI: 10.1016/j.gene.2024.148616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-β, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Matthew Ogle
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Ayan Saha
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| |
Collapse
|
7
|
Ajit K, Gullerova M. From silence to symphony: transcriptional repression and recovery in response to DNA damage. Transcription 2024:1-15. [PMID: 39353089 DOI: 10.1080/21541264.2024.2406717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Genotoxic stress resulting from DNA damage is resolved through a signaling cascade known as the DNA Damage Response (DDR). The repair of damaged DNA is essential for cell survival, often requiring the DDR to attenuate other cellular processes such as the cell cycle, DNA replication, and transcription of genes not involved in DDR. The complex relationship between DDR and transcription has only recently been investigated. Transcription can facilitate the DDR in response to double-strand breaks (DSBs) and stimulate nucleotide excision repair (NER). However, transcription may need to be reduced to prevent potential interference with the repair machinery. In this review, we discuss various mechanisms that regulate transcription repression in response to different types of DNA damage, categorizing them by their range and duration of effect. Finally, we explore various models of transcription recovery following DNA damage-induced repression.
Collapse
Affiliation(s)
- Kamal Ajit
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Costanzo F, Paccosi E, Proietti-De-Santis L, Egly JM. CS proteins and ubiquitination: orchestrating DNA repair with transcription and cell division. Trends Cell Biol 2024; 34:882-895. [PMID: 38910038 DOI: 10.1016/j.tcb.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024]
Abstract
To face genotoxic stress, eukaryotic cells evolved extremely refined mechanisms. Defects in counteracting the threat imposed by DNA damage underlie the rare disease Cockayne syndrome (CS), which arises from mutations in the CSA and CSB genes. Although initially defined as DNA repair proteins, recent work shows that CSA and CSB act instead as master regulators of the integrated response to genomic stress by coordinating DNA repair with transcription and cell division. CSA and CSB exert this function through the ubiquitination of target proteins, which are effectors/regulators of these processes. This review describes how the ubiquitination of target substrates is a common denominator by which CSA and CSB participate in different aspects of cellular life and how their mutation gives rise to the complex disease CS.
Collapse
Affiliation(s)
- Federico Costanzo
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona 6500, Switzerland; Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Illkirch-Graffenstaden 67400, Strasbourg, France.
| | - Elena Paccosi
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo 01100, Italy
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo 01100, Italy
| | - Jean Marc Egly
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona 6500, Switzerland; Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Illkirch-Graffenstaden 67400, Strasbourg, France; College of Medicine, Centre for Genomics and Precision Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
9
|
Gonzalo-Hansen C, Steurer B, Janssens RC, Zhou D, van Sluis M, Lans H, Marteijn JA. Differential processing of RNA polymerase II at DNA damage correlates with transcription-coupled repair syndrome severity. Nucleic Acids Res 2024; 52:9596-9612. [PMID: 39021334 PMCID: PMC11381366 DOI: 10.1093/nar/gkae618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
DNA damage severely impedes gene transcription by RNA polymerase II (Pol II), causing cellular dysfunction. Transcription-Coupled Nucleotide Excision Repair (TC-NER) specifically removes such transcription-blocking damage. TC-NER initiation relies on the CSB, CSA and UVSSA proteins; loss of any results in complete TC-NER deficiency. Strikingly, UVSSA deficiency results in UV-Sensitive Syndrome (UVSS), with mild cutaneous symptoms, while loss of CSA or CSB activity results in the severe Cockayne Syndrome (CS), characterized by neurodegeneration and premature aging. Thus far the underlying mechanism for these contrasting phenotypes remains unclear. Live-cell imaging approaches reveal that in TC-NER proficient cells, lesion-stalled Pol II is swiftly resolved, while in CSA and CSB knockout (KO) cells, elongating Pol II remains damage-bound, likely obstructing other DNA transacting processes and shielding the damage from alternative repair pathways. In contrast, in UVSSA KO cells, Pol II is cleared from the damage via VCP-mediated proteasomal degradation which is fully dependent on the CRL4CSA ubiquitin ligase activity. This Pol II degradation might provide access for alternative repair mechanisms, such as GG-NER, to remove the damage. Collectively, our data indicate that the inability to clear lesion-stalled Pol II from the chromatin, rather than TC-NER deficiency, causes the severe phenotypes observed in CS.
Collapse
Affiliation(s)
- Camila Gonzalo-Hansen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Barbara Steurer
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marjolein van Sluis
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Jiang X, Zhan L, Tang X. RNA modifications in physiology and pathology: Progressing towards application in clinical settings. Cell Signal 2024; 121:111242. [PMID: 38851412 DOI: 10.1016/j.cellsig.2024.111242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The potential to modify individual nucleotides through chemical means in order to impact the electrostatic charge, hydrophobic properties, and base pairing of RNA molecules is harnessed in the medical application of stable synthetic RNAs like mRNA vaccines and synthetic small RNA molecules. These modifications are used to either increase or decrease the production of therapeutic proteins. Additionally, naturally occurring biochemical alterations of nucleotides play a role in regulating RNA metabolism and function, thereby modulating essential cellular processes. Research elucidating the mechanisms through which RNA modifications govern fundamental cellular functions in multicellular organisms has enhanced our comprehension of how irregular RNA modification profiles can lead to human diseases. Collectively, these fundamental scientific findings have unveiled the molecular and cellular functions of RNA modifications, offering new opportunities for therapeutic intervention and paving the way for a variety of innovative clinical strategies.
Collapse
Affiliation(s)
- Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
11
|
Gaillard H, Ciudad T, Aguilera A, Wellinger RE. Histone variant H2A.Z is needed for efficient transcription-coupled NER and genome integrity in UV challenged yeast cells. PLoS Genet 2024; 20:e1011300. [PMID: 39255275 DOI: 10.1371/journal.pgen.1011300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
The genome of living cells is constantly challenged by DNA lesions that interfere with cellular processes such as transcription and replication. A manifold of mechanisms act in concert to ensure adequate DNA repair, gene expression, and genome stability. Bulky DNA lesions, such as those induced by UV light or the DNA-damaging agent 4-nitroquinoline oxide, act as transcriptional and replicational roadblocks and thus represent a major threat to cell metabolism. When located on the transcribed strand of active genes, these lesions are handled by transcription-coupled nucleotide excision repair (TC-NER), a yet incompletely understood NER sub-pathway. Here, using a genetic screen in the yeast Saccharomyces cerevisiae, we identified histone variant H2A.Z as an important component to safeguard transcription and DNA integrity following UV irradiation. In the absence of H2A.Z, repair by TC-NER is severely impaired and RNA polymerase II clearance reduced, leading to an increase in double-strand breaks. Thus, H2A.Z is needed for proficient TC-NER and plays a major role in the maintenance of genome stability upon UV irradiation.
Collapse
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Toni Ciudad
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Ralf E Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
12
|
Zhu Y, Zhang X, Gao M, Huang Y, Tan Y, Parnas A, Wu S, Zhan D, Adar S, Hu J. Coordination of transcription-coupled repair and repair-independent release of lesion-stalled RNA polymerase II. Nat Commun 2024; 15:7089. [PMID: 39154022 PMCID: PMC11330480 DOI: 10.1038/s41467-024-51463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Transcription-blocking lesions (TBLs) stall elongating RNA polymerase II (Pol II), which then initiates transcription-coupled repair (TCR) to remove TBLs and allow transcription recovery. In the absence of TCR, eviction of lesion-stalled Pol II is required for alternative pathways to address the damage, but the mechanism is unclear. Using Protein-Associated DNA Damage Sequencing (PADD-seq), this study reveals that the p97-proteasome pathway can evict lesion-stalled Pol II independently of repair. Both TCR and repair-independent eviction require CSA and ubiquitination. However, p97 is dispensable for TCR and Pol II eviction in TCR-proficient cells, highlighting repair's prioritization over repair-independent eviction. Moreover, ubiquitination of RPB1-K1268 is important for both pathways, with USP7's deubiquitinase activity promoting TCR without abolishing repair-independent Pol II release. In summary, this study elucidates the fate of lesion-stalled Pol II, and may shed light on the molecular basis of genetic diseases caused by the defects of TCR genes.
Collapse
Affiliation(s)
- Yongchang Zhu
- Shanghai Fifth People's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiping Zhang
- Shanghai Fifth People's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Meng Gao
- Shanghai Fifth People's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yanchao Huang
- Shanghai Fifth People's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanqing Tan
- Shanghai Fifth People's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Avital Parnas
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Sizhong Wu
- Shanghai Fifth People's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Delin Zhan
- Shanghai Fifth People's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Jinchuan Hu
- Shanghai Fifth People's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Bao L, Zhu J, Shi T, Jiang Y, Li B, Huang J, Ji X. Increased transcriptional elongation and RNA stability of GPCR ligand binding genes unveiled via RNA polymerase II degradation. Nucleic Acids Res 2024; 52:8165-8183. [PMID: 38842922 DOI: 10.1093/nar/gkae478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/01/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
RNA polymerase II drives mRNA gene expression, yet our understanding of Pol II degradation is limited. Using auxin-inducible degron, we degraded Pol II's RPB1 subunit, resulting in global repression. Surprisingly, certain genes exhibited increased RNA levels post-degradation. These genes are associated with GPCR ligand binding and are characterized by being less paused and comprising polycomb-bound short genes. RPB1 degradation globally increased KDM6B binding, which was insufficient to explain specific gene activation. In contrast, RPB2 degradation repressed nearly all genes, accompanied by decreased H3K9me3 and SUV39H1 occupancy. We observed a specific increase in serine 2 phosphorylated Pol II and RNA stability for RPB1 degradation-upregulated genes. Additionally, α-amanitin or UV treatment resulted in RPB1 degradation and global gene repression, unveiling subsets of upregulated genes. Our findings highlight the activated transcription elongation and increased RNA stability of signaling genes as potential mechanisms for mammalian cells to counter RPB1 degradation during stress.
Collapse
Affiliation(s)
- Lijun Bao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Junyi Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Tingxin Shi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yongpeng Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Boyuan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
He S, Huang Z, Liu Y, Ha T, Wu B. DNA break induces rapid transcription repression mediated by proteasome-dependent RNAPII removal. Cell Rep 2024; 43:114420. [PMID: 38954517 PMCID: PMC11337244 DOI: 10.1016/j.celrep.2024.114420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/25/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
A DNA double-strand break (DSB) jeopardizes genome integrity and endangers cell viability. Actively transcribed genes are particularly detrimental if broken and need to be repressed. However, it remains elusive how fast the repression is initiated and how far it influences the neighboring genes on the chromosome. We adopt a recently developed, very fast CRISPR to generate a DSB at a specific genomic locus with precise timing, visualize transcription in live cells, and measure the RNA polymerase II (RNAPII) occupancy near the broken site. We observe that a single DSB represses the transcription of the damaged gene in minutes, which coincides with the recruitment of a damage repair protein. Transcription repression propagates bi-directionally along the chromosome from the DSB for hundreds of kilobases, and proteasome is evoked to remove RNAPII in this process. Our method builds a foundation to measure the rapid kinetic events around a single DSB and elucidate the molecular mechanism.
Collapse
Affiliation(s)
- Shuaixin He
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhiyuan Huang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yang Liu
- Department of Biochemistry, The University of Utah, Salt Lake City, UT 84112, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
15
|
Espinoza JA, Kanellis DC, Saproo S, Leal K, Martinez J, Bartek J, Lindström M. Chromatin damage generated by DNA intercalators leads to degradation of RNA Polymerase II. Nucleic Acids Res 2024; 52:4151-4166. [PMID: 38340348 PMCID: PMC11077059 DOI: 10.1093/nar/gkae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In cancer therapy, DNA intercalators are mainly known for their capacity to kill cells by inducing DNA damage. Recently, several DNA intercalators have attracted much interest given their ability to inhibit RNA Polymerase I transcription (BMH-21), evict histones (Aclarubicin) or induce chromatin trapping of FACT (Curaxin CBL0137). Interestingly, these DNA intercalators lack the capacity to induce DNA damage while still retaining cytotoxic effects and stabilize p53. Herein, we report that these DNA intercalators impact chromatin biology by interfering with the chromatin stability of RNA polymerases I, II and III. These three compounds have the capacity to induce degradation of RNA polymerase II and they simultaneously enable the trapping of Topoisomerases TOP2A and TOP2B on the chromatin. In addition, BMH-21 also acts as a catalytic inhibitor of Topoisomerase II, resembling Aclarubicin. Moreover, BMH-21 induces chromatin trapping of the histone chaperone FACT and propels accumulation of Z-DNA and histone eviction, similarly to Aclarubicin and CBL0137. These DNA intercalators have a cumulative impact on general transcription machinery by inducing accumulation of topological defects and impacting nuclear chromatin. Therefore, their cytotoxic capabilities may be the result of compounding deleterious effects on chromatin homeostasis.
Collapse
Affiliation(s)
- Jaime A Espinoza
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Dimitris C Kanellis
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Sheetanshu Saproo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Karla Leal
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Johana Fernandez Martinez
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Jiri Bartek
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Mikael S Lindström
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| |
Collapse
|
16
|
Carnie CJ, Acampora AC, Bader AS, Erdenebat C, Zhao S, Bitensky E, van den Heuvel D, Parnas A, Gupta V, D'Alessandro G, Sczaniecka-Clift M, Weickert P, Aygenli F, Götz MJ, Cordes J, Esain-Garcia I, Melidis L, Wondergem AP, Lam S, Robles MS, Balasubramanian S, Adar S, Luijsterburg MS, Jackson SP, Stingele J. Transcription-coupled repair of DNA-protein cross-links depends on CSA and CSB. Nat Cell Biol 2024; 26:797-810. [PMID: 38600235 PMCID: PMC11098753 DOI: 10.1038/s41556-024-01391-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/29/2024] [Indexed: 04/12/2024]
Abstract
Covalent DNA-protein cross-links (DPCs) are toxic DNA lesions that block replication and require repair by multiple pathways. Whether transcription blockage contributes to the toxicity of DPCs and how cells respond when RNA polymerases stall at DPCs is unknown. Here we find that DPC formation arrests transcription and induces ubiquitylation and degradation of RNA polymerase II. Using genetic screens and a method for the genome-wide mapping of DNA-protein adducts, DPC sequencing, we discover that Cockayne syndrome (CS) proteins CSB and CSA provide resistance to DPC-inducing agents by promoting DPC repair in actively transcribed genes. Consequently, CSB- or CSA-deficient cells fail to efficiently restart transcription after induction of DPCs. In contrast, nucleotide excision repair factors that act downstream of CSB and CSA at ultraviolet light-induced DNA lesions are dispensable. Our study describes a transcription-coupled DPC repair pathway and suggests that defects in this pathway may contribute to the unique neurological features of CS.
Collapse
Affiliation(s)
- Christopher J Carnie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Aleida C Acampora
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Aldo S Bader
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Chimeg Erdenebat
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shubo Zhao
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elnatan Bitensky
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Avital Parnas
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vipul Gupta
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Giuseppina D'Alessandro
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Pedro Weickert
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fatih Aygenli
- Institute of Medical Psychology and Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian J Götz
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacqueline Cordes
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isabel Esain-Garcia
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Larry Melidis
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Annelotte P Wondergem
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Simon Lam
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Maria S Robles
- Institute of Medical Psychology and Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
17
|
van Sluis M, Yu Q, van der Woude M, Gonzalo-Hansen C, Dealy SC, Janssens RC, Somsen HB, Ramadhin AR, Dekkers DHW, Wienecke HL, Demmers JJPG, Raams A, Davó-Martínez C, Llerena Schiffmacher DA, van Toorn M, Häckes D, Thijssen KL, Zhou D, Lammers JG, Pines A, Vermeulen W, Pothof J, Demmers JAA, van den Berg DLC, Lans H, Marteijn JA. Transcription-coupled DNA-protein crosslink repair by CSB and CRL4 CSA-mediated degradation. Nat Cell Biol 2024; 26:770-783. [PMID: 38600236 PMCID: PMC11098752 DOI: 10.1038/s41556-024-01394-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 03/01/2024] [Indexed: 04/12/2024]
Abstract
DNA-protein crosslinks (DPCs) arise from enzymatic intermediates, metabolism or chemicals like chemotherapeutics. DPCs are highly cytotoxic as they impede DNA-based processes such as replication, which is counteracted through proteolysis-mediated DPC removal by spartan (SPRTN) or the proteasome. However, whether DPCs affect transcription and how transcription-blocking DPCs are repaired remains largely unknown. Here we show that DPCs severely impede RNA polymerase II-mediated transcription and are preferentially repaired in active genes by transcription-coupled DPC (TC-DPC) repair. TC-DPC repair is initiated by recruiting the transcription-coupled nucleotide excision repair (TC-NER) factors CSB and CSA to DPC-stalled RNA polymerase II. CSA and CSB are indispensable for TC-DPC repair; however, the downstream TC-NER factors UVSSA and XPA are not, a result indicative of a non-canonical TC-NER mechanism. TC-DPC repair functions independently of SPRTN but is mediated by the ubiquitin ligase CRL4CSA and the proteasome. Thus, DPCs in genes are preferentially repaired in a transcription-coupled manner to facilitate unperturbed transcription.
Collapse
Affiliation(s)
- Marjolein van Sluis
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Qing Yu
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Melanie van der Woude
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Shannon C Dealy
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hedda B Somsen
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anisha R Ramadhin
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hannah Lena Wienecke
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joris J P G Demmers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carlota Davó-Martínez
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Diana A Llerena Schiffmacher
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marvin van Toorn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - David Häckes
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karen L Thijssen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Judith G Lammers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joris Pothof
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Ajit K, Alagia A, Burger K, Gullerova M. Tyrosine 1-phosphorylated RNA polymerase II transcribes PROMPTs to facilitate proximal promoter pausing and induce global transcriptional repression in response to DNA damage. Genome Res 2024; 34:201-216. [PMID: 38467418 PMCID: PMC10984383 DOI: 10.1101/gr.278644.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
DNA damage triggers a complex transcriptional response that involves both activation and repression of gene expression. In this study, we investigated global changes in transcription in response to ionizing irradiation (IR), which induces double-strand breaks in DNA. We used mNET-seq to profile nascent transcripts bound to different phosphorylated forms of the RNA polymerase II (RNA Pol II) C-terminal domain (CTD). We found that IR leads to global transcriptional repression of protein-coding genes, accompanied by an increase in antisense transcripts near promoters, called PROMPTs, transcribed by RNA Pol II phosphorylated on tyrosine 1 (Y1P) residue of the CTD. These Y1P-transcribed PROMPTs are enriched for PRC2 binding sites and associated with RNA Pol II proximal promoter pausing. We show the interaction between Y1P RNA Pol II and PRC2, as well as PRC2 binding to PROMPTs. Inhibition of PROMPTs or depletion of PRC2 leads to loss of transcriptional repression. Our results reveal a novel function of Y1P-dependent PROMPTs in mediating PRC2 recruitment to chromatin and RNA Pol II promoter pausing in response to DNA damage.
Collapse
Affiliation(s)
- Kamal Ajit
- Sir William Dunn School of Pathology, Oxford, OX1 3RE, United Kingdom
| | - Adele Alagia
- Sir William Dunn School of Pathology, Oxford, OX1 3RE, United Kingdom
| | - Kaspar Burger
- Mildred Scheel Early Career Center for Cancer Research, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Monika Gullerova
- Sir William Dunn School of Pathology, Oxford, OX1 3RE, United Kingdom;
| |
Collapse
|
19
|
Delaunay S, Helm M, Frye M. RNA modifications in physiology and disease: towards clinical applications. Nat Rev Genet 2024; 25:104-122. [PMID: 37714958 DOI: 10.1038/s41576-023-00645-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/17/2023]
Abstract
The ability of chemical modifications of single nucleotides to alter the electrostatic charge, hydrophobic surface and base pairing of RNA molecules is exploited for the clinical use of stable artificial RNAs such as mRNA vaccines and synthetic small RNA molecules - to increase or decrease the expression of therapeutic proteins. Furthermore, naturally occurring biochemical modifications of nucleotides regulate RNA metabolism and function to modulate crucial cellular processes. Studies showing the mechanisms by which RNA modifications regulate basic cell functions in higher organisms have led to greater understanding of how aberrant RNA modification profiles can cause disease in humans. Together, these basic science discoveries have unravelled the molecular and cellular functions of RNA modifications, have provided new prospects for therapeutic manipulation and have led to a range of innovative clinical approaches.
Collapse
Affiliation(s)
- Sylvain Delaunay
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michaela Frye
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany.
| |
Collapse
|
20
|
Zhou D, Yu Q, Janssens RC, Marteijn JA. Live-cell imaging of endogenous CSB-mScarletI as a sensitive marker for DNA-damage-induced transcription stress. CELL REPORTS METHODS 2024; 4:100674. [PMID: 38176411 PMCID: PMC10831951 DOI: 10.1016/j.crmeth.2023.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Transcription by RNA polymerase II (RNA Pol II) is crucial for cellular function, but DNA damage severely impedes this process. Thus far, transcription-blocking DNA lesions (TBLs) and their repair have been difficult to quantify in living cells. To overcome this, we generated, using CRISPR-Cas9-mediated gene editing, mScarletI-tagged Cockayne syndrome group B protein (CSB) and UV-stimulated scaffold protein A (UVSSA) knockin cells. These cells allowed us to study the binding dynamics of CSB and UVSSA to lesion-stalled RNA Pol II using fluorescence recovery after photobleaching (FRAP). We show that especially CSB mobility is a sensitive transcription stress marker at physiologically relevant DNA damage levels. Transcription-coupled nucleotide excision repair (TC-NER)-mediated repair can be assessed by studying CSB immobilization over time. Additionally, flow cytometry reveals the regulation of CSB protein levels by CRL4CSA-mediated ubiquitylation and deubiquitylation by USP7. This approach allows the sensitive detection of TBLs and their repair and the study of TC-NER complex assembly and stability in living cells.
Collapse
Affiliation(s)
- Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Qing Yu
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
21
|
Bose D, Singh RK, Robertson ES. KSHV-encoded LANA bypasses transcriptional block through the stabilization of RNA Pol II in hypoxia. mBio 2024; 15:e0277423. [PMID: 38095447 PMCID: PMC10790784 DOI: 10.1128/mbio.02774-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Hypoxia can induce the reactivation of Kaposi sarcoma-associated virus (KSHV), which necessitates the synthesis of critical structural proteins. Despite the unfavorable energetic conditions of hypoxia, KSHV utilizes mechanisms to prevent the degradation of essential cellular machinery required for successful reactivation. Our study provides new insights on strategies employed by KSHV-infected cells to maintain steady-state transcription by overcoming hypoxia-mediated metabolic stress to enable successful reactivation. Our discovery that the interaction of latency-associated nuclear antigen with HIF1α and NEDD4 inhibits its polyubiquitination activity, which blocks the degradation of RNA Pol II during hypoxia, is a significant contribution to our understanding of KSHV biology. This newfound knowledge provides new leads in the development of novel therapies for KSHV-associated diseases.
Collapse
Affiliation(s)
- Dipayan Bose
- Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rajnish Kumar Singh
- Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erle S. Robertson
- Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Chiosis G, Digwal CS, Trepel JB, Neckers L. Structural and functional complexity of HSP90 in cellular homeostasis and disease. Nat Rev Mol Cell Biol 2023; 24:797-815. [PMID: 37524848 PMCID: PMC10592246 DOI: 10.1038/s41580-023-00640-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
Heat shock protein 90 (HSP90) is a chaperone with vital roles in regulating proteostasis, long recognized for its function in protein folding and maturation. A view is emerging that identifies HSP90 not as one protein that is structurally and functionally homogeneous but, rather, as a protein that is shaped by its environment. In this Review, we discuss evidence of multiple structural forms of HSP90 in health and disease, including homo-oligomers and hetero-oligomers, also termed epichaperomes, and examine the impact of stress, post-translational modifications and co-chaperones on their formation. We describe how these variations influence context-dependent functions of HSP90 as well as its interaction with other chaperones, co-chaperones and proteins, and how this structural complexity of HSP90 impacts and is impacted by its interaction with small molecule modulators. We close by discussing recent developments regarding the use of HSP90 inhibitors in cancer and how our new appreciation of the structural and functional heterogeneity of HSP90 invites a re-evaluation of how we discover and implement HSP90 therapeutics for disease treatment.
Collapse
Affiliation(s)
- Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Institute, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Institute, New York, NY, USA.
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Institute, New York, NY, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
23
|
van der Woude M, Davó-Martínez C, Thijssen K, Vermeulen W, Lans H. Recovery of protein synthesis to assay DNA repair activity in transcribed genes in living cells and tissues. Nucleic Acids Res 2023; 51:e93. [PMID: 37522336 PMCID: PMC10570043 DOI: 10.1093/nar/gkad642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/19/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023] Open
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) is an important DNA repair mechanism that protects against the negative effects of transcription-blocking DNA lesions. Hereditary TC-NER deficiencies cause pleiotropic and often severe neurodegenerative and progeroid symptoms. While multiple assays have been developed to determine TC-NER activity for clinical and research purposes, monitoring TC-NER is hampered by the low frequency of repair events occurring in transcribed DNA. 'Recovery of RNA Synthesis' is widely used as indirect TC-NER assay based on the notion that lesion-blocked transcription only resumes after successful TC-NER. Here, we show that measuring novel synthesis of a protein after its compound-induced degradation prior to DNA damage induction is an equally effective but more versatile manner to indirectly monitor DNA repair activity in transcribed genes. This 'Recovery of Protein Synthesis' (RPS) assay can be adapted to various degradable proteins and readouts, including imaging and immunoblotting. Moreover, RPS allows real-time monitoring of TC-NER activity in various living cells types and even in differentiated tissues of living organisms. To illustrate its utility, we show that DNA repair in transcribed genes declines in aging muscle tissue of C. elegans. Therefore, the RPS assay constitutes an important novel clinical and research tool to investigate transcription-coupled DNA repair.
Collapse
Affiliation(s)
- Melanie van der Woude
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Carlota Davó-Martínez
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Karen L Thijssen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Llerena Schiffmacher DA, Kliza KW, Theil AF, Kremers GJ, Demmers JAA, Ogi T, Vermeulen M, Vermeulen W, Pines A. Live cell transcription-coupled nucleotide excision repair dynamics revisited. DNA Repair (Amst) 2023; 130:103566. [PMID: 37716192 DOI: 10.1016/j.dnarep.2023.103566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/18/2023]
Abstract
Transcription-blocking lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which prevents DNA damage-induced cellular toxicity and maintains proper transcriptional processes. TC-NER is initiated by the stalling of RNA polymerase II (RNAPII), which triggers the assembly of TC-NER-specific proteins, namely CSB, CSA and UVSSA, which collectively control and drive TC-NER progression. Previous research has revealed molecular functions for these proteins, however, exact mechanisms governing the initiation and regulation of TC-NER, particularly at low UV doses have remained elusive, partly due to technical constraints. In this study, we employ knock-in cell lines designed to target the endogenous CSB gene locus with mClover, a GFP variant. Through live cell imaging, we uncover the intricate molecular dynamics of CSB in response to physiologically relevant UV doses. We showed that the DNA damage-induced association of CSB with chromatin is tightly regulated by the CSA-containing ubiquitin-ligase CRL complex (CRL4CSA). Combining the CSB-mClover knock-in cell line with SILAC-based GFP-mediated complex isolation and mass-spectrometry-based proteomics, revealed novel putative CSB interactors as well as discernible variations in complex composition during distinct stages of TC-NER progression. Our work not only provides molecular insight into TC-NER, but also illustrates the versatility of endogenously tagging fluorescent and affinity tags.
Collapse
Affiliation(s)
- Diana A Llerena Schiffmacher
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherlands
| | - Katarzyna W Kliza
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein Zuid 28, Nijmegen 6525 GA, the Netherlands
| | - Arjan F Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherlands
| | - Gert-Jan Kremers
- Optical Imaging Centre, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherland
| | - Tomoo Ogi
- Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan; Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein Zuid 28, Nijmegen 6525 GA, the Netherlands; Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherlands.
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherlands.
| |
Collapse
|
25
|
Reese JC. New roles for elongation factors in RNA polymerase II ubiquitylation and degradation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194956. [PMID: 37331651 PMCID: PMC10527621 DOI: 10.1016/j.bbagrm.2023.194956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
RNA polymerase II (RNAPII) encounters numerous impediments on its way to completing mRNA synthesis across a gene. Paused and arrested RNAPII are reactivated or rescued by elongation factors that travel with polymerase as it transcribes DNA. However, when RNAPII fails to resume transcription, such as when it encounters an unrepairable bulky DNA lesion, it is removed by the targeting of its largest subunit, Rpb1, for degradation by the ubiquitin-proteasome system (UPS). We are starting to understand this process better and how the UPS marks Rbp1 for degradation. This review will focus on the latest developments and describe new functions for elongation factors that were once thought to only promote elongation in unstressed conditions in the removal and degradation of RNAPII. I propose that in addition to changes in RNAPII structure, the composition and modification of elongation factors in the elongation complex determine whether to rescue or degrade RNAPII.
Collapse
Affiliation(s)
- Joseph C Reese
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
26
|
More P, Ngaffo JAM, Goedtel-Armbrust U, Hähnel PS, Hartwig UF, Kindler T, Wojnowski L. Transcriptional Response to Standard AML Drugs Identifies Synergistic Combinations. Int J Mol Sci 2023; 24:12926. [PMID: 37629110 PMCID: PMC10455220 DOI: 10.3390/ijms241612926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Unlike genomic alterations, gene expression profiles have not been widely used to refine cancer therapies. We analyzed transcriptional changes in acute myeloid leukemia (AML) cell lines in response to standard first-line AML drugs cytarabine and daunorubicin by means of RNA sequencing. Those changes were highly cell- and treatment-specific. By comparing the changes unique to treatment-sensitive and treatment-resistant AML cells, we enriched for treatment-relevant genes. Those genes were associated with drug response-specific pathways, including calcium ion-dependent exocytosis and chromatin remodeling. Pharmacological mimicking of those changes using EGFR and MEK inhibitors enhanced the response to daunorubicin with minimum standalone cytotoxicity. The synergistic response was observed even in the cell lines beyond those used for the discovery, including a primary AML sample. Additionally, publicly available cytotoxicity data confirmed the synergistic effect of EGFR inhibitors in combination with daunorubicin in all 60 investigated cancer cell lines. In conclusion, we demonstrate the utility of treatment-evoked gene expression changes to formulate rational drug combinations. This approach could improve the standard AML therapy, especially in older patients.
Collapse
Affiliation(s)
- Piyush More
- Department of Pharmacology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; (J.A.M.N.); (U.G.-A.); (L.W.)
| | - Joëlle Aurelie Mekontso Ngaffo
- Department of Pharmacology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; (J.A.M.N.); (U.G.-A.); (L.W.)
- Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Ute Goedtel-Armbrust
- Department of Pharmacology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; (J.A.M.N.); (U.G.-A.); (L.W.)
| | - Patricia S. Hähnel
- University Cancer Center (UCT) Mainz, Johannes Gutenberg-University, 55131 Mainz, Germany; (P.S.H.); (T.K.)
- Department of Hematology & Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany;
| | - Udo F. Hartwig
- Department of Hematology & Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany;
- Research Center of Immunotherapy, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Thomas Kindler
- University Cancer Center (UCT) Mainz, Johannes Gutenberg-University, 55131 Mainz, Germany; (P.S.H.); (T.K.)
- Department of Hematology & Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany;
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; (J.A.M.N.); (U.G.-A.); (L.W.)
| |
Collapse
|
27
|
Nguyen T, Mills JC, Cho CJ. The coordinated management of ribosome and translation during injury and regeneration. Front Cell Dev Biol 2023; 11:1186638. [PMID: 37427381 PMCID: PMC10325863 DOI: 10.3389/fcell.2023.1186638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Diverse acute and chronic injuries induce damage responses in the gastrointestinal (GI) system, and numerous cell types in the gastrointestinal tract demonstrate remarkable resilience, adaptability, and regenerative capacity in response to stress. Metaplasias, such as columnar and secretory cell metaplasia, are well-known adaptations that these cells make, the majority of which are epidemiologically associated with an elevated cancer risk. On a number of fronts, it is now being investigated how cells respond to injury at the tissue level, where diverse cell types that differ in proliferation capacity and differentiation state cooperate and compete with one another to participate in regeneration. In addition, the cascades or series of molecular responses that cells show are just beginning to be understood. Notably, the ribosome, a ribonucleoprotein complex that is essential for translation on the endoplasmic reticulum (ER) and in the cytoplasm, is recognized as the central organelle during this process. The highly regulated management of ribosomes as key translational machinery, and their platform, rough endoplasmic reticulum, are not only essential for maintaining differentiated cell identity, but also for achieving successful cell regeneration after injury. This review will cover in depth how ribosomes, the endoplasmic reticulum, and translation are regulated and managed in response to injury (e.g., paligenosis), as well as why this is essential for the proper adaptation of a cell to stress. For this, we will first discuss how multiple gastrointestinal organs respond to stress through metaplasia. Next, we will cover how ribosomes are generated, maintained, and degraded, in addition to the factors that govern translation. Finally, we will investigate how ribosomes and translation machinery are dynamically regulated in response to injury. Our increased understanding of this overlooked cell fate decision mechanism will facilitate the discovery of novel therapeutic targets for gastrointestinal tract tumors, focusing on ribosomes and translation machinery.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jason C. Mills
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Charles J. Cho
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
28
|
Lu H, Yang M, Zhou Q. Reprogramming transcription after DNA damage: recognition, response, repair, and restart. Trends Cell Biol 2022:S0962-8924(22)00261-6. [PMID: 36513571 DOI: 10.1016/j.tcb.2022.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Genome integrity is constantly challenged by endogenous and exogenous insults that cause DNA damage. To cope with these threats, cells have a surveillance mechanism, known as the DNA damage response (DDR), to repair any lesions. Although transcription has long been implicated in DNA repair, how transcriptional reprogramming is coordinated with the DDR is just beginning to be understood. In this review, we highlight recent advances in elucidating the molecular mechanisms underlying major transcriptional events, including RNA polymerase (Pol) II stalling and transcriptional silencing and recovery, which occur in response to DNA damage. Furthermore, we discuss how such transcriptional adaptation contributes to sensing and eliminating damaged DNA and how it can jeopardize genome integrity when it goes awry.
Collapse
Affiliation(s)
- Huasong Lu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Min Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiang Zhou
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong.
| |
Collapse
|
29
|
Muñoz JC, Beckerman I, Choudhary R, Bouvier LA, Muñoz MJ. DNA Damage-Induced RNAPII Degradation and Its Consequences in Gene Expression. Genes (Basel) 2022; 13:1951. [PMID: 36360188 PMCID: PMC9689695 DOI: 10.3390/genes13111951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/27/2023] Open
Abstract
RPB1, the major and catalytic subunit of human RNA Polymerase II (RNAPII), is specifically degraded by the ubiquitin-proteasome system upon induction of DNA damage by different agents, such as ultraviolet (UV) light. The "last resort" model of RNAPII degradation states that a persistently stalled RNAPII is degraded at the site of the DNA lesion in order to facilitate access to Nucleotide Excision Repair (NER) factors, thereby promoting repair in template strands of active genes. Recent identification and mutation of the lysine residue involved in RPB1 ubiquitylation and degradation unveiled the relevance of RNAPII levels in the control of gene expression. Inhibition of RNAPII degradation after UV light exposure enhanced RNAPII loading onto chromatin, demonstrating that the mere concentration of RNAPII shapes the gene expression response. In this review, we discuss the role of RNAPII ubiquitylation in NER-dependent repair, recent advances in RPB1 degradation mechanisms and its consequences in gene expression under stress, both in normal and repair deficient cells.
Collapse
Affiliation(s)
- Juan Cristobal Muñoz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Inés Beckerman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Ramveer Choudhary
- IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - León Alberto Bouvier
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Manuel J. Muñoz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
- IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
30
|
Min S, Ji JH, Heo Y, Cho H. Transcriptional regulation and chromatin dynamics at DNA double-strand breaks. Exp Mol Med 2022; 54:1705-1712. [PMID: 36229590 PMCID: PMC9636152 DOI: 10.1038/s12276-022-00862-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
In eukaryotic cells, DNA damage can occur at any time and at any chromatin locus, including loci at which active transcription is taking place. DNA double-strand breaks affect chromatin integrity and elicit a DNA damage response to facilitate repair of the DNA lesion. Actively transcribed genes near DNA lesions are transiently suppressed by crosstalk between DNA damage response factors and polycomb repressive complexes. Epigenetic modulation of the chromatin environment also contributes to efficient DNA damage response signaling and transcriptional repression. On the other hand, RNA transcripts produced in the G1 phase, as well as the active chromatin context of the lesion, appear to drive homologous recombination repair. Here, we discuss how the ISWI family of chromatin remodeling factors coordinates the DNA damage response and transcriptional repression, especially in transcriptionally active regions, highlighting the direct modulation of the epigenetic environment.
Collapse
Affiliation(s)
- Sunwoo Min
- grid.251916.80000 0004 0532 3933Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499 Korea ,grid.251916.80000 0004 0532 3933Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499 Korea
| | - Jae-Hoon Ji
- grid.267309.90000 0001 0629 5880Department of Biochemistry and Structural Biology, The University of Texas Health San Antonio, Texas, 78229-3000 USA
| | - Yungyeong Heo
- grid.251916.80000 0004 0532 3933Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499 Korea ,grid.251916.80000 0004 0532 3933Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499 Korea
| | - Hyeseong Cho
- grid.251916.80000 0004 0532 3933Department of Biochemistry, Ajou University School of Medicine, Suwon, 16499 Korea ,grid.251916.80000 0004 0532 3933Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499 Korea
| |
Collapse
|