1
|
Saitakis M. Epigenetic reprogramming of CAR T cells for in vivo functional persistence against solid tumors. Genes Immun 2024; 25:434-436. [PMID: 38388813 DOI: 10.1038/s41435-024-00262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Limited CAR T-cell expansion and persistence hinder therapeutic responses in solid cancer patients. To enhance the functional persistence of engineered T-cell therapies, we performed genetic disruption in human CAR T cells of SUV39H1, a histone 3 lysine 9 methyltransferase that promotes heterochromatin formation. This resulted in phenotypic CAR-T reprogramming that elicited optimal and sustained antitumor functionality. Single-cell transcriptomic (scRNA-seq) and chromatin accessibility (scATAC-seq) analyses of tumor-infiltrating CAR T cells showed early reprogramming into self-renewing, stem-like populations with decreased expression of dysfunction genes in all subpopulations. Moreover, we provided evidence that SUV39H1 inactivation elicits potent and durable functional persistence upon multiple tumor rechallenges. This opens a safe path to enhancing adoptive cell therapies for solid tumors.
Collapse
|
2
|
Kabir AU, Zeng C, Subramanian M, Wu J, Kim M, Krchma K, Wang X, Halabi CM, Pan H, Wickline SA, Fremont DH, Artyomov MN, Choi K. ZBTB46 coordinates angiogenesis and immunity to control tumor outcome. Nat Immunol 2024; 25:1546-1554. [PMID: 39134750 DOI: 10.1038/s41590-024-01936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/16/2024] [Indexed: 09/01/2024]
Abstract
Tumor angiogenesis and immunity show an inverse correlation in cancer progression and outcome1. Here, we report that ZBTB46, a repressive transcription factor and a widely accepted marker for classical dendritic cells (DCs)2,3, controls both tumor angiogenesis and immunity. Zbtb46 was downregulated in both DCs and endothelial cells by tumor-derived factors to facilitate robust tumor growth. Zbtb46 downregulation led to a hallmark pro-tumor microenvironment (TME), including dysfunctional vasculature and immunosuppressive conditions. Analysis of human cancer data revealed a similar association of low ZBTB46 expression with an immunosuppressive TME and a worse prognosis. In contrast, enforced Zbtb46 expression led to TME changes to restrict tumor growth. Mechanistically, Zbtb46-deficient endothelial cells were highly angiogenic, and Zbtb46-deficient bone marrow progenitors upregulated Cebpb and diverted the DC program to immunosuppressive myeloid lineage output, potentially explaining the myeloid lineage skewing phenomenon in cancer4. Conversely, enforced Zbtb46 expression normalized tumor vessels and, by suppressing Cebpb, skewed bone marrow precursors toward immunostimulatory myeloid lineage output, leading to an immune-hot TME. Remarkably, Zbtb46 mRNA treatment synergized with anti-PD1 immunotherapy to improve tumor management in preclinical models. These findings identify ZBTB46 as a critical factor for angiogenesis and for myeloid lineage skewing in cancer and suggest that maintaining its expression could have therapeutic benefits.
Collapse
Affiliation(s)
- Ashraf Ul Kabir
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carisa Zeng
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Madhav Subramanian
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jun Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Minseo Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Karen Krchma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen M Halabi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Hua Pan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel A Wickline
- Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Pallavicini I, Frasconi TM, Catozzi C, Ceccacci E, Tiberti S, Haas D, Samson J, Heuser-Loy C, Nava Lauson CB, Mangione M, Preto E, Bigogno A, Sala E, Iannacone M, Mercurio C, Gattinoni L, Caruana I, Kuka M, Nezi L, Minucci S, Manzo T. LSD1 inhibition improves efficacy of adoptive T cell therapy by enhancing CD8 + T cell responsiveness. Nat Commun 2024; 15:7366. [PMID: 39191730 PMCID: PMC11349769 DOI: 10.1038/s41467-024-51500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
The lysine-specific histone demethylase 1 A (LSD1) is involved in antitumor immunity; however, its role in shaping CD8 + T cell (CTL) differentiation and function remains largely unexplored. Here, we show that pharmacological inhibition of LSD1 (LSD1i) in CTL in the context of adoptive T cell therapy (ACT) elicits phenotypic and functional alterations, resulting in a robust antitumor immunity in preclinical models in female mice. In addition, the combination of anti-PDL1 treatment with LSD1i-based ACT eradicates the tumor and leads to long-lasting tumor-free survival in a melanoma model, complementing the limited efficacy of the immune or epigenetic therapy alone. Collectively, these results demonstrate that LSD1 modulation improves antitumoral responses generated by ACT and anti-PDL1 therapy, providing the foundation for their clinical evaluation.
Collapse
Affiliation(s)
- Isabella Pallavicini
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Teresa Maria Frasconi
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Carlotta Catozzi
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Elena Ceccacci
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Silvia Tiberti
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Dorothee Haas
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation Unit- University Hospital of Würzburg, Würzburg, Germany
| | - Jule Samson
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation Unit- University Hospital of Würzburg, Würzburg, Germany
| | - Christoph Heuser-Loy
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Carina B Nava Lauson
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Marta Mangione
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Elisa Preto
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Alberto Bigogno
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Eleonora Sala
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Iannacone
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ciro Mercurio
- Experimental Therapeutics Program, the FIRC Institute of Molecular Oncology IFOM, Milan, Italy
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
| | - Ignazio Caruana
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation Unit- University Hospital of Würzburg, Würzburg, Germany
| | - Mirela Kuka
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Nezi
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Saverio Minucci
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy
- University of Milan, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Teresa Manzo
- Istituto Europeo di Oncologia - IRCCS, Department of Experimental Oncology, Milan, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
4
|
Luo Y, Lu J, Lei Z, Zhu H, Rao D, Wang T, Fu C, Zhang Z, Xia L, Huang W. Lysine methylation modifications in tumor immunomodulation and immunotherapy: regulatory mechanisms and perspectives. Biomark Res 2024; 12:74. [PMID: 39080807 PMCID: PMC11289998 DOI: 10.1186/s40364-024-00621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Lysine methylation is a crucial post-translational modification (PTM) that significantly impacts gene expression regulation. This modification not only influences cancer development directly but also has significant implications for the immune system. Lysine methylation modulates immune cell functions and shapes the anti-tumor immune response, highlighting its dual role in both tumor progression and immune regulation. In this review, we provide a comprehensive overview of the intrinsic role of lysine methylation in the activation and function of immune cells, detailing how these modifications affect cellular processes and signaling pathways. We delve into the mechanisms by which lysine methylation contributes to tumor immune evasion, allowing cancer cells to escape immune surveillance and thrive. Furthermore, we discuss the therapeutic potential of targeting lysine methylation in cancer immunotherapy. Emerging strategies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell (CAR-T) therapy, are being explored for their efficacy in modulating lysine methylation to enhance anti-tumor immune responses. By targeting these modifications, we can potentially improve the effectiveness of existing treatments and develop novel therapeutic approaches to combat cancer more effectively.
Collapse
Affiliation(s)
- Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - He Zhu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chenan Fu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhiwei Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Pang L, Zhou F, Liu Y, Ali H, Khan F, Heimberger AB, Chen P. Epigenetic regulation of tumor immunity. J Clin Invest 2024; 134:e178540. [PMID: 39133578 PMCID: PMC11178542 DOI: 10.1172/jci178540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Although cancer has long been considered a genetic disease, increasing evidence shows that epigenetic aberrations play a crucial role in affecting tumor biology and therapeutic response. The dysregulated epigenome in cancer cells reprograms the immune landscape within the tumor microenvironment, thereby hindering antitumor immunity, promoting tumor progression, and inducing immunotherapy resistance. Targeting epigenetically mediated tumor-immune crosstalk is an emerging strategy to inhibit tumor progression and circumvent the limitations of current immunotherapies, including immune checkpoint inhibitors. In this Review, we discuss the mechanisms by which epigenetic aberrations regulate tumor-immune interactions and how epigenetically targeted therapies inhibit tumor progression and synergize with immunotherapy.
Collapse
|
6
|
Liu S, Liu L, Ma J, Li J, Wang L, Xu J, Hu S. αPD-1 immunotherapy promotes IL-17A production and promotes the formation of acute radiation-induced lung injury. Am J Cancer Res 2024; 14:2881-2893. [PMID: 39005666 PMCID: PMC11236766 DOI: 10.62347/wdoc4830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/29/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Radiotherapy (RT) is essential in the treatment of thoracic neoplasms. Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) have significantly improved the clinical management of non-small cell lung carcinoma (NSCLC). OBJECTIVE This study aimed to investigate the impact of combining anti-PD-1 (αPD-1) immunotherapy with radiotherapy on lung injury. Additionally, it investigates the role and mechanism of interleukin (IL)-17A, a pro-inflammatory cytokine involved in immune regulation, in lung injury arising from this combination treatment. METHODS Experiments were conducted using a PD-1 deficient mouse model to simulate acute radiation-induced lung injury. Inbred female BALB/c wild-type (WT) mice and PD-1-/- mice were divided into six groups: WT group, PD-1-/- group, WT_LIR + IgG group, PD-1-/-_LIR + IgG group, WT_LIR + αIL-17A group, and PD-1-/-_LIR + αIL-17A group. The mice were subjected to 8 Gy × 3 irradiation in both lungs. Various methods including histological scoring, immunofluorescence, qPCR, and flow cytometry were employed to analyze the role of IL-17A in lung injury and the effect of PD-1 gene deletion on the severity of radiation-induced lung injury. RESULTS The PD-1-/-_LIR mice exhibited evident radiation-induced lung injury after receiving 8 Gy × 3 doses in both lungs. The expression level of IL-17A peaked at 2 weeks. Lung injury-related factors IFN-γ, TNF-α, IL-6, and RORγt in the PD-1-/-_LIR groups increased 2 weeks after irradiation. The CD4+ and CD8+ T cells in lung tissue of the PD-1-/-_LIR mice significantly increased. Post αIL-17A administration, the incidence of alveolitis in the treatment group decreased, the expression levels of lung injury-related factors IFN-γ, TNF-α, IL-6, RORγt, TGF-β1, and IL-17A decreased, and the CD4+ and CD8+ T cells in lung tissue significantly declined. Throughout the observation period, the survival rate of the mice in the treatment group was significantly higher than that of the isotype control group (60% vs 0%, P = 0.011). CONCLUSION Combining αPD-1 immunotherapy with radiotherapy in mice can induce radiation-induced lung injury, with IL-17A playing a critical role in this process. αIL-17A administration significantly mitigated radiation-induced lung injury caused by the combination of αPD-1 immunotherapy and radiotherapy, improving mouse survival. This finding offers a promising treatment target for lung injury resulting from the combination of αPD-1 immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- Shilong Liu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital Harbin 150081, Heilongjiang, China
| | - Lili Liu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital Harbin 150081, Heilongjiang, China
| | - Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital Harbin 150081, Heilongjiang, China
| | - Jian Li
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital Harbin 150081, Heilongjiang, China
| | - Liqun Wang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital Harbin 150081, Heilongjiang, China
| | - Jianyu Xu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital Harbin 150081, Heilongjiang, China
| | - Songliu Hu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital Harbin 150081, Heilongjiang, China
| |
Collapse
|
7
|
Ahn T, Bae EA, Seo H. Decoding and overcoming T cell exhaustion: Epigenetic and transcriptional dynamics in CAR-T cells against solid tumors. Mol Ther 2024; 32:1617-1627. [PMID: 38582965 PMCID: PMC11184340 DOI: 10.1016/j.ymthe.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/14/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
T cell exhaustion, which is observed in various chronic infections and malignancies, is characterized by elevated expression of multiple inhibitory receptors, impaired effector functions, decreased proliferation, and reduced cytokine production. Notably, while adoptive T cell therapies, such as chimeric antigen receptor (CAR)-T therapy, have shown promise in treating cancer and other diseases, the efficacy of these therapies is often compromised by T cell exhaustion. It is imperative, therefore, to understand the mechanisms underlying this exhaustion to promote advances in T cell-related therapies. Here, we divided exhausted T cells into three distinct subsets according to their developmental and functional profiles: stem-like progenitor cells, intermediately exhausted cells, and terminally exhausted cells. These subsets are carefully regulated by synergistic mechanisms that involve transcriptional and epigenetic modulators. Key transcription factors, such as TCF1, BACH2, and TOX, are crucial for defining and sustaining exhaustion phenotypes. Concurrently, epigenetic regulators, such as TET2 and DNMT3A, shape the chromatin dynamics that direct T cell fate. The interplay of these molecular drivers has recently been highlighted in CAR-T research, revealing promising therapeutic directions. Thus, a profound understanding of exhausted T cell hierarchies and their molecular complexities may reveal innovative and improved tumor treatment strategies.
Collapse
Affiliation(s)
- Taeyoung Ahn
- Laboratory of Cell & Gene Therapy, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Ah Bae
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyungseok Seo
- Laboratory of Cell & Gene Therapy, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Wu Y, Cao Y, Chen L, Lai X, Zhang S, Wang S. Role of Exosomes in Cancer and Aptamer-Modified Exosomes as a Promising Platform for Cancer Targeted Therapy. Biol Proced Online 2024; 26:15. [PMID: 38802766 PMCID: PMC11129508 DOI: 10.1186/s12575-024-00245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Exosomes are increasingly recognized as important mediators of intercellular communication in cancer biology. Exosomes can be derived from cancer cells as well as cellular components in tumor microenvironment. After secretion, the exosomes carrying a wide range of bioactive cargos can be ingested by local or distant recipient cells. The released cargos act through a variety of mechanisms to elicit multiple biological effects and impact most if not all hallmarks of cancer. Moreover, owing to their excellent biocompatibility and capability of being easily engineered or modified, exosomes are currently exploited as a promising platform for cancer targeted therapy. In this review, we first summarize the current knowledge of roles of exosomes in risk and etiology, initiation and progression of cancer, as well as their underlying molecular mechanisms. The aptamer-modified exosome as a promising platform for cancer targeted therapy is then briefly introduced. We also discuss the future directions for emerging roles of exosome in tumor biology and perspective of aptamer-modified exosomes in cancer therapy.
Collapse
Affiliation(s)
- Yating Wu
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Medical Oncology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Yue Cao
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Li Chen
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Xiaofeng Lai
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| | - Shuiliang Wang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| |
Collapse
|
9
|
Smith AL, Skupa SA, Eiken AP, Reznicek TE, Schmitz E, Williams N, Moore DY, D’Angelo CR, Kallam A, Lunning MA, Bociek RG, Vose JM, Mohamed E, Mahr AR, Denton PW, Powell B, Bollag G, Rowley MJ, El-Gamal D. BET inhibition reforms the immune microenvironment and alleviates T cell dysfunction in chronic lymphocytic leukemia. JCI Insight 2024; 9:e177054. [PMID: 38775157 PMCID: PMC11141939 DOI: 10.1172/jci.insight.177054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/12/2024] [Indexed: 06/02/2024] Open
Abstract
Redundant tumor microenvironment (TME) immunosuppressive mechanisms and epigenetic maintenance of terminal T cell exhaustion greatly hinder functional antitumor immune responses in chronic lymphocytic leukemia (CLL). Bromodomain and extraterminal (BET) proteins regulate key pathways contributing to CLL pathogenesis and TME interactions, including T cell function and differentiation. Herein, we report that blocking BET protein function alleviates immunosuppressive networks in the CLL TME and repairs inherent CLL T cell defects. The pan-BET inhibitor OPN-51107 reduced exhaustion-associated cell signatures resulting in improved T cell proliferation and effector function in the Eμ-TCL1 splenic TME. Following BET inhibition (BET-i), TME T cells coexpressed significantly fewer inhibitory receptors (IRs) (e.g., PD-1, CD160, CD244, LAG3, VISTA). Complementary results were witnessed in primary CLL cultures, wherein OPN-51107 exerted proinflammatory effects on T cells, regardless of leukemic cell burden. BET-i additionally promotes a progenitor T cell phenotype through reduced expression of transcription factors that maintain terminal differentiation and increased expression of TCF-1, at least in part through altered chromatin accessibility. Moreover, direct T cell effects of BET-i were unmatched by common targeted therapies in CLL. This study demonstrates the immunomodulatory action of BET-i on CLL T cells and supports the inclusion of BET inhibitors in the management of CLL to alleviate terminal T cell dysfunction and potentially enhance tumoricidal T cell activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Nolan Williams
- Eppley Institute for Research in Cancer and Allied Diseases
| | - Dalia Y. Moore
- Eppley Institute for Research in Cancer and Allied Diseases
| | - Christopher R. D’Angelo
- Division of Hematology and Oncology, Department of Internal Medicine, and
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Avyakta Kallam
- Division of Hematology and Oncology, Department of Internal Medicine, and
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Matthew A. Lunning
- Division of Hematology and Oncology, Department of Internal Medicine, and
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - R. Gregory Bociek
- Division of Hematology and Oncology, Department of Internal Medicine, and
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Julie M. Vose
- Division of Hematology and Oncology, Department of Internal Medicine, and
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Eslam Mohamed
- College of Medicine and College of Graduate Studies, California Northstate University, Elk Grove, California, USA
| | - Anna R. Mahr
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Paul W. Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Ben Powell
- Plexxikon Inc., South San Francisco, California, USA
| | | | | | - Dalia El-Gamal
- Eppley Institute for Research in Cancer and Allied Diseases
- Fred & Pamela Buffett Cancer Center (FPBCC), University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| |
Collapse
|
10
|
Shi M, Ye L, Zhao L, He L, Chen J, Zhang J, Su Y, Dong H, Liu J, Liang L, Zheng W, Xiao Y, Liu H, Yang X, Yang Z. Tumor derived exosomal ENTPD2 impair CD8 + T cell function in colon cancer through ATP-adenosine metabolism reprogramming. Cell Commun Signal 2024; 22:274. [PMID: 38755598 PMCID: PMC11097558 DOI: 10.1186/s12964-024-01654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Extracellular ATP-AMP-adenosine metabolism plays a pivotal role in modulating tumor immune responses. Previous studies have shown that the conversion of ATP to AMP is primarily catalysed by Ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1/CD39), a widely studied ATPase, which is expressed in tumor-associated immune cells. However, the function of ATPases derived from tumor cells themselves remains poorly understood. The purpose of this study was to investigate the role of colon cancer cell-derived ATPases in the development and progression of colon cancer. METHODS Bioinformatic and tissue microarray analyses were performed to investigate the expression of ATPase family members in colon cancer. An ATP hydrolysis assay, high-performance liquid chromatography (HPLC), and CCK8 and colony formation assays were used to determine the effects of ENTPD2 on the biological functions of colon cancer cells. Flow cytometric and RNA-seq analyses were used to explore the function of CD8+ T cells. Immunoelectron microscopy and western blotting were used to evaluate the expression of ENTPD2 in exosomes. Double-labelling immunofluorescence and western blotting were used to examine the expression of ENTPD2 in serum exosomes and colon cancer tissues. RESULTS We found that ENTPD2, rather than the well-known ATPase CD39, is highly expressed in cancer cells and is significantly positively associated with poor patient prognosis in patients with colon cancer. The overexpression of ENTPD2 in cancer cells augmented tumor progression in immunocompetent mice by inhibiting the function of CD8+ T cells. Moreover, ENTPD2 is localized primarily within exosomes. On the one hand, exosomal ENTPD2 reduces extracellular ATP levels, thereby inhibiting P2X7R-mediated NFATc1 nuclear transcription; on the other hand, it facilitates the increased conversion of ATP to adenosine, hence promoting adenosine-A2AR pathway activity. In patients with colon cancer, the serum level of exosomal ENTPD2 is positively associated with advanced TNM stage and high tumor invasion depth. Moreover, the level of ENTPD2 in the serum exosomes of colon cancer patients is positively correlated with the ENTPD2 expression level in paired colon cancer tissues, and the ENTPD2 level in both serum exosomes and tissues is significantly negatively correlated with the ENTPD2 expression level in tumor-infiltrating CD8+ T cells. CONCLUSION Our study suggests that exosomal ENTPD2, originated from colon cancer cells, contributes to the immunosuppressive microenvironment by promoting ATP-adenosine metabolism. These findings highlight the importance of exosome-derived hydrolytic enzymes as independent entities in shaping the tumor immune microenvironment.
Collapse
Affiliation(s)
- Mengchen Shi
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Linsen Ye
- Department of Hepatic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Lu Zhao
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Lingyuan He
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Junxiong Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Jingdan Zhang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yixi Su
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Haiyan Dong
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Jiaqi Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Liumei Liang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Wenwen Zheng
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yanhong Xiao
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| | - Xiangling Yang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| | - Zihuan Yang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|
11
|
Wang Y, Zhao G, Wang S, Li N. Deleting SUV39H1 in CAR-T cells epigenetically enhances the antitumor function. MedComm (Beijing) 2024; 5:e552. [PMID: 38645666 PMCID: PMC11032738 DOI: 10.1002/mco2.552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
SUV39H1 ablation in CAR-T cells epigenetically enhances the antitumor function (by Figdraw). (A) Schematic illustration of SUV39H1 ablation-mediated enhanced antitumor function of CAR-T cells. Functional CAR-T cells eventually transformed into dysfunctional exhausted CAR-T cells under the exposure of chronic tumor antigens, accompanied by reduced proliferation level, effector function, and stemness/memory characteristics, thereby limiting the antitumor activity so as to cause the recurrence of solid tumors. Upon genetic engineering of SUV39H1 ablation, SUV KO CAR-T cells are endowed with increased proliferation level and stemness/memory properties, accompanied by reduced effector/exhausted phenotype. Augmented SUV KO CAR-T cells after in vitro expansion intravenously infusion to mice achieved stronger and more persistent tumor rejection. (B) SUV39H1 ablation-mediated epigenetic reprogramming mechanism of CAR-T cells. Epigenetically, under the stimulation of chronic tumor antigens, exhausted CAR-T cells were characterized by downregulation of proliferation, effector and stemness/memory-associated genes and upregulation of exhaustion-associated genes. SUV39H1 genetic ablation increased chromatin accessibility of stemness/memory-associated genes and reduced chromatin accessibility of inhibitory receptors and effector-associated genes in SUV KO CAR-T cells, epigenetically reprogramming human T cells to express higher levels of stemness/memory genes such as KLF2, LEF1 and TCF7 and lower levels of effector/exhaustion genes.
Collapse
Affiliation(s)
- Yuning Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Guo Zhao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
12
|
Chen Y, Weng X, Zhang C, Wang S, Wu X, Cheng B. Inhibition of SUV39H1 reduces tumor angiogenesis via Notch1 in oral squamous cell carcinoma. PeerJ 2024; 12:e17222. [PMID: 38650654 PMCID: PMC11034493 DOI: 10.7717/peerj.17222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Targeting tumor angiogenesis is an important approach in advanced tumor therapy. Here we investigated the effect of the suppressor of variegation 3-9 homolog 1 (SUV39H1) on tumor angiogenesis in oral squamous cell carcinoma (OSCC). The GEPIA database was used to analyze the expression of SUV39H1 in various cancer tissues. The expression of SUV39H1 in OSCC was detected by immunohistochemistry, and the correlation between SUV39H1 and Notch1 and microvascular density (MVD) was analyzed. The effect of SUV39H1 inhibition on OSCC was investigated in vivo by chaetocin treatment. The migration and tube formation of vascular endothelial cells by conditioned culture-medium of different treatments of oral squamous cell cells were measured. The transcriptional level of SUV39H1 is elevated in various cancer tissues. The transcription level of SUV39H1 in head and neck squamous cell carcinoma was significantly higher than that in control. Immunohistochemistry result showed increased SUV39H1 expression in OSCC, which was significantly correlated with T staging. The expression of SUV39H1 was significantly correlated with Notch1 and CD31. In vivo experiment chaetocin treatment significantly inhibit the growth of tumor, and reduce SUV39H1, Notch1, CD31 expression. The decreased expression of SUV39H1 in OSCC cells lead to the decreased expression of Notch1 and VEGF proteins, as well as the decreased migration and tube formation ability of vascular endothelial cells. Inhibition of Notch1 further enhance this effect. Our results suggest inhibition of SUV39H1 may affect angiogenesis by regulating Notch1 expression. This study provides a foundation for SUV39H1 as a potential therapeutic target for OSCC.
Collapse
MESH Headings
- Humans
- Receptor, Notch1/metabolism
- Receptor, Notch1/genetics
- Mouth Neoplasms/pathology
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/drug therapy
- Mouth Neoplasms/blood supply
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Animals
- Repressor Proteins/metabolism
- Repressor Proteins/genetics
- Methyltransferases/metabolism
- Methyltransferases/antagonists & inhibitors
- Methyltransferases/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/blood supply
- Cell Line, Tumor
- Mice
- Cell Movement/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Angiogenesis
Collapse
Affiliation(s)
- Yan Chen
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiuhong Weng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chuanjie Zhang
- Department of Children Health Care, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simin Wang
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuechen Wu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Jain N, Zhao Z, Koche RP, Antelope C, Gozlan Y, Montalbano A, Brocks D, Lopez M, Dobrin A, Shi Y, Gunset G, Giavridis T, Sadelain M. Disruption of SUV39H1-Mediated H3K9 Methylation Sustains CAR T-cell Function. Cancer Discov 2024; 14:142-157. [PMID: 37934007 PMCID: PMC10880746 DOI: 10.1158/2159-8290.cd-22-1319] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/30/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Suboptimal functional persistence limits the efficacy of adoptive T-cell therapies. CD28-based chimeric antigen receptors (CAR) impart potent effector function to T cells but with a limited lifespan. We show here that the genetic disruption of SUV39H1, which encodes a histone-3, lysine-9 methyl-transferase, enhances the early expansion, long-term persistence, and overall antitumor efficacy of human CAR T cells in leukemia and prostate cancer models. Persisting SUV39H1-edited CAR T cells demonstrate improved expansion and tumor rejection upon multiple rechallenges. Transcriptional and genome accessibility profiling of repeatedly challenged CAR T cells shows improved expression and accessibility of memory transcription factors in SUV39H1-edited CAR T cells. SUV39H1 editing also reduces expression of inhibitory receptors and limits exhaustion in CAR T cells that have undergone multiple rechallenges. Our findings thus demonstrate the potential of epigenetic programming of CAR T cells to balance their function and persistence for improved adoptive cell therapies. SIGNIFICANCE T cells engineered with CD28-based CARs possess robust effector function and antigen sensitivity but are hampered by limited persistence, which may result in tumor relapse. We report an epigenetic strategy involving disruption of the SUV39H1-mediated histone-silencing program that promotes the functional persistence of CD28-based CAR T cells. See related article by López-Cobo et al., p. 120. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
- Nayan Jain
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- These authors contributed equally to this work
| | - Zeguo Zhao
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- These authors contributed equally to this work
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | - Michael Lopez
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anton Dobrin
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuzhe Shi
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gertrude Gunset
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Michel Sadelain
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
14
|
López-Cobo S, Fuentealba JR, Gueguen P, Bonté PE, Tsalkitzi K, Chacón I, Glauzy S, Bohineust A, Biquand A, Silva L, Gouveia Z, Goudot C, Perez F, Saitakis M, Amigorena S. SUV39H1 Ablation Enhances Long-term CAR T Function in Solid Tumors. Cancer Discov 2024; 14:120-141. [PMID: 37934001 DOI: 10.1158/2159-8290.cd-22-1350] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Failure of adoptive T-cell therapies in patients with cancer is linked to limited T-cell expansion and persistence, even in memory-prone 41BB-(BBz)-based chimeric antigen receptor (CAR) T cells. We show here that BBz-CAR T-cell stem/memory differentiation and persistence can be enhanced through epigenetic manipulation of the histone 3 lysine 9 trimethylation (H3K9me3) pathway. Inactivation of the H3K9 trimethyltransferase SUV39H1 enhances BBz-CAR T cell long-term persistence, protecting mice against tumor relapses and rechallenges in lung and disseminated solid tumor models up to several months after CAR T-cell infusion. Single-cell transcriptomic (single-cell RNA sequencing) and chromatin opening (single-cell assay for transposase accessible chromatin) analyses of tumor-infiltrating CAR T cells show early reprogramming into self-renewing, stemlike populations with decreased expression of dysfunction genes in all T-cell subpopulations. Therefore, epigenetic manipulation of H3K9 methylation by SUV39H1 optimizes the long-term functional persistence of BBz-CAR T cells, limiting relapses, and providing protection against tumor rechallenges. SIGNIFICANCE Limited CAR T-cell expansion and persistence hinders therapeutic responses in solid cancer patients. We show that targeting SUV39H1 histone methyltransferase enhances 41BB-based CAR T-cell long-term protection against tumor relapses and rechallenges by increasing stemness/memory differentiation. This opens a safe path to enhancing adoptive cell therapies for solid tumors. See related article by Jain et al., p. 142. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
- Sheila López-Cobo
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Jaime R Fuentealba
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Paul Gueguen
- Department of Oncology, UNIL CHUV and Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Kyriaki Tsalkitzi
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Mnemo Therapeutics, Paris, France
| | - Irena Chacón
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Salomé Glauzy
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | | | | | - Lisseth Silva
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Zelia Gouveia
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Christel Goudot
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Michael Saitakis
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Mnemo Therapeutics, Paris, France
| | - Sebastian Amigorena
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Mnemo Therapeutics, Paris, France
| |
Collapse
|
15
|
Bonté PE, Metoikidou C, Heurtebise-Chretien S, Arribas YA, Sutra Del Galy A, Ye M, Niborski LL, Zueva E, Piaggio E, Seguin-Givelet A, Girard N, Alanio C, Burbage M, Goudot C, Amigorena S. Selective control of transposable element expression during T cell exhaustion and anti-PD-1 treatment. Sci Immunol 2023; 8:eadf8838. [PMID: 37889984 DOI: 10.1126/sciimmunol.adf8838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/01/2023] [Indexed: 10/29/2023]
Abstract
In chronic infections and cancer, T cells are exposed to prolonged antigen stimulation, resulting in loss of function (or exhaustion) and impairment of effective immunological protection. Exhausted T cells are heterogeneous and include early progenitors (Tpex) and terminally exhausted cells (Tex). Here, we used bulk and single-cell transcriptomics to analyze expression of transposable elements (TEs) in subpopulations of mouse and human CD8+ tumor-infiltrating T lymphocytes (TILs). We show that in mice, members of the virus-like murine VL30 TE family (mostly intact, evolutionary young ERV1s) are strongly repressed in terminally exhausted CD8+ T cells in both tumor and viral models of exhaustion. Tpex expression of these VL30s, which are mainly intergenic and transcribed independently of their closest gene neighbors, was driven by Fli1, a transcription factor involved in progression from Tpex to Tex. Immune checkpoint blockade (ICB) in both mice and patients with cancer increased TE expression (including VL30 in mice), demonstrating that TEs may be applicable as ICB response biomarkers. We conclude that expression of TEs is tightly regulated in TILs during establishment of exhaustion and reprogramming by ICB. Analyses of TE expression on single cells and bulk populations open opportunities for understanding immune cell identity and heterogeneity, as well as for defining cellular gene expression signatures and disease biomarkers.
Collapse
Affiliation(s)
- Pierre-Emmanuel Bonté
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | - Christina Metoikidou
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | | | - Yago A Arribas
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | | | - Mengliang Ye
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | | | - Elina Zueva
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | - Eliane Piaggio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | | | - Nicolas Girard
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
- Institut Curie, Institut du Thorax Curie Montsouris, Paris 75005, France
- Paris Saclay, UVSQ, UFR Simmone Veil, Versailles 78000, France
| | - Cécile Alanio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
- Laboratoire d'immunologie clinique, Institut Curie, Paris 75005, France
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| | - Marianne Burbage
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | - Christel Goudot
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | - Sebastian Amigorena
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| |
Collapse
|
16
|
Lan X, Zebley CC, Youngblood B. Cellular and molecular waypoints along the path of T cell exhaustion. Sci Immunol 2023; 8:eadg3868. [PMID: 37656775 PMCID: PMC10618911 DOI: 10.1126/sciimmunol.adg3868] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/09/2023] [Indexed: 09/03/2023]
Abstract
Thirty years of foundational research investigating molecular and cellular mechanisms promoting T cell exhaustion are now enabling rational design of T cell-based therapies for the treatment of chronic infections and cancer. Once described as a static cell fate, it is now well appreciated that the developmental path toward exhaustion is composed of a heterogeneous pool of cells with varying degrees of effector potential that ultimately converge on a terminally differentiated state. Recent description of the developmental stages along the differentiation trajectory of T cell exhaustion has provided insight into past immunotherapeutic success and future opportunities. Here, we discuss the hallmarks of distinct developmental stages occurring along the path to T cell dysfunction and the impact of these discrete CD8+ T cell fates on cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Caitlin C. Zebley
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
17
|
Zebley CC, Youngblood B. T cell TET2 disruption cuts the breaks on antitumor CAR T cell therapy. Trends Immunol 2023; 44:397-398. [PMID: 36959018 DOI: 10.1016/j.it.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023]
Abstract
Functional persistence of chimeric antigen receptor (CAR) T cells is required for sustaining an antitumor response. Recently, Jain et al. revealed that disruption of TET2 in CAR T cells resulted in antigen-independent CAR T cell hyperproliferation that enhanced tumor control in mice, highlighting the potential of epigenetic strategies to improve T cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Caitlin C Zebley
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Ben Youngblood
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
18
|
Micevic G, Bosenberg MW, Yan Q. The Crossroads of Cancer Epigenetics and Immune Checkpoint Therapy. Clin Cancer Res 2023; 29:1173-1182. [PMID: 36449280 PMCID: PMC10073242 DOI: 10.1158/1078-0432.ccr-22-0784] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022]
Abstract
Immune checkpoint inhibitors (ICI) have significantly improved treatment outcomes for several types of cancer over the past decade, but significant challenges that limit wider effectiveness of current immunotherapies remain to be addressed. Certain "cold" tumor types, such as pancreatic cancer, exhibit very low response rates to ICI due to intrinsically low immunogenicity. In addition, many patients who initially respond to ICI lack a sustained response due to T-cell exhaustion. Several recent studies show that epigenetic modifiers, such as SETDB1 and LSD1, can play critical roles in regulating both tumor cell-intrinsic immunity and T-cell exhaustion. Here, we review the evidence showing that multiple epigenetic regulators silence the expression of endogenous antigens, and their loss induces viral mimicry responses bolstering the response of "cold" tumors to ICI in preclinical models. Similarly, a previously unappreciated role for epigenetic enzymes is emerging in the establishment and maintenance of stem-like T-cell populations that are critical mediators of response to ICI. Targeting the crossroads of epigenetics and immune checkpoint therapy has tremendous potential to improve antitumor immune responses and herald the next generation of sustained responses in immuno-oncology.
Collapse
Affiliation(s)
- Goran Micevic
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
| | - Marcus W. Bosenberg
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT 06520
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT 06520
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
19
|
Ford BR, Poholek AC. Regulation and Immunotherapeutic Targeting of the Epigenome in Exhausted CD8 T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:869-879. [PMID: 36947818 PMCID: PMC10037537 DOI: 10.4049/jimmunol.2200681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 03/24/2023]
Abstract
Exhaustion is a state of CD8 T cell differentiation that occurs in settings of chronic Ag such as tumors, chronic viral infection, and autoimmunity. Cellular differentiation is driven by a series of environmental signals that promote epigenetic landscapes that set transcriptomes needed for function. For CD8 T cells, the epigenome that underlies exhaustion is distinct from effector and memory cell differentiation, suggesting that signals early on set in motion a process where the epigenome is modified to promote a trajectory toward a dysfunctional state. Although we know many signals that promote exhaustion, putting this in the context of the epigenetic changes that occur during differentiation has been less clear. In this review, we aim to summarize the epigenetic changes associated with exhaustion in the context of signals that promote it, highlighting immunotherapeutic studies that support these observations or areas for future therapeutic opportunities.
Collapse
Affiliation(s)
- B Rhodes Ford
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA; and Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Amanda C Poholek
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA; and Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
20
|
Li Y, Duan Z, Pan D, Ren L, Gu L, Li X, Xu G, Zhu H, Zhang H, Gu Z, Chen R, Gong Q, Wu Y, Luo K. Attenuating Metabolic Competition of Tumor Cells for Favoring the Nutritional Demand of Immune Cells by a Branched Polymeric Drug Delivery System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210161. [PMID: 36504170 DOI: 10.1002/adma.202210161] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Tumor cells are dominant in the nutritional competition in the tumor microenvironment, and their metabolic abnormalities often lead to microenvironmental acidosis and nutrient deprivation, thereby impairing the function of immune cells and diminishing the antitumor therapeutic effect. Herein, a branched polymeric conjugate and its efficacy in attenuating the metabolic competition of tumor cells are reported. Compared with the control nanoparticles prepared from its linear counterpart, the branched-conjugate-based nanoparticles can more efficiently accumulate in the tumor tissue and interfere with the metabolic processes of tumor cells to increase the concentration of essential nutrients and reduce the level of immunosuppressive metabolites in the TME, thus creating a favorable environment for infiltrated immune cells. Its combined treatment with an immune checkpoint inhibitor (ICI) achieves an enhanced antitumor effect. The work presents a promising approach for targeting metabolic competition in the TME to enhance the chemo-immunotherapeutic effect against cancers.
Collapse
Affiliation(s)
- Yinggang Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Long Ren
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Lei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Xiaoling Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Gang Xu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Yao Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
21
|
Sutopo NC, Kim JH, Cho JY. Role of histone methylation in skin cancers: Histone methylation-modifying enzymes as a new class of targets for skin cancer treatment. Biochim Biophys Acta Rev Cancer 2023; 1878:188865. [PMID: 36841366 DOI: 10.1016/j.bbcan.2023.188865] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
Histone methylation, one of the most prominent epigenetic modifications, plays a vital role in gene transcription, and aberrant histone methylation levels cause tumorigenesis. Histone methylation is a reversible enzyme-dependent reaction, and histone methyltransferases and demethylases are involved in this reaction. This review addresses the biological and clinical relevance of these histone methylation-modifying enzymes for skin cancer. In particular, the roles of histone lysine methyltransferases, histone arginine methyltransferase, lysine-specific demethylases, and JmjC demethylases in skin cancer are discussed in detail. In addition, we summarize the efficacy of several epigenetic inhibitors targeting histone methylation-modifying enzymes in cutaneous cancers, such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. In conclusion, we propose histone methylation-modifying enzymes as novel targets for next-generation pharmaceuticals in the treatment of skin cancers and further provide a rationale for the development of epigenetic drugs (epidrugs) that target specific histone methylases/demethylases in cutaneous tumors.
Collapse
Affiliation(s)
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|