1
|
Gheysen M, Punie K, Wildiers H, Neven P. Oral SERDs changing the scenery in hormone receptor positive breast cancer, a comprehensive review. Cancer Treat Rev 2024; 130:102825. [PMID: 39293125 DOI: 10.1016/j.ctrv.2024.102825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Primary and acquired endocrine resistance remains a major issue in the treatment of hormone receptor positive breast cancer. Acquired resistance often results from estrogen receptor 1 (ESR1) mutations leading to estrogen independent estrogen receptor activation. Selective estrogen receptor degraders (SERDs) induce degradation of this receptor, thereby overcoming this resistance. The intramuscular administration and modest efficacy of fulvestrant, the first SERD, triggered development of oral, more potent SERDs. This narrative review gives an overview of the current evidence regarding this new drug class. METHODS Medline/PubMed and Embase database were screened using a systematic search strategy. We assessed the San Antonio Breast Cancer Symposium abstract reports, the European Society of Medical Oncology (ESMO) and American Society of Clinical Oncology (ASCO) meeting resources by applying the following terms: 'SERD', 'giredestrant', 'elacestrant', 'imlunestrant', 'amcenestrant', 'camizestrant' and 'rintodestrant'. CLINICALTRIALS gov was consulted to include ongoing trials. RESULTS The search retrieved 1191 articles. After screening, 108 articles were retained. In the phase 3 EMERALD trial, elacestrant demonstrated benefit in progression free survival (PFS) in second line metastatic disease in postmenopausal women or men, leading to Food and Drug Administration (FDA) and European Medicines Agency (EMA) approval for the ESR1 mutated population. This PFS advantage was more pronounced among patients who had priorly received at least 12 months of a cyclin-dependent kinases 4/6 inhibitor (CDK4/6i). In the phase 2 SERENA-2 trial, camizestrant improved PFS as second line treatment. However, trials of giredestrant and amcenestrant failed to show PFS benefit in second line metastatic setting. In the preoperative setting, several oral SERDs resulted in a significant reduction of tumoral proliferation. Furthermore, many trials are still in progress. CONCLUSION Oral SERDs constitute an exciting new drug class. Ongoing and future research will further refine the role of these drugs next to standard endocrine treatments and targeted therapies.
Collapse
Affiliation(s)
- Mathilde Gheysen
- Department of General Medical Oncology and Multidisciplinary Breast Centre, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Kevin Punie
- Department of General Medical Oncology, GZA Hospitals Sint-Augustinus, Oosterveldlaan 24, 2610 Antwerpen, Belgium
| | - Hans Wildiers
- Department of General Medical Oncology and Multidisciplinary Breast Centre, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Patrick Neven
- Department of Gynecology and Obstetrics and Multidisciplinary Breast Centre, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Wu S, Xu J, Ma Y, Liang G, Wang J, Sun T. Advances in the mechanism of CDK4/6 inhibitor resistance in HR+/HER2- breast cancer. Ther Adv Med Oncol 2024; 16:17588359241282499. [PMID: 39371618 PMCID: PMC11450575 DOI: 10.1177/17588359241282499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/24/2024] [Indexed: 10/08/2024] Open
Abstract
Among women, breast cancer is the most prevalent form of a malignant tumour. Among the subtypes of breast cancer, hormone receptor (HR) positive and human epidermal growth factor receptor (HER2) negative kinds make up the biggest proportion. The advent of cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, which are dependent on cell cycle proteins, has greatly enhanced the prognosis of patients with advanced HR+/HER2- breast cancer. This is a specific treatment that stops the growth of cancer cells by preventing them from dividing. Nevertheless, the drug resistance of the disease unavoidably impacts the effectiveness of treatment and the prognosis of patients. This report provides a thorough analysis of the current research advancements about the resistance mechanism of CDK4/6 inhibitors in HR+/HER2- breast cancer. It presents an in-depth discussion from numerous viewpoints, such as aberrant cell cycle regulation and changes in signalling pathways. In response to the drug resistance problem, subsequent treatment strategies are also being explored, including switching to other CDK4/6 inhibitor drugs, a combination of novel endocrine therapeutic agents, an optimal combination of targeted therapies and switching to chemotherapy. An in-depth study of the resistance mechanism can assist in identifying creative tactics that can overcome or postpone drug resistance, alleviate the problem of restricted treatment strategies following drug resistance and enhance the prognosis of patients.
Collapse
Affiliation(s)
- Sijia Wu
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Junnan Xu
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Yiwen Ma
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Guilian Liang
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Jiaxing Wang
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Tao Sun
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, China
| |
Collapse
|
3
|
Xiang J, Qi B, Cerou M, Zhao W, Tang Q. DN-ODE: Data-driven neural-ODE modeling for breast cancer tumor dynamics and progression-free survivals. Comput Biol Med 2024; 180:108876. [PMID: 39089112 DOI: 10.1016/j.compbiomed.2024.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024]
Abstract
Pharmacokinetic/Pharmacodynamic (PK/PD) modeling is crucial in the development of new drugs. However, traditional population-based PK/PD models encounter challenges when modeling for individual patients. We aim to explore the potential of constructing a pharmacodynamic model for individual breast cancer pharmacodynamics leveraging only limited data from early clinical trial phases. While previous studies on Neural Ordinary Differential Equations (ODEs) suggest promising results in clinical trial practices, they primarily focused on theoretical applications or independent PK/PD modeling. PD modeling from complex and irregular clinical trial data, especially when interacting with PK parameters, is still unclear. To achieve that, we introduce a Data-driven Neural Ordinary Differential Equation (DN-ODE) modeling for breast cancer tumor dynamics and progression-free survival data. To validate this approach, experiments are conducted with early-phase clinical trial data from the Amcenestrant (an oral treatment for breast cancer) dataset (AMEERA 1-2), aiming to predict pharmacodynamics in the later phase (AMEERA 3). DN-ODE model achieves RMSE scores of 8.78 and 0.21 in tumor size and progression-free survival, respectively, with R2 scores over 0.9 for each task. Compared to PK/PD methodologies, DN-ODE is able to predict robust individual tumor dynamics with only limited cycle data. We also introduce Principal Component Analysis visualizations for encoder results, demonstrating the DN-ODE's capability to discern individual distributions and diverse tumor growth patterns. Therefore, DN-ODE facilitates comprehensive drug efficacy assessments, pinpoints potential responders, and aids in trial design.
Collapse
Affiliation(s)
- Jinlin Xiang
- Data and Data Science, Sanofi, 450 Water St, Cambridge, 02141, MA, USA
| | - Bozhao Qi
- Data and Data Science, Sanofi, 55 Corporate Dr, Bridgewater, 08807, NJ, USA
| | - Marc Cerou
- Translational Disease Modelling Oncology, Data and Data Science, Sanofi R&D, 55 Corporate Dr, 91380, Chilly-Mazarin, France
| | - Wei Zhao
- Data and Data Science, Sanofi, 450 Water St, Cambridge, 02141, MA, USA
| | - Qi Tang
- Data and Data Science, Sanofi, 55 Corporate Dr, Bridgewater, 08807, NJ, USA.
| |
Collapse
|
4
|
Cortés J, Hurvitz SA, O'Shaughnessy J, Delaloge S, Iwata H, Rugo HS, Neven P, Kanagavel D, Cohen P, Paux G, Cartot-Cotton S, Stefanova-Urena M, Deyme L, Aouni J, Sebastien B, Bardia A. Randomized Phase III Study of Amcenestrant Plus Palbociclib Versus Letrozole Plus Palbociclib in Estrogen Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: Primary Results From AMEERA-5. J Clin Oncol 2024; 42:2680-2690. [PMID: 38889373 DOI: 10.1200/jco.23.02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 06/20/2024] Open
Abstract
PURPOSE AMEERA-5 investigated amcenestrant (oral selective estrogen receptor [ER] degrader) plus palbociclib versus letrozole plus palbociclib as first-line treatment for ER-positive/human epidermal growth factor receptor 2-negative (ER+/HER2-) advanced/metastatic breast cancer (aBC). MATERIALS AND METHODS In AMEERA-5 (ClinicalTrials.gov identifier: NCT04478266), a double-blind, double-dummy, international phase III trial, adult pre-/post-menopausal women and men without previous systemic therapy for ER+/HER2- aBC were randomly assigned 1:1 to amcenestrant 200 mg once daily + standard palbociclib dosage (125 mg once daily, 21 days on/7 days off) or letrozole 2.5 mg once daily + standard palbociclib dosage, stratified by de novo metastatic disease, postmenopausal women, and visceral metastasis. The primary end point was progression-free survival (PFS), compared using a stratified log-rank test with one-sided type I error rate of 2.5%. Secondary end points included overall survival (key secondary), pharmacokinetics, and safety. RESULTS Between October 14, 2020, and December 2, 2021, 1,068 patients were randomly assigned to amcenestrant + palbociclib (N = 534) or letrozole + palbociclib (N = 534). At the interim analysis (median follow-up 8.4 months), the stratified hazard ratio for PFS was 1.209 (95% CI, 0.939 to 1.557; one-sided P value = .9304); therefore, the study was stopped for futility. The 6-month PFS rate was 82.7% (95% CI, 79.0 to 85.8) with amcenestrant + palbociclib versus 86.9% (95% CI, 83.5 to 89.6) with letrozole + palbociclib. In the amcenestrant + palbociclib versus letrozole + palbociclib groups, treatment-emergent adverse events (any grade) occurred in 85.6% versus 85.4% of patients and grade ≥3 events in 46.3% versus 60.8%, respectively. CONCLUSION The AMEERA-5 study was discontinued on the basis of the recommendation of the data monitoring committee at the interim futility analysis. No new safety signals were identified.
Collapse
Affiliation(s)
- Javier Cortés
- Oncology Department, International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona, Spain
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| | | | | | | | | | - Hope S Rugo
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Patrick Neven
- Department of Gynaecological Oncology/Multidisciplinary Breast Center, University Hospitals Leuven-Campus Gasthuisberg, Leuven, Belgium
| | | | | | | | | | | | | | - Jihane Aouni
- Sanofi, Chilly-Mazarin, France
- Ividata, Paris, France
| | | | - Aditya Bardia
- University of California Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA
| |
Collapse
|
5
|
Keenan JC, Medford AJ, Dai CS, Wander SA, Spring LM, Bardia A. Novel oral selective estrogen receptor degraders (SERDs) to target hormone receptor positive breast cancer: elacestrant as the poster-child. Expert Rev Anticancer Ther 2024; 24:397-405. [PMID: 38642015 DOI: 10.1080/14737140.2024.2346188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION Estrogen receptor positive (ER+) breast cancer is the most common breast cancer subtype, and therapeutic management relies primarily on inhibiting ER signaling. In the metastatic setting, ER signaling is typically targeted by selective estrogen receptor degraders (SERDs) or aromatase inhibitors (AIs), the latter of which prevent estrogen production. Activating ESR1 mutations are among the most common emergent breast cancer mutations and confer resistance to AIs. AREAS COVERED Until 2023, fulvestrant was the only approved SERD; fulvestrant is administered intramuscularly, and in some cases may also have limited efficacy in the setting of certain ESR1 mutations. In 2023, the first oral SERD, elacestrant, was approved for use in ESR1-mutated, ER+/HER2- advanced breast cancer and represents a new class of therapeutic options. While the initial approval was as monotherapy, ongoing studies are evaluating elacestrant (as well as other oral SERDs) in combination with other therapies including CDK4/6 inhibitors and PI3K inhibitors, which parallels the current combination uses of fulvestrant. EXPERT OPINION Elacestrant's recent approval sheds light on the use of biomarkers such as ESR1 to gauge a tumor's endocrine sensitivity. Ongoing therapeutic and correlative biomarker studies will offer new insight and expanding treatment options for patients with advanced breast cancer.
Collapse
Affiliation(s)
- Jennifer C Keenan
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Arielle J Medford
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Charles S Dai
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Seth A Wander
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Laura M Spring
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Aditya Bardia
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| |
Collapse
|
6
|
Cerou M, Thai H, Deyme L, Fliscounakis‐Huynh S, Comets E, Cohen P, Cartot‐Cotton S, Veyrat‐Follet C. Joint modeling of tumor dynamics and progression-free survival in advanced breast cancer: Leveraging data from amcenestrant early phase I-II trials. CPT Pharmacometrics Syst Pharmacol 2024; 13:941-953. [PMID: 38558299 PMCID: PMC11179707 DOI: 10.1002/psp4.13128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
A joint modeling framework was developed using data from 75 patients of early amcenestrant phase I-II AMEERA-1-2 dose escalation and expansion cohorts. A semi-mechanistic tumor growth inhibition (TGI) model was developed. It accounts for the dynamics of sensitive and resistant tumor cells, an exposure-driven effect on tumor proliferation of sensitive cells, and a delay in the initiation of treatment effect to describe the time course of target lesion tumor size (TS) data. Individual treatment exposure overtime was introduced in the model using concentrations predicted by a population pharmacokinetic model of amcenestrant. This joint modeling framework integrated complex RECISTv1.1 criteria information, linked TS metrics to progression-free survival (PFS), and was externally evaluated using the randomized phase II trial AMEERA-3. We demonstrated that the instantaneous rate of change in TS (TS slope) was an important predictor of PFS and the developed joint model was able to predict well the PFS of amcenestrant phase II monotherapy trial using only early phase I-II data. This provides a good modeling and simulation tool to inform early development decisions.
Collapse
Affiliation(s)
- Marc Cerou
- Data and Data Science, Translational Disease Modeling OncologySanofi R&DParisFrance
| | - Hoai‐Thu Thai
- Data and Data Science, Translational Disease Modeling OncologySanofi R&DParisFrance
| | - Laure Deyme
- Translational Medicine & Early Development, Modeling & SimulationSanofi R&DMontpellierFrance
| | | | - Emmanuelle Comets
- IAME, InsermUniversité Paris CitéParisFrance
- Irset (Institut de Recherche en Santé, Environnement et Travail) ‐ UMR_S 1085Univ Rennes, Inserm, EHESPRennesFrance
| | | | - Sylvaine Cartot‐Cotton
- Pharmacokinetics Dynamics and Metabolism, Translational Medicine & Early DevelopmentSanofi R&DChilly MazarinFrance
| | | |
Collapse
|
7
|
Gennari A, Brain E, De Censi A, Nanni O, Wuerstlein R, Frassoldati A, Cortes J, Rossi V, Palleschi M, Alberini JL, Matteucci F, Piccardo A, Sacchetti G, Ilhan H, D'Avanzo F, Ruffilli B, Nardin S, Monti M, Puntoni M, Fontana V, Boni L, Harbeck N. Early prediction of endocrine responsiveness in ER+/HER2-negative metastatic breast cancer (MBC): pilot study with 18F-fluoroestradiol ( 18F-FES) CT/PET. Ann Oncol 2024; 35:549-558. [PMID: 38423389 DOI: 10.1016/j.annonc.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/15/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND 18F-fluoroestradiol (FES) positron emission tomography (PET)/computed tomography (CT) is considered an accurate diagnostic tool to determine whole-body endocrine responsiveness. In the endocrine therapy (ET)-FES trial, we evaluated 18F-FES PET/CT as a predictive tool in estrogen receptor-positive (ER+)/human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (MBC). PATIENTS AND METHODS Eligible patients underwent an 18F-FES PET/CT at baseline. Patients with standardized uptake value (SUV) ≥ 2 received single-agent ET until progressive disease; patients with SUV < 2 were randomized to single-agent ET (arm A) or chemotherapy (ChT) (arm B). The primary objective was to compare the activity of first-line ET versus ChT in patients with 18F-FES SUV < 2. RESULTS Overall, 147 patients were enrolled; 117 presented with 18F-FES SUV ≥ 2 and received ET; 30 patients with SUV < 2 were randomized to ET or ChT. After a median follow-up of 62.4 months, 104 patients (73.2%) had disease progression and 53 died (37.3%). Median progression-free survival (PFS) was 12.4 months [95% confidence interval (CI) 3.1-59.6 months] in patients with SUV < 2 randomized to arm A versus 23.0 months (95% CI 7.7-30.0 months) in arm B, [hazard (HR) = 0.71, 95% CI 0.3-1.7 months]; median PFS was 18.0 months (95% CI 11.2-23.1 months) in patients with SUV ≥ 2 treated with ET. Median overall survival (OS) was 28.2 months (95% CI 14.2 months-not estimable) in patients with SUV < 2 randomized to ET (arm A) versus 52.8 months (95% CI 16.2 months-not estimable) in arm B (ChT). Median OS was not reached in patients with SUV ≥ 2. 60-month OS rate was 41.6% (95% CI 10.4% to 71.1%) in arm A, 42.0% (95% CI 14.0% to 68.2%) in arm B, and 59.6% (95% CI 48.6% to 69.0%) in patients with SUV ≥ 2. In patients with SUV ≥ 2, 60-month OS rate was 72.6% if treated with aromatase inhibitors (AIs) versus 40.6% in case of fulvestrant or tamoxifen (P < 0.005). CONCLUSIONS The ET-FES trial demonstrated that ER+/HER2- MBC patients are a heterogeneous population, with different levels of endocrine responsiveness based on 18F-FES CT/PET SUV.
Collapse
Affiliation(s)
- A Gennari
- Department of Translational Medicine, University of Piemonte Orientale, Novara; Division of Medical Oncology, Maggiore University Hospital, Novara, Italy.
| | - E Brain
- Department of Medical Oncology, Institut Curie-Hôpital René Huguenin, Saint-Cloud, France
| | - A De Censi
- Medical Oncology, E.O. Ospedali Galliera, Genova
| | - O Nanni
- Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - R Wuerstlein
- Department of Obstetrics and Gynecology and CCC Munich, LMU University Hospital, Munich, Germany
| | - A Frassoldati
- Clinical Oncology, S. Anna University Hospital, Ferrara, Italy
| | - J Cortes
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona; Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
| | - V Rossi
- Division of Medical Oncology, Maggiore University Hospital, Novara, Italy
| | - M Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - J L Alberini
- Nuclear Medicine Department Centre Georges-Francois Leclerc, Dijon Cedex, France
| | - F Matteucci
- Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo studio dei tumori (IRST) -"Dino Amadori", Meldola
| | - A Piccardo
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Genoa
| | - G Sacchetti
- Division of Nuclear Medicine Unit, Maggiore University Hospital, Novara, Italy
| | - H Ilhan
- Department of Nuclear Medicine, LMU University Hospital, Munich, Germany
| | - F D'Avanzo
- Division of Medical Oncology, Maggiore University Hospital, Novara, Italy
| | - B Ruffilli
- Department of Translational Medicine, University of Piemonte Orientale, Novara
| | - S Nardin
- Medical Oncology Unit 1, IRCCS-Ospedale Policlinico San Martino, Genoa
| | - M Monti
- Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - M Puntoni
- Clinical and Epidemiological Research Unit, University Hospital of Parma, Parma
| | - V Fontana
- Department of Clinical Epidemiology, IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| | - L Boni
- Department of Clinical Epidemiology, IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| | - N Harbeck
- Department of Obstetrics and Gynecology and CCC Munich, LMU University Hospital, Munich, Germany
| |
Collapse
|
8
|
Apostolidou K, Zografos E, Papatheodoridi MA, Fiste O, Dimopoulos MA, Zagouri F. Oral SERDs alone or in combination with CDK 4/6 inhibitors in breast cancer: Current perspectives and clinical trials. Breast 2024; 75:103729. [PMID: 38599049 PMCID: PMC11011217 DOI: 10.1016/j.breast.2024.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Over the past few decades, first-line therapy for treating advanced and metastatic HR+/HER2-breast cancer has transformed due to the introduction of adjuvant endocrine therapy with cyclin-dependent kinase 4/6 inhibitors (CDK 4/6i). However, there is an unmet need for novel classes of endocrine therapy with superior efficacy to improve treatment outcomes and overcome CDK4/6i resistance. New generation selective estrogen receptor degraders (SERDs), orally administered and with higher bioavailability, could potentially be the novel compounds to meet this emerging need. In this paper, we review accredited clinical studies on the combining effects of CDK4/6 inhibitors and oral SERDs, report efficacy of treatment data when available, and provide a framework for future research focusing on these promising agents.
Collapse
Affiliation(s)
- Kleoniki Apostolidou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece.
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece
| | | | - Oraianthi Fiste
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece
| | | | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece
| |
Collapse
|
9
|
Sharaf B, Hajahjeh A, Bani Hani H, Abdel-Razeq H. Next generation selective estrogen receptor degraders in postmenopausal women with advanced-stage hormone receptors-positive, HER2-negative breast cancer. Front Oncol 2024; 14:1385577. [PMID: 38800404 PMCID: PMC11116652 DOI: 10.3389/fonc.2024.1385577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Breast cancer is the most prevalent malignancy in women, and is characterized by its heterogeneity; exhibiting various subgroups identifiable through molecular biomarkers that also serve as predictive indicators. More than two thirds of breast tumors are classified as luminal with positive hormone receptors (HR), indicating that cancer cells proliferation is promoted by hormones. Endocrine therapies play a vital role in the effective treatment of breast cancer by manipulating the signaling of estrogen receptors (ER), leading to a reduction in cell proliferation and growth rate. Selective estrogen receptor modulators (SERMs), such as tamoxifen and toremifene, function by blocking estrogen's effects. Aromatase inhibitors (AI), including anastrozole, letrozole and exemestane, suppress estrogen production. On the other hand, selective estrogen receptor degraders (SERDs), like fulvestrant, act by blocking and damaging estrogen receptors. Tamoxifen and AI are widely used both in early- and advanced-stage disease, while fulvestrant is used as a single agent or in combination with other agents like the cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors (palbociclib, abemaciclib, ribociclib) or alpelisib for advanced-stage disease. Currently, SERDs are recognized as an effective therapeutic approach for the treatment of ER-positive breast cancer, showing proficiency in reducing and blocking ER signaling. This review aims to outline the ongoing development of novel oral SERDs from a practical therapeutic perspective, enhancing our understanding of the mechanisms of action underlying these compounds.
Collapse
Affiliation(s)
- Baha’ Sharaf
- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan
| | | | - Hira Bani Hani
- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Hikmat Abdel-Razeq
- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
10
|
Guglielmi G, Del Re M, Gol LS, Bengala C, Danesi R, Fogli S. Pharmacological insights on novel oral selective estrogen receptor degraders in breast cancer. Eur J Pharmacol 2024; 969:176424. [PMID: 38402929 DOI: 10.1016/j.ejphar.2024.176424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
The therapeutic landscape of estrogen receptor (ER)-positive breast cancer includes endocrine treatments with aromatase inhibitors (AIs), selective estrogen receptor modulators (SERMs), and selective estrogen receptor degraders (SERDs). Fulvestrant is the first approved SERD with proven efficacy and good tolerability in clinical practice. However, drug resistance, low receptor affinity, and parental administration stimulated the search for new oral SERDs opening a new therapeutic era in ER + breast cancer. Elacestrant is an orally bioavailable SERD that has been recently approved by the FDA for postmenopausal women with ER+, human epidermal growth factor receptor 2-negative (HER2-), estrogen receptor 1 (ESR1)-mutated advanced or metastatic breast cancer with disease progression following at least one line of endocrine therapy. Other molecules of the same class currently tested in clinical trials are amcenestrant, giredestrant, camizestrant, and imlunestrant. The current review article offers a detailed pharmacological perspective of this emerging drug class, which may help with their possible future clinical applications.
Collapse
Affiliation(s)
- Giorgio Guglielmi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leila Sadeghi Gol
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carmelo Bengala
- Clinical Oncology Unit 1, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy.
| | - Stefano Fogli
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Min J, Liu X, Peng R, Chen CC, Wang W, Guo RT. New generation estrogen receptor-targeted agents in breast cancer: present situation and future prospectives. ACTA MATERIA MEDICA 2024; 3:57-71. [PMID: 39373009 PMCID: PMC11450757 DOI: 10.15212/amm-2024-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Endocrine therapy which blocking the signaling of estrogen receptor, has long been effective for decades as a primary treatment choice for breast cancer patients expressing ER. However, the issue of drug resistance poses a significant clinical challenge. It's critically important to create new therapeutic agents that can suppress ERα activity, particularly in cases of ESR1 mutations. This review highlights recent efforts in drug development of next generation ER-targeted agents, including oral selective ER degraders (SERDs), proteolysis targeting chimera (PROTAC) ER degraders, other innovative molecules such as complete estrogen receptor antagonists (CERANs) and selective estrogen receptor covalent antagonists (SERCAs). The drug design, efficacy and clinical trials for each compound were detailed.
Collapse
Affiliation(s)
- Jian Min
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xin Liu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Rouming Peng
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chun-Chi Chen
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Rey-Ting Guo
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
12
|
Jhaveri KL, Bellet M, Turner NC, Loi S, Bardia A, Boni V, Sohn J, Neilan TG, Villanueva-Vázquez R, Kabos P, García-Estévez L, López-Miranda E, Pérez-Fidalgo JA, Pérez-García JM, Yu J, Fredrickson J, Moore HM, Chang CW, Bond JW, Eng-Wong J, Gates MR, Lim E. Phase Ia/b Study of Giredestrant ± Palbociclib and ± Luteinizing Hormone-Releasing Hormone Agonists in Estrogen Receptor-Positive, HER2-Negative, Locally Advanced/Metastatic Breast Cancer. Clin Cancer Res 2024; 30:754-766. [PMID: 37921755 PMCID: PMC10870118 DOI: 10.1158/1078-0432.ccr-23-1796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/08/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE Giredestrant is an investigational next-generation, oral, selective estrogen receptor antagonist and degrader for the treatment of estrogen receptor-positive (ER+) breast cancer. We present the primary analysis results of the phase Ia/b GO39932 study (NCT03332797). PATIENTS AND METHODS Patients with ER+, HER2-negative locally advanced/metastatic breast cancer previously treated with endocrine therapy received single-agent giredestrant (10, 30, 90, or 250 mg), or giredestrant (100 mg) ± palbociclib 125 mg ± luteinizing hormone-releasing hormone (LHRH) agonist. Detailed cardiovascular assessment was conducted with giredestrant 100 mg. Endpoints included safety (primary), pharmacokinetics, pharmacodynamics, and efficacy. RESULTS As of January 28, 2021, with 175 patients enrolled, no dose-limiting toxicity was observed, and the MTD was not reached. Adverse events (AE) related to giredestrant occurred in 64.9% and 59.4% of patients in the single-agent ± LHRH agonist and giredestrant + palbociclib ± LHRH agonist cohorts, respectively (giredestrant-only-related grade 3/4 AEs were reported in 4.5% of patients across the single-agent cohorts and 3.1% of those with giredestrant + palbociclib). Dose-dependent asymptomatic bradycardia was observed, but no clinically significant changes in cardiac-related outcomes: heart rate, blood pressure, or exercise duration. Clinical benefit was observed in all cohorts (48.6% of patients in the single-agent cohort and 81.3% in the giredestrant + palbociclib ± LHRH agonist cohort), with no clear dose relationship, including in patients with ESR1-mutated tumors. CONCLUSIONS Giredestrant was well tolerated and clinically active in patients who progressed on prior endocrine therapy. Results warrant further evaluation of giredestrant in randomized trials in early- and late-stage ER+ breast cancer.
Collapse
Affiliation(s)
- Komal L. Jhaveri
- Department of Medicine, Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, New York, and Weill Cornell Medical College, New York, New York
| | - Meritxell Bellet
- Oncology Department, Breast Cancer Unit, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Nicholas C. Turner
- Royal Marsden Hospital and Institute of Cancer Research, London, United Kingdom
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and The Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Parkville, Australia
| | - Aditya Bardia
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Valentina Boni
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, HM Hospitales Sanchinarro, Madrid, Spain
| | - Joohyuk Sohn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tomas G. Neilan
- Division of Cardiology, Department of Medicine, Cardio-Oncology Program, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Peter Kabos
- School of Medicine, University of Colorado, Aurora, Colorado
| | | | - Elena López-Miranda
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Jose M. Pérez-García
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain and Ridgewood, New Jersey
| | - Jiajie Yu
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California
| | - Jill Fredrickson
- Genentech Research and Early Development (gRED), Genentech, Inc., South San Francisco, California
| | - Heather M. Moore
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Ching-Wei Chang
- PHC and Early Development Oncology Biostatistics, Genentech, Inc., South San Francisco, California
| | - John W. Bond
- Product Development Safety, Genentech, Inc., South San Francisco, California
| | - Jennifer Eng-Wong
- Genentech Research and Early Development (gRED), Genentech, Inc., South San Francisco, California
| | - Mary R. Gates
- Genentech Research and Early Development (gRED), Genentech, Inc., South San Francisco, California
| | - Elgene Lim
- St. Vincent's Hospital and Garvan Institute of Medical Research, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Neupane N, Bawek S, Gurusinghe S, Ghaffary EM, Mirmosayyeb O, Thapa S, Falkson C, O’Regan R, Dhakal A. Oral SERD, a Novel Endocrine Therapy for Estrogen Receptor-Positive Breast Cancer. Cancers (Basel) 2024; 16:619. [PMID: 38339371 PMCID: PMC10854647 DOI: 10.3390/cancers16030619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Breast cancer is the most common cancer among women worldwide, and estrogen receptor-positive (ER+) breast cancer accounts for a significant proportion of cases. While various treatments are available, endocrine therapies are often the first-line treatment for this type of breast cancer. However, the development of drug resistance poses a significant challenge in managing this disease. ESR1 mutations have been identified as a common mechanism of endocrine therapy resistance in ER+ breast cancer. The first-generation selective estrogen receptor degrader (SERD) fulvestrant has shown some activity against ESR1 mutant tumors. However, due to its poor bioavailability and need for intramuscular injection, it may not be the optimal therapy for patients. Second-generation SERDs were developed to overcome these limitations. These newer drugs have improved oral bioavailability and pharmacokinetics, making them more convenient and effective for patients. Several oral SERDs are now in phase III trials for early and advanced ER+ breast cancer. This review summarizes the background of oral SERD development, the current status, and future perspectives.
Collapse
Affiliation(s)
- Niraj Neupane
- Department of Internal Medicine, Rochester General Hospital, Rochester, NY 14621, USA;
| | - Sawyer Bawek
- Department of Internal Medicine, University at Buffalo, Buffalo, NY 14203, USA; (S.B.); (S.G.)
| | - Sayuri Gurusinghe
- Department of Internal Medicine, University at Buffalo, Buffalo, NY 14203, USA; (S.B.); (S.G.)
| | - Elham Moases Ghaffary
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (E.M.G.); (O.M.)
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (E.M.G.); (O.M.)
| | - Sangharsha Thapa
- Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA;
| | - Carla Falkson
- Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.F.); (R.O.)
| | - Ruth O’Regan
- Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.F.); (R.O.)
| | - Ajay Dhakal
- Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.F.); (R.O.)
| |
Collapse
|
14
|
Tolaney SM, De Kermadec E, Cohen P, Paux G, Wang L, Im SA. Reply to Y. Yoshitomi et al. J Clin Oncol 2024; 42:241-242. [PMID: 37903319 DOI: 10.1200/jco.23.01887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 11/01/2023] Open
Affiliation(s)
- Sara M Tolaney
- Sara M. Tolaney, MD, MPH, Dana-Farber Cancer Institute, Boston, MA; Elisabeth De Kermadec, MD, MPH, Sanofi, Cambridge, MA; Patrick Cohen, MD, Sanofi, Vitry-sur-Seine, France; Gautier Paux, MSc, and Lei Wang, PhD, Sanofi, Cambridge, MA; and Seock-Ah Im, MD, PhD, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Elisabeth De Kermadec
- Sara M. Tolaney, MD, MPH, Dana-Farber Cancer Institute, Boston, MA; Elisabeth De Kermadec, MD, MPH, Sanofi, Cambridge, MA; Patrick Cohen, MD, Sanofi, Vitry-sur-Seine, France; Gautier Paux, MSc, and Lei Wang, PhD, Sanofi, Cambridge, MA; and Seock-Ah Im, MD, PhD, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Patrick Cohen
- Sara M. Tolaney, MD, MPH, Dana-Farber Cancer Institute, Boston, MA; Elisabeth De Kermadec, MD, MPH, Sanofi, Cambridge, MA; Patrick Cohen, MD, Sanofi, Vitry-sur-Seine, France; Gautier Paux, MSc, and Lei Wang, PhD, Sanofi, Cambridge, MA; and Seock-Ah Im, MD, PhD, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Gautier Paux
- Sara M. Tolaney, MD, MPH, Dana-Farber Cancer Institute, Boston, MA; Elisabeth De Kermadec, MD, MPH, Sanofi, Cambridge, MA; Patrick Cohen, MD, Sanofi, Vitry-sur-Seine, France; Gautier Paux, MSc, and Lei Wang, PhD, Sanofi, Cambridge, MA; and Seock-Ah Im, MD, PhD, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Lei Wang
- Sara M. Tolaney, MD, MPH, Dana-Farber Cancer Institute, Boston, MA; Elisabeth De Kermadec, MD, MPH, Sanofi, Cambridge, MA; Patrick Cohen, MD, Sanofi, Vitry-sur-Seine, France; Gautier Paux, MSc, and Lei Wang, PhD, Sanofi, Cambridge, MA; and Seock-Ah Im, MD, PhD, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seock-Ah Im
- Sara M. Tolaney, MD, MPH, Dana-Farber Cancer Institute, Boston, MA; Elisabeth De Kermadec, MD, MPH, Sanofi, Cambridge, MA; Patrick Cohen, MD, Sanofi, Vitry-sur-Seine, France; Gautier Paux, MSc, and Lei Wang, PhD, Sanofi, Cambridge, MA; and Seock-Ah Im, MD, PhD, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Iams WT, Mackay M, Ben-Shachar R, Drews J, Manghnani K, Hockenberry AJ, Cristofanilli M, Nimeiri H, Guinney J, Benson AB. Concurrent Tissue and Circulating Tumor DNA Molecular Profiling to Detect Guideline-Based Targeted Mutations in a Multicancer Cohort. JAMA Netw Open 2024; 7:e2351700. [PMID: 38252441 PMCID: PMC10804266 DOI: 10.1001/jamanetworkopen.2023.51700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/26/2023] [Indexed: 01/23/2024] Open
Abstract
Importance Tissue-based next-generation sequencing (NGS) of solid tumors is the criterion standard for identifying somatic mutations that can be treated with National Comprehensive Cancer Network guideline-recommended targeted therapies. Sequencing of circulating tumor DNA (ctDNA) can also identify tumor-derived mutations, and there is increasing clinical evidence supporting ctDNA testing as a diagnostic tool. The clinical value of concurrent tissue and ctDNA profiling has not been formally assessed in a large, multicancer cohort from heterogeneous clinical settings. Objective To evaluate whether patients concurrently tested with both tissue and ctDNA NGS testing have a higher rate of detection of guideline-based targeted mutations compared with tissue testing alone. Design, Setting, and Participants This cohort study comprised 3209 patients who underwent sequencing between May 2020, and December 2022, within the deidentified, Tempus multimodal database, consisting of linked molecular and clinical data. Included patients had stage IV disease (non-small cell lung cancer, breast cancer, prostate cancer, or colorectal cancer) with sufficient tissue and blood sample quantities for analysis. Exposures Received results from tissue and plasma ctDNA genomic profiling, with biopsies and blood draws occurring within 30 days of one another. Main Outcomes and Measures Detection rates of guideline-based variants found uniquely by ctDNA and tissue profiling. Results The cohort of 3209 patients (median age at diagnosis of stage IV disease, 65.3 years [2.5%-97.5% range, 43.3-83.3 years]) who underwent concurrent tissue and ctDNA testing included 1693 women (52.8%). Overall, 1448 patients (45.1%) had a guideline-based variant detected. Of these patients, 9.3% (135 of 1448) had variants uniquely detected by ctDNA profiling, and 24.2% (351 of 1448) had variants uniquely detected by solid-tissue testing. Although largely concordant with one another, differences in the identification of actionable variants by either assay varied according to cancer type, gene, variant, and ctDNA burden. Of 352 patients with breast cancer, 20.2% (71 of 352) with actionable variants had unique findings in ctDNA profiling results. Most of these unique, actionable variants (55.0% [55 of 100]) were found in ESR1, resulting in a 24.7% increase (23 of 93) in the identification of patients harboring an ESR1 mutation relative to tissue testing alone. Conclusions and Relevance This study suggests that unique actionable biomarkers are detected by both concurrent tissue and ctDNA testing, with higher ctDNA identification among patients with breast cancer. Integration of concurrent NGS testing into the routine management of advanced solid cancers may expand the delivery of molecularly guided therapy and improve patient outcomes.
Collapse
Affiliation(s)
- Wade T. Iams
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | | | - Massimo Cristofanilli
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, New York
- NewYork-Presbyterian Hospital, New York, New York
| | | | | | - Al B. Benson
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
16
|
Malhi V, Agarwal P, Gates MR, Liu L, Wang J, De Bruyn T, Lam S, Eng-Wong J, Perez-Moreno P, Chen YC, Yu J. Optimizing Early-stage Clinical Pharmacology Evaluation to Accelerate Clinical Development of Giredestrant in Advanced Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:2551-2559. [PMID: 38019116 PMCID: PMC10722959 DOI: 10.1158/2767-9764.crc-23-0324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE We describe the clinical pharmacology characterization of giredestrant in a first-in-human study. EXPERIMENTAL DESIGN This phase Ia/Ib dose-escalation/-expansion study (NCT03332797) evaluated the safety, pharmacokinetics, pharmacodynamics, and preliminary antitumor activity of giredestrant in estrogen receptor-positive HER2-negative locally advanced/metastatic breast cancer. The single-agent dose-escalation stage evaluated giredestrant 10, 30, 90, or 250 mg once daily. The dose-expansion stage evaluated single-agent giredestrant at 30, 100, and 250 mg once daily. Dose-escalation and -expansion phases also evaluated giredestrant 100 mg combined with palbociclib 125 mg. RESULTS Following single-dose oral administration, giredestrant was rapidly absorbed and generally showed a dose-proportional increase in exposure at doses ranging from 10 to 250 mg. At the 30 mg clinical dose, maximum plasma concentration was 266 ng/mL (50.1%) and area under the concentration-time curve from 0 to 24 hours at steady state was 4,320 ng·hour/mL (59.4%). Minimal giredestrant concentrations were detected in urine, indicating that renal excretion is unlikely to be a major elimination route for giredestrant. Mean concentration of 4beta-hydroxycholesterol showed no apparent increase over time at both the clinical dose (30 mg) and a supratherapeutic dose (90 mg), suggesting that giredestrant may have low CYP3A induction potential in humans. No clinically relevant drug-drug interaction was observed between giredestrant and palbociclib. Giredestrant exposure was not affected by food and was generally consistent between White and Asian patients. CONCLUSIONS This study illustrates how the integration of clinical pharmacology considerations into early-phase clinical trials can inform the design of pivotal studies and accelerate oncology drug development. SIGNIFICANCE This work illustrates how comprehensive clinical pharmacology characterization can be integrated into first-in-human studies in oncology. It also demonstrates the value of understanding clinical pharmacology attributes to inform eligibility, concomitant medications, and combination dosing and to directly influence late-stage trial design and accelerate development.
Collapse
Affiliation(s)
- Vikram Malhi
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California
| | - Priya Agarwal
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California
| | - Mary R. Gates
- Early Clinical Development, Genentech, Inc., South San Francisco, California
| | - Lichuan Liu
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California
| | - Jianshuang Wang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Tom De Bruyn
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Scott Lam
- BioAnalytical Sciences, Genentech, Inc., South San Francisco, California
| | - Jennifer Eng-Wong
- Early Clinical Development, Genentech, Inc., South San Francisco, California
| | - Pablo Perez-Moreno
- Product Development Oncology, Genentech, Inc., South San Francisco, California
| | - Ya-Chi Chen
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California
| | - Jiajie Yu
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California
| |
Collapse
|
17
|
Goetz MP, Bagegni NA, Batist G, Brufsky A, Cristofanilli MA, Damodaran S, Daniel BR, Fleming GF, Gradishar WJ, Graff SL, Grosse Perdekamp MT, Hamilton E, Lavasani S, Moreno-Aspitia A, O'Connor T, Pluard TJ, Rugo HS, Sammons SL, Schwartzberg LS, Stover DG, Vidal GA, Wang G, Warner E, Yerushalmi R, Plourde PV, Portman DJ, Gal-Yam EN. Lasofoxifene versus fulvestrant for ER+/HER2- metastatic breast cancer with an ESR1 mutation: results from the randomized, phase II ELAINE 1 trial. Ann Oncol 2023; 34:1141-1151. [PMID: 38072514 DOI: 10.1016/j.annonc.2023.09.3104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Acquired estrogen receptor alpha (ER/ESR1) mutations commonly cause endocrine resistance in ER+ metastatic breast cancer (mBC). Lasofoxifene, a novel selective ER modulator, stabilizes an antagonist conformation of wild-type and ESR1-mutated ER-ligand binding domains, and has antitumor activity in ESR1-mutated xenografts. PATIENTS AND METHODS In this open-label, randomized, phase II, multicenter, ELAINE 1 study (NCT03781063), we randomized women with ESR1-mutated, ER+/human epidermal growth factor receptor 2 negative (HER2-) mBC that had progressed on an aromatase inhibitor (AI) plus a cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) to oral lasofoxifene 5 mg daily or IM fulvestrant 500 mg (days 1, 15, and 29, and then every 4 weeks) until disease progression/toxicity. The primary endpoint was progression-free survival (PFS); secondary endpoints were safety/tolerability. RESULTS A total of 103 patients received lasofoxifene (n = 52) or fulvestrant (n = 51). The most current efficacy analysis showed that lasofoxifene did not significantly prolong median PFS compared with fulvestrant: 24.2 weeks (∼5.6 months) versus 16.2 weeks (∼3.7 months; P = 0.138); hazard ratio 0.699 (95% confidence interval 0.434-1.125). However, PFS and other clinical endpoints numerically favored lasofoxifene: clinical benefit rate (36.5% versus 21.6%; P = 0.117), objective response rate [13.2% (including a complete response in one lasofoxifene-treated patient) versus 2.9%; P = 0.124], and 6-month (53.4% versus 37.9%) and 12-month (30.7% versus 14.1%) PFS rates. Most common treatment-emergent adverse events with lasofoxifene were nausea, fatigue, arthralgia, and hot flushes. One death occurred in the fulvestrant arm. Circulating tumor DNA ESR1 mutant allele fraction (MAF) decreased from baseline to week 8 in 82.9% of evaluable lasofoxifene-treated versus 61.5% of fulvestrant-treated patients. CONCLUSIONS Lasofoxifene demonstrated encouraging antitumor activity versus fulvestrant and was well tolerated in patients with ESR1-mutated, endocrine-resistant mBC following progression on AI plus CDK4/6i. Consistent with target engagement, lasofoxifene reduced ESR1 MAF, and to a greater extent than fulvestrant. Lasofoxifene may be a promising targeted treatment for patients with ESR1-mutated mBC and warrants further investigation.
Collapse
Affiliation(s)
- M P Goetz
- Department of Oncology, Mayo Clinic, Rochester.
| | - N A Bagegni
- Division of Oncology, Washington University School of Medicine, St. Louis, USA
| | - G Batist
- Segal Cancer Centre, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - A Brufsky
- University of Pittsburgh Medical Center-Magee Women's Hospital, Pittsburgh
| | - M A Cristofanilli
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York
| | - S Damodaran
- The University of Texas MD Anderson Cancer Center, Department of Breast Medical Oncology, Houston
| | | | - G F Fleming
- The University of Chicago Medical Center, Chicago
| | - W J Gradishar
- Division of Hematology/Oncology, Northwestern University, Chicago
| | - S L Graff
- Lifespan Cancer Institute/Legorreta Cancer Center at Brown University, Providence
| | | | - E Hamilton
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville
| | - S Lavasani
- Division of Hematology and Medical Oncology, UC Irvine, Orange
| | | | - T O'Connor
- Roswell Park Comprehensive Cancer Center, Department of Medicine, Buffalo
| | - T J Pluard
- Saint Luke's Cancer Institute, Kansas City
| | - H S Rugo
- Department of Medicine (Hematology/Oncology), University of California San Francisco, San Francisco
| | - S L Sammons
- Dana Farber Cancer Institute, Harvard Medical School, Boston
| | | | - D G Stover
- Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus
| | - G A Vidal
- Breast Oncology Division, West Cancer Center, Memphis
| | - G Wang
- Medical Oncology, Miami Cancer Institute at Baptist Health, Miami, USA
| | - E Warner
- Division of Medical Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - R Yerushalmi
- Rabin Medical Center, Beilinson Hospital, Petah Tikva, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | - E N Gal-Yam
- Breast Oncology Institute, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
18
|
Tolaney SM, Chan A, Petrakova K, Delaloge S, Campone M, Iwata H, Peddi PF, Kaufman PA, De Kermadec E, Liu Q, Cohen P, Paux G, Wang L, Ternès N, Boitier E, Im SA. AMEERA-3: Randomized Phase II Study of Amcenestrant (Oral Selective Estrogen Receptor Degrader) Versus Standard Endocrine Monotherapy in Estrogen Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer. J Clin Oncol 2023; 41:4014-4024. [PMID: 37348019 PMCID: PMC10461947 DOI: 10.1200/jco.22.02746] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
PURPOSE Amcenestrant (oral selective estrogen receptor degrader) demonstrated promising safety and efficacy in earlier clinical studies for endocrine-resistant, estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+/HER2-) advanced breast cancer (aBC). PATIENTS AND METHODS In AMEERA-3 (ClinicalTrials.gov identifier: NCT04059484), an open-label, worldwide phase II trial, patients with ER+/HER2- aBC who progressed in the (neo)adjuvant or advanced settings after not more than two previous lines of endocrine therapy (ET) were randomly assigned 1:1 to amcenestrant or single-agent endocrine treatment of physician's choice (TPC), stratified by the presence/absence of visceral metastases, previous/no treatment with cyclin-dependent kinase 4/6 inhibitor, and Eastern Cooperative Oncology Group performance status (0/1). The primary end point was progression-free survival (PFS) by independent central review, compared using a stratified log-rank test (one-sided type I error rate of 2.5%). RESULTS Between October 22, 2019, and February 15, 2021, 290 patients were randomly assigned to amcenestrant (n = 143) or TPC (n = 147). PFS was numerically similar between amcenestrant and TPC (median PFS [mPFS], 3.6 v 3.7 months; stratified hazard ratio [HR], 1.051 [95% CI, 0.789 to 1.4]; one-sided P = .643). Among patients with baseline mutated ESR1; (n = 120 of 280), amcenestrant numerically prolonged PFS versus TPC (mPFS, 3.7 v 2.0 months; stratified HR, 0.9 [95% CI, 0.565 to 1.435]). Overall survival data were immature but numerically similar between groups (HR, 0.913; 95% CI, 0.595 to 1.403). In amcenestrant versus TPC groups, treatment-emergent adverse events (any grade) occurred in 82.5% versus 76.2% of patients and grade ≥3 events occurred in 21.7% versus 15.6%. CONCLUSION AMEERA-3 did not meet its primary objective of improved PFS with amcenestrant versus TPC although a numerical improvement in PFS was observed in patients with baseline ESR1 mutation. Efficacy and safety with amcenestrant were consistent with the standard of care for second-/third-line ET for ER+/HER2- aBC.
Collapse
Affiliation(s)
| | | | | | | | - Mario Campone
- Institut de Cancérologie de l'Ouest, René Gauducheau, Saint-Herblain, France
| | | | | | - Peter A. Kaufman
- University of Vermont Larner College of Medicine, Burlington, VT
| | | | - Qianying Liu
- Sanofi, Cambridge, MA
- Moderna, Inc, Cambridge, MA
| | | | | | | | | | | | - Seock-Ah Im
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Fuentes-Antrás J, Martínez-Rodríguez A, Guevara-Hoyer K, López-Cade I, Lorca V, Pascual A, de Luna A, Ramírez-Ruda C, Swindell J, Flores P, Lluch A, Cescon DW, Pérez-Segura P, Ocaña A, Jones F, Moreno F, García-Barberán V, García-Sáenz JÁ. Real-World Use of Highly Sensitive Liquid Biopsy Monitoring in Metastatic Breast Cancer Patients Treated with Endocrine Agents after Exposure to Aromatase Inhibitors. Int J Mol Sci 2023; 24:11419. [PMID: 37511178 PMCID: PMC10379453 DOI: 10.3390/ijms241411419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Endocrine-resistant, hormone receptor-positive, and HER2-negative (HR+/HER2-) metastatic breast cancer (mBC) is largely governed by acquired mutations in the estrogen receptor, which promote ligand-independent activation, and by truncal alterations in the PI3K signaling pathway, with a broader range of gene alterations occurring with less prevalence. Circulating tumor DNA (ctDNA)-based technologies are progressively permeating the clinical setting. However, their utility for serial monitoring has been hindered by their significant costs, inter-technique variability, and real-world patient heterogeneity. We interrogated a longitudinal collection of 180 plasma samples from 75 HR+/HER2- mBC patients who progressed or relapsed after exposure to aromatase inhibitors and were subsequently treated with endocrine therapy (ET) by means of highly sensitive and affordable digital PCR and SafeSEQ sequencing. Baseline PIK3CA and TP53 mutations were prognostic of a shorter progression-free survival in our population. Mutant PIK3CA was prognostic in the subset of patients receiving fulvestrant monotherapy after progression to a CDK4/6 inhibitor (CDK4/6i)-containing regimen, and its suppression was predictive in a case of long-term benefit with alpelisib. Mutant ESR1 was prognostic in patients who did not receive concurrent CDK4/6i, an impact influenced by the variant allele frequency, and its early suppression was strongly predictive of efficacy and associated with long-term benefit in the whole cohort. Mutations in ESR1, TP53, and KRAS emerged as putative drivers of acquired resistance. These findings collectively contribute to the characterization of longitudinal ctDNA in real-world cases of HR+/HER2- mBC previously exposed to aromatase inhibitors and support ongoing studies either targeting actionable alterations or leveraging the ultra-sensitive tracking of ctDNA.
Collapse
Affiliation(s)
- Jesús Fuentes-Antrás
- Department of Medical Oncology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Experimental Therapeutics Unit, Hospital Clínico San Carlos, IDISSC and CIBERONC, 28040 Madrid, Spain
| | | | - Kissy Guevara-Hoyer
- Department of Clinical Immunology, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
- Cancer Immunomonitoring and Immune-Mediated Diseases Unit, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - Igor López-Cade
- Experimental Therapeutics Unit, Hospital Clínico San Carlos, IDISSC and CIBERONC, 28040 Madrid, Spain
- Molecular Oncology Laboratory, IdISSC, 28040 Madrid, Spain
| | - Víctor Lorca
- Molecular Oncology Laboratory, IdISSC, 28040 Madrid, Spain
| | - Alejandro Pascual
- Department of Pathology, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Alicia de Luna
- Department of Medical Oncology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Carmen Ramírez-Ruda
- Department of Medical Oncology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Jennifer Swindell
- Medical Affairs Division, Sysmex Inostics, Inc., Baltimore, MD 21205, USA
| | - Paloma Flores
- Department of Medical Oncology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Ana Lluch
- INCLIVA Research Institute, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - David W Cescon
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5S A18, Canada
| | - Pedro Pérez-Segura
- Department of Medical Oncology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Alberto Ocaña
- Department of Medical Oncology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Experimental Therapeutics Unit, Hospital Clínico San Carlos, IDISSC and CIBERONC, 28040 Madrid, Spain
| | - Frederick Jones
- Medical Affairs Division, Sysmex Inostics, Inc., Baltimore, MD 21205, USA
| | - Fernando Moreno
- Department of Medical Oncology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | | | - José Ángel García-Sáenz
- Department of Medical Oncology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
20
|
Rej RK, Thomas JE, Acharyya RK, Rae JM, Wang S. Targeting the Estrogen Receptor for the Treatment of Breast Cancer: Recent Advances and Challenges. J Med Chem 2023. [PMID: 37377342 DOI: 10.1021/acs.jmedchem.3c00136] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Estrogen receptor alpha (ERα) is a well-established therapeutic target for the treatment of ER-positive (ER+) breast cancers. Despite the tremendous successes achieved with tamoxifen, a selective ER modulator, and aromatase inhibitors (AIs), resistance to these therapies is a major clinical problem. Therefore, induced protein degradation and covalent inhibition have been pursued as new therapeutic approaches to target ERα. This Perspective summarizes recent progress in the discovery and development of oral selective ER degraders (SERDs), complete estrogen receptor antagonists (CERANs), selective estrogen receptor covalent antagonists (SERCAs), and proteolysis targeting chimera (PROTAC) ER degraders. We focus on those compounds which have been advanced into clinical development.
Collapse
Affiliation(s)
- Rohan Kalyan Rej
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junius Eugene Thomas
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ranjan Kumar Acharyya
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James Michael Rae
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
21
|
Itzhaki E, Elias Y, Moskovits N, Stemmer SM, Margel S. Proteinoid Polymers and Nanocapsules for Cancer Diagnostics, Therapy and Theranostics: In Vitro and In Vivo Studies. J Funct Biomater 2023; 14:jfb14040215. [PMID: 37103305 PMCID: PMC10145953 DOI: 10.3390/jfb14040215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
Proteinoids-simple polymers composed of amino acids-were suggested decades ago by Fox and coworkers to form spontaneously by heat. These special polymers may self-assemble in micrometer structures called proteinoid microspheres, presented as the protocells of life on earth. Interest in proteinoids increased in recent years, in particular for nano-biomedicine. They were produced by stepwise polymerization of 3-4 amino acids. Proteinoids based on the RGD motif were prepared for targeting tumors. Nanocapsules form by heating proteinoids in an aqueous solution and slowly cooling to room temperature. Proteinoid polymers and nanocapsules suit many biomedical applications owing to their non-toxicity, biocompatibility and immune safety. Drugs and/or imaging reagents for cancer diagnostic, therapeutic and theranostic applications were encapsulated by dissolving them in aqueous proteinoid solutions. Here, recent in vitro and in vivo studies are reviewed.
Collapse
Affiliation(s)
- Ella Itzhaki
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yuval Elias
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Neta Moskovits
- Felsenstein Medical Research Center, Petah Tikva 49100, Israel
| | - Salomon M Stemmer
- Felsenstein Medical Research Center, Petah Tikva 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shlomo Margel
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
22
|
Tamura K, Mukohara T, Yonemori K, Kawabata Y, Nicolas X, Tanaka T, Iwata H. Phase 1 study of oral selective estrogen receptor degrader (SERD) amcenestrant (SAR439859), in Japanese women with ER-positive and HER2-negative advanced breast cancer (AMEERA-2). Breast Cancer 2023; 30:506-517. [PMID: 36977973 PMCID: PMC10119216 DOI: 10.1007/s12282-023-01443-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/18/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND This AMEERA-2 study evaluated the pharmacokinetics, efficacy, and safety of the oral selective estrogen receptor degrader amcenestrant as a monotherapy with dose escalation in Japanese postmenopausal women with advanced estrogen receptor-positive and human epidermal growth factor receptor 2-negative breast cancer. METHODS In this open-label, nonrandomized, phase I study, patients received amcenestrant 400 mg once daily (QD) (n = 7) and 300 mg twice daily (BID) (n = 3). The incidence of dose-limiting toxicities (DLT), recommended dose, maximum tolerated dose (MTD), pharmacokinetics, efficacy, and safety were assessed. RESULTS No DLTs were observed and MTD was not reached in the 400 mg QD group. One DLT (grade 3 maculopapular rash) was reported in a patient treated with 300 mg BID. After repeated oral administration of either dosing regimen, steady state reached before day 8, without accumulation. Four out of 5 response-evaluable patients from 400 mg QD group achieved clinical benefit and showed tumor shrinkage. No clinical benefit was reported in the 300 mg BID group. Overall, most patients (8/10) experienced a treatment-related adverse event (TRAE), with skin and subcutaneous tissue disorders most commonly reported (4/10 patients). No ≥ grade 3 TRAE in 400 mg QD group and 1 grade 3 TRAE in 300 mg BID group were reported. CONCLUSIONS Amcenestrant 400 mg QD has a favorable safety profile and has been selected as the recommended Phase II dose for monotherapy for evaluating the safety and efficacy of amcenestrant in a larger, global, randomized clinical trial of patients with metastatic breast cancer. TRIAL REGISTRATION Clinical trial registration NCT03816839.
Collapse
Affiliation(s)
| | - Toru Mukohara
- National Cancer Center Hospital East, Kashiwa, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Ashai N, Swain SM. Post-CDK 4/6 Inhibitor Therapy: Current Agents and Novel Targets. Cancers (Basel) 2023; 15:1855. [PMID: 36980743 PMCID: PMC10046856 DOI: 10.3390/cancers15061855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Front-line therapy for advanced and metastatic hormone receptor positive (HR+), HER2 negative (HER-) advanced or metastatic breast cancer (mBC) is endocrine therapy with a CDK4/6 inhibitor (CDK4/6i). The introduction of CDK4/6i has dramatically improved progression-free survival and, in some cases, overall survival. The optimal sequencing of post-front-line therapy must be personalized to patients' overall health and tumor biology. This paper reviews approved next lines of therapy for mBC and available data on efficacy post-progression on CDK4/6i. Given the success of endocrine front-line therapy, there has been an expansion in therapies under clinical investigation targeting the estrogen receptor in novel ways. There are also clinical trials ongoing attempting to overcome CDK4/6i resistance. This paper will review these drugs under investigation, review efficacy data when possible, and provide descriptions of the adverse events reported.
Collapse
Affiliation(s)
- Nadia Ashai
- Department of Medicine, Georgetown Lombardi Comprehensive Cancer Center and MedStar Health, Washington, DC 20007, USA
| | | |
Collapse
|
24
|
Turner N, Huang-Bartlett C, Kalinsky K, Cristofanilli M, Bianchini G, Chia S, Iwata H, Janni W, Ma CX, Mayer EL, Park YH, Fox S, Liu X, McClain S, Bidard FC. Design of SERENA-6, a phase III switching trial of camizestrant in ESR1-mutant breast cancer during first-line treatment. Future Oncol 2023; 19:559-573. [PMID: 37070653 DOI: 10.2217/fon-2022-1196] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
ESR1 mutation (ESR1m) is a frequent cause of acquired resistance to aromatase inhibitor (AI) plus cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i), which is a first-line therapy for hormone-receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer (ABC). Camizestrant is a next-generation oral selective estrogen receptor degrader (SERD) that in a phase II study significantly improved progression-free survival (PFS) over fulvestrant (also a SERD) in ER+/HER2- ABC. SERENA-6 (NCT04964934) is a randomized, double-blind, phase III study evaluating the efficacy and safety of switching from an AI to camizestrant, while maintaining the same CDK4/6i, upon detection of ESR1m in circulating tumor DNA before clinical disease progression on first-line therapy for HR+/HER2- ABC. The aim is to treat ESR1m clones and extend the duration of control of ER-driven tumor growth, delaying the need for chemotherapy. The primary end point is PFS; secondary end points include chemotherapy-free survival, time to second progression event (PFS2), overall survival, patient-reported outcomes and safety.
Collapse
Affiliation(s)
- Nicholas Turner
- Breast Unit, The Royal Marsden NHS Foundation Trust & Institute of Cancer Research, London, SW3 6JJ, UK
| | | | - Kevin Kalinsky
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell School of Medicine, New York City, NY 10021, USA
| | - Giampaolo Bianchini
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - Stephen Chia
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan
| | - Wolfgang Janni
- Department of Obstetrics and Gynecology, University Hospital Ulm, Ulm, 89081, Germany
| | - Cynthia X Ma
- Division of Oncology, Department of Medicine and the Siteman Cancer Center, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Erica L Mayer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Steven Fox
- Global Medicines Development, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Xiaochun Liu
- Global Medicines Development, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Sasha McClain
- Global Medicines Development, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Francois-Clement Bidard
- Department of Medical Oncology, Institut Curie, Saint-Cloud, 92210, France
- Department of Medical Oncology, Université de Versailles Saint-Quentin, Université Paris-Saclay, Saint-Cloud, 92210, France
| |
Collapse
|
25
|
Ulaner GA, Mankoff DA, Clark AS, Fowler AM, Linden HM, Peterson LM, Dehdashti F, Kurland BF, Mortimer J, Mouabbi J, Moon DH, de Vries EGE. Summary: Appropriate Use Criteria for Estrogen Receptor-Targeted PET Imaging with 16α- 18F-Fluoro-17β-Fluoroestradiol. J Nucl Med 2023; 64:351-354. [PMID: 36863779 DOI: 10.2967/jnumed.123.265420] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 03/04/2023] Open
Abstract
PET imaging with 16α-18F-fluoro-17β-fluoroestradiol (18F-FES), a radiolabeled form of estradiol, allows whole-body, noninvasive evaluation of estrogen receptor (ER). 18F-FES is approved by the U.S. Food and Drug Administration as a diagnostic agent "for the detection of ER-positive lesions as an adjunct to biopsy in patients with recurrent or metastatic breast cancer." The Society of Nuclear Medicine and Molecular Imaging (SNMMI) convened an expert work group to comprehensively review the published literature for 18F-FES PET in patients with ER-positive breast cancer and to establish appropriate use criteria (AUC). The findings and discussions of the SNMMI 18F-FES work group, including example clinical scenarios, were published in full in 2022 and are available at https://www.snmmi.org/auc Of the clinical scenarios evaluated, the work group concluded that the most appropriate uses of 18F-FES PET are to assess ER functionality when endocrine therapy is considered either at initial diagnosis of metastatic breast cancer or after progression of disease on endocrine therapy, the ER status of lesions that are difficult or dangerous to biopsy, and the ER status of lesions when other tests are inconclusive. These AUC are intended to enable appropriate clinical use of 18F-FES PET, more efficient approval of FES use by payers, and promotion of investigation into areas requiring further research. This summary includes the rationale, methodology, and main findings of the work group and refers the reader to the complete AUC document.
Collapse
Affiliation(s)
- Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, California;
| | - David A Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy S Clark
- Department of Medical Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy M Fowler
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Hannah M Linden
- Department of Medical Oncology, University of Washington, Seattle, Washington
| | - Lanell M Peterson
- Department of Nuclear Medicine, University of Washington, Seattle, Washington
| | - Farrokh Dehdashti
- Department of Radiology, Washington University of St. Louis, St. Louis, Missouri
| | | | - Joanne Mortimer
- Department of Medical Oncology, City of Hope, Duarte, California
| | - Jason Mouabbi
- Department of Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Dae Hyuk Moon
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; and
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Targeting Breast Cancer: An Overlook on Current Strategies. Int J Mol Sci 2023; 24:ijms24043643. [PMID: 36835056 PMCID: PMC9959993 DOI: 10.3390/ijms24043643] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Breast cancer (BC) is one of the most widely diagnosed cancers and a leading cause of cancer death among women worldwide. Globally, BC is the second most frequent cancer and first most frequent gynecological one, affecting women with a relatively low case-mortality rate. Surgery, radiotherapy, and chemotherapy are the main treatments for BC, even though the latter are often not aways successful because of the common side effects and the damage caused to healthy tissues and organs. Aggressive and metastatic BCs are difficult to treat, thus new studies are needed in order to find new therapies and strategies for managing these diseases. In this review, we intend to give an overview of studies in this field, presenting the data from the literature concerning the classification of BCs and the drugs used in therapy for the treatment of BCs, along with drugs in clinical studies.
Collapse
|
27
|
Varella L, Cristofanilli M. Evaluating Elacestrant in the Management of ER-Positive, HER2-Negative Advanced Breast Cancer: Evidence to Date. Onco Targets Ther 2023; 16:189-196. [PMID: 36993871 PMCID: PMC10041978 DOI: 10.2147/ott.s400563] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Breast cancer remains the second leading cause of cancer mortality in women. Endocrine therapy is the backbone treatment for hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer, the most common subtype. Although several endocrine therapy agents are available, essentially all HR-positive metastatic breast cancers will become resistant to these drugs. ESR1 mutations represent an important mechanism of resistance to aromatase inhibitors. Elacestrant is a novel oral selective estrogen receptor degrader (SERD) that selectively binds to the estrogen receptor in breast cancer cells, inhibiting tumor growth. Preclinical data suggested greater efficacy of elacestrant in combination with cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) or everolimus. In a Phase III clinical trial, elacestrant demonstrated a significant although modest improvement in median progression-free survival (PFS) compared to standard of care endocrine therapy in patients with HR-positive, HER2-negative advanced breast cancer. Importantly, there was also a significant benefit in patients with ESR1 mutations, which led to the FDA approval of elacestrant in this patient group. Elacestrant was generally well tolerated, with main side effects being upper gastrointestinal symptoms. There are several ongoing clinical trials evaluating the efficacy of elacestrant in the early setting as well as in combination with other targeted agents in the treatment of metastatic breast cancer. Other novel oral SERDs are also currently being evaluated in the treatment of HR-positive breast cancer. Results of ongoing clinical trials with these drugs will help clinicians decide the best sequence and combination of endocrine therapy agents.
Collapse
Affiliation(s)
- Leticia Varella
- Division of Medical Oncology, Internal Medicine Department, Weill Cornell Medicine, New York, NY, USA
- Correspondence: Leticia Varella, Tel +1 646 962 9888, Fax +1 646 962 0193, Email
| | - Massimo Cristofanilli
- Division of Medical Oncology, Internal Medicine Department, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
28
|
Pagliuca M, Donato M, D’Amato AL, Rosanova M, Russo AOM, Scafetta R, De Angelis C, Trivedi MV, André F, Arpino G, Del Mastro L, De Laurentiis M, Puglisi F, Giuliano M. New steps on an old path: Novel estrogen receptor inhibitors in breast cancer. Crit Rev Oncol Hematol 2022; 180:103861. [DOI: 10.1016/j.critrevonc.2022.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
|
29
|
Ozyurt R, Ozpolat B. Molecular Mechanisms of Anti-Estrogen Therapy Resistance and Novel Targeted Therapies. Cancers (Basel) 2022; 14:5206. [PMID: 36358625 PMCID: PMC9655708 DOI: 10.3390/cancers14215206] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer in women, constituting one-third of all cancers in women, and it is the second leading cause of cancer-related deaths in the United States. Anti-estrogen therapies, such as selective estrogen receptor modulators, significantly improve survival in estrogen receptor-positive (ER+) BC patients, which represents about 70% of cases. However, about 60% of patients inevitably experience intrinsic or acquired resistance to anti-estrogen therapies, representing a major clinical problem that leads to relapse, metastasis, and patient deaths. The resistance mechanisms involve mutations of the direct targets of anti-estrogen therapies, compensatory survival pathways, as well as alterations in the expression of non-coding RNAs (e.g., microRNA) that regulate the activity of survival and signaling pathways. Although cyclin-dependent kinase 4/6 and phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) inhibitors have significantly improved survival, the efficacy of these therapies alone and in combination with anti-estrogen therapy for advanced ER+ BC, are not curative in advanced and metastatic disease. Therefore, understanding the molecular mechanisms causing treatment resistance is critical for developing highly effective therapies and improving patient survival. This review focuses on the key mechanisms that contribute to anti-estrogen therapy resistance and potential new treatment strategies alone and in combination with anti-estrogen drugs to improve the survival of BC patients.
Collapse
Affiliation(s)
- Rumeysa Ozyurt
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| |
Collapse
|
30
|
Downton T, Zhou F, Segara D, Jeselsohn R, Lim E. Oral Selective Estrogen Receptor Degraders (SERDs) in Breast Cancer: Advances, Challenges, and Current Status. Drug Des Devel Ther 2022; 16:2933-2948. [PMID: 36081610 PMCID: PMC9447452 DOI: 10.2147/dddt.s380925] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Several endocrine therapies are currently available for the treatment of estrogen receptor (ER) positive breast cancer, but the clinical benefit of these agents is limited by endocrine therapy drug resistance. A common mechanism of endocrine therapy resistance is ESR1 mutations. The first-generation selective estrogen receptor degrader (SERD) fulvestrant has activity against ESR1 mutant tumors but requires intramuscular injection and has poor bioavailability that precludes optimal drug dosing. This led to the development of second-generation SERDs which are potent and have improved oral bioavailability and pharmacokinetics. Several of these oral SERDs are now in phase III trials in both the early and advanced ER positive breast cancer settings. This review summarizes the background of oral SERD development, the current status and future perspectives.
Collapse
Affiliation(s)
- Teesha Downton
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Fiona Zhou
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Davendra Segara
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Correspondence: Elgene Lim, Tel +61 2 9355 5600, Fax +61 2 9355 5602, Email
| |
Collapse
|