1
|
Wang Z, Xie T, Feng Z, Zhang J, Gong C, Yan Q, Ren S. Chiral Molecular Magnet Superstructures with Light Control. NANO LETTERS 2025. [PMID: 39895129 DOI: 10.1021/acs.nanolett.4c06107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Chiral magnets are crucial for magneto-optical coupling to advance spin-optoelectronics. Chirality breaks spatial inversion symmetry, while magnetism breaks time-reversal symmetry. However, understanding and controlling the interplay between chirality and magnetism remain fundamental challenges. Here we report chiral helical magnetic superstructures with spin tunability and the Faraday effect by circularly polarized photons. By controlling the supramolecular assembly of chiral molecules, we demonstrate the superstructure transition of molecular magnets from vortex to helical nanowire structures through circular dichroism and electron microscopy. The chiral magnets exhibit circularly polarized light controlled ferromagnetic magnetic resonance and magnetic anisotropy. The enhancement of the Faraday effect by chiral structures is comparable to the effect produced by a 3 kOe magnetic field. This approach shows potential for low-power magneto-optical devices, and additionally, it lays the groundwork for chiral light-related noncontact optical magnetics.
Collapse
Affiliation(s)
- Zhongxuan Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742. United States
| | - Ti Xie
- Department of Electrical and Computer Engineering and Quantum Technology Center, University of Maryland, College Park, Maryland 20742, United States
| | - Zhenyao Feng
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jun Zhang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742. United States
| | - Cheng Gong
- Department of Electrical and Computer Engineering and Quantum Technology Center, University of Maryland, College Park, Maryland 20742, United States
| | - Qimin Yan
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shenqiang Ren
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742. United States
| |
Collapse
|
2
|
Li Y, Stec GJ, Kim HK, Thapa S, Zheng SL, McClelland A, Mason JA. Self-assembly of chiroptical ionic co-crystals from silver nanoclusters and organic macrocycles. Nat Chem 2025; 17:169-176. [PMID: 39779970 DOI: 10.1038/s41557-024-01696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025]
Abstract
Atomically precise nanoclusters can be assembled into ordered superlattices with unique electronic, magnetic, optical and catalytic properties. The co-crystallization of nanoclusters with functional organic molecules provides opportunities to access an even wider range of structures and properties, but can be challenging to control synthetically. Here we introduce a supramolecular approach to direct the assembly of atomically precise silver nanoclusters into a series of nanocluster‒organic ionic co-crystals with tunable structures and properties. By leveraging non-covalent interactions between anionic silver nanoclusters and cationic organic macrocycles of varying sizes, the orientation of nanocluster surface ligands can be manipulated to achieve in situ resolution of enantiopure nanocluster‒organic ionic co-crystals that feature large chiroptical effects. Beyond chirality, this co-crystal assembly approach provides a promising platform for designing functional solid-state nanomaterials through a combination of supramolecular chemistry and atomically precise nanochemistry.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Grant J Stec
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hong Ki Kim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Surendra Thapa
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Arthur McClelland
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA
| | - Jarad A Mason
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Nag R, Rouvière N, Trazo JG, Marcone J, Kutalia N, Goldmann C, Impéror-Clerc M, Alloyeau D, Constantin D, Hamon C. Depletion-Induced Tunable Assembly of Complementary Platonic Solids. NANO LETTERS 2024; 24:16368-16373. [PMID: 39668331 DOI: 10.1021/acs.nanolett.4c04923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Multicomponent self-assembly has been explored to create novel metamaterials from nanoparticles of different sizes and compositions, but the assembly of nanoparticles with complementary shapes remains rare. Recent binary assemblies were mediated by DNA base pairing or induced by solvent evaporation. Here, we introduce depletion-induced self-assembly (DISA) as a novel approach to constructing tunable binary lattices. In situ structural analysis in the real and reciprocal spaces demonstrates DISA of a binary mixture of octahedra and tetrahedra into extended supercrystals with Fm3̅m symmetry. The interparticle distance, adjustable by depletant concentration, offers a versatile method for assembling nanoparticles into ordered structures while they remain dispersed in a liquid phase. We show that DISA can control the packing fraction of such binary supercrystals between φ = 0.37 and φ = 0.66, much lower than dense packing in the dry state. These findings highlight DISA's potential for creating complex and highly ordered metamaterials with tailored properties.
Collapse
Affiliation(s)
- Rahul Nag
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Nina Rouvière
- Institut Charles Sadron, CNRS and Université de Strasbourg, 67034 Strasbourg, France
| | - Jaime Gabriel Trazo
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Jules Marcone
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Nika Kutalia
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Claire Goldmann
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay 91405, France
| | | | - Damien Alloyeau
- Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité - CNRS, Paris 75006, France
| | - Doru Constantin
- Institut Charles Sadron, CNRS and Université de Strasbourg, 67034 Strasbourg, France
| | - Cyrille Hamon
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay 91405, France
| |
Collapse
|
4
|
Chen C, Wang Q, Wang P, Dai M, Jiang X, Zhou J, Qi L. Supercrystal Engineering of Nanoarrows Enabled by Tailored Concavity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403970. [PMID: 38984738 DOI: 10.1002/smll.202403970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Self-assembly of nanoparticles into supercrystals represents a powerful approach to create unique and complex superstructures with fascinating properties and novel functions, but the complexity in spatial configuration, and the tunability in lattice structure are still quite limited compared to the crystals formed by atoms and molecules. Herein, shallowly concave gold nanoarrows with a unique concave-convex geometry are synthesized and employed as novel building blocks for shape-directed self-assembly of a wealth of complex 3D supercrystals with unprecedented configurations. The obtained diverse superstructures including six Interlocking-type supercrystals and three Packing-type supercrystals exhibit four types of Bravais lattices (i.e., tP, oI, tI, and oF) and six types of crystallographic space groups (i.e., Pmmm, I222, Pnnm, Ibam, I4/mmm, and Fmmm), which have not been documented in the mesoscale self-assembled systems. It has been revealed that the relative yield of different supercrystal structures is mainly determined by the packing density and deformability of the supercrystals, which are closely related to the tailored concavity of the nanoparticles and is affected by the particle concentration, thus allowing for programmable self-assembly into specific supercrystals through particle shape modulation. The concavity-enabled supercrystal engineering may open a new avenue toward unconventional nanoparticle superstructures with expanded complexity, tunability, and functionality.
Collapse
Affiliation(s)
- Cheng Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qian Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peijian Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mengqi Dai
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xin Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Zhou W, Li Y, Partridge BE, Mirkin CA. Engineering Anisotropy into Organized Nanoscale Matter. Chem Rev 2024; 124:11063-11107. [PMID: 39315621 DOI: 10.1021/acs.chemrev.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Programming the organization of discrete building blocks into periodic and quasi-periodic arrays is challenging. Methods for organizing materials are particularly important at the nanoscale, where the time required for organization processes is practically manageable in experiments, and the resulting structures are of interest for applications spanning catalysis, optics, and plasmonics. While the assembly of isotropic nanoscale objects has been extensively studied and described by empirical design rules, recent synthetic advances have allowed anisotropy to be programmed into macroscopic assemblies made from nanoscale building blocks, opening new opportunities to engineer periodic materials and even quasicrystals with unnatural properties. In this review, we define guidelines for leveraging anisotropy of individual building blocks to direct the organization of nanoscale matter. First, the nature and spatial distribution of local interactions are considered and three design rules that guide particle organization are derived. Subsequently, recent examples from the literature are examined in the context of these design rules. Within the discussion of each rule, we delineate the examples according to the dimensionality (0D-3D) of the building blocks. Finally, we use geometric considerations to propose a general inverse design-based construction strategy that will enable the engineering of colloidal crystals with unprecedented structural control.
Collapse
Affiliation(s)
- Wenjie Zhou
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuanwei Li
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin E Partridge
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Saito K, Nemoto Y, Ishikawa Y. Circularly Polarized Light-Induced Chiral Growth of Achiral Plasmonic Nanoparticles Dispersed in a Solution. NANO LETTERS 2024. [PMID: 39356044 DOI: 10.1021/acs.nanolett.4c03183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Plasmonic nanoparticles (NPs) with chiral geometries have wide applications from chiral molecular sensing to enantioselective catalysis. The synthesis of chiral plasmonic nanoparticles using circularly polarized light (CPL) has attracted a considerable amount of attention because it eliminates the need for chiral molecules. However, NPs need to be immobilized on a solid substrate during synthesis. Here, we successfully synthesized colloidal chiral plasmonic NPs by depositing silver on the surface of achiral gold nanoparticles dispersed in a solution using CPL. Circular dichroism (CD) signals corresponding to the handedness of the irradiated CPL were observed when gold nanorods or gold nanotriangles were used. In contrast, no clear CD signal was observed when gold nanospheres were used. The morphological anisotropy of the gold nanoparticles was a key factor in the synthesis of chiral plasmonic nanoparticles using CPL. Furthermore, we demonstrated the tuning of chiroptical properties according to the CPL wavelength.
Collapse
Affiliation(s)
- Koichiro Saito
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Yoshihiro Nemoto
- Electron Microscopy Unit, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan
| | - Yoshie Ishikawa
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
7
|
Shi C, Cheng Z, Leonardi A, Yang Y, Engel M, Jones MR, Han Y. Preserving surface strain in nanocatalysts via morphology control. SCIENCE ADVANCES 2024; 10:eadp3788. [PMID: 39321292 PMCID: PMC11423881 DOI: 10.1126/sciadv.adp3788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Engineering strain critically affects the properties of materials and has extensive applications in semiconductors and quantum systems. However, the deployment of strain-engineered nanocatalysts faces challenges, in particular in maintaining highly strained nanocrystals under reaction conditions. Here, we introduce a morphology-dependent effect that stabilizes surface strain even under harsh reaction conditions. Using four-dimensional scanning transmission electron microscopy (4D-STEM), we found that cube-shaped core-shell Au@Pd nanoparticles with sharp-edged morphologies sustain coherent heteroepitaxial interfaces with larger critical thicknesses than morphologies with rounded edges. This configuration inhibits dislocation nucleation due to reduced shear stress at corners, as indicated by molecular dynamics simulations. A Suzuki-type cross-coupling reaction shows that our approach achieves a fourfold increase in activity over conventional nanocatalysts, owing to the enhanced stability of surface strain. These findings contribute to advancing the development of advanced nanocatalysts and indicate broader applications for strain engineering in various fields.
Collapse
Affiliation(s)
- Chuqiao Shi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77006, USA
| | - Zhihua Cheng
- Department of Chemistry, Rice University, Houston, TX 77006, USA
| | - Alberto Leonardi
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
- Department of Earth and Atmospheric Sciences, Indiana University, 1001 East 10th Street, Bloomington, IN 47405, USA
| | - Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Michael Engel
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Matthew R Jones
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77006, USA
- Department of Chemistry, Rice University, Houston, TX 77006, USA
| | - Yimo Han
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77006, USA
| |
Collapse
|
8
|
Chandler BM, Dey D, Wang Y, Ye X, Schatz GC, Chen LX, Schaller RD. Coherent Phonon Dynamics in Plasmonic Gold Tetrahedral Nanoparticle Ensembles. J Phys Chem Lett 2024; 15:9686-9691. [PMID: 39287340 DOI: 10.1021/acs.jpclett.4c02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Coherent phonon modes supported by plasmonic nanoparticles offer prospective applications in chemical and biological sensing. Whereas the characterization of these phonon modes often requires single-particle measurements, synthetic routes to narrow size distributions of nanoparticles permit ensemble investigations. Recently, the synthesis of highly monodisperse gold tetrahedral nanoparticles with tunable edge lengths and corner sharpnesses has been developed. Herein, we characterize a size series of these nanoparticles in colloidal dispersion via transient absorption spectroscopy to examine their mechanical and plasmonic responses upon photoexcitation. Oscillations of transient absorption signals are observed in the plasmon resonance and correspond to the lowest-order radial breathing modes of the nanoparticles, the frequencies of which are affected by the edge length and truncation of the corners. Homogeneous quality factor values ranging from 24 to 34 are observed for the oscillations that convey potential utility in mass-sensing and plasmon-exciton-coupling photonics schemes. Finite-difference time domain and finite element analysis calculations establish specific optically relevant phonon modes.
Collapse
Affiliation(s)
- Bailey M Chandler
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Diptesh Dey
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- International Institute for Nanotechnology; Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Meng L, Fonseca J, Sánchez-Naya R, Ghadiri AM, Imaz I, Maspoch D. Coassembly of Complementary Polyhedral Metal-Organic Framework Particles into Binary Ordered Superstructures. J Am Chem Soc 2024; 146:21225-21230. [PMID: 39058575 PMCID: PMC11311218 DOI: 10.1021/jacs.4c07194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Here we report the formation of a 3D NaCl-type binary porous superstructure via coassembly of two colloidal polyhedral metal-organic framework (MOF) particles having complementary sizes, shapes, and charges. We employed a polymeric-attenuated Coulombic self-assembly approach, which also facilitated the coassembly of these MOF particles with spherical polystyrene particles to form 2D binary superstructures. Our results pave the way for using MOFs to create sophisticated superstructures comprising particles of various sizes, shapes, porosities, and chemical compositions.
Collapse
Affiliation(s)
- Lingxin Meng
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC,
and Barcelona Institute of Science and Technology Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Javier Fonseca
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC,
and Barcelona Institute of Science and Technology Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Roberto Sánchez-Naya
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC,
and Barcelona Institute of Science and Technology Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Amir Mohammad Ghadiri
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC,
and Barcelona Institute of Science and Technology Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Inhar Imaz
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC,
and Barcelona Institute of Science and Technology Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Daniel Maspoch
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC,
and Barcelona Institute of Science and Technology Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
10
|
Li Z, Lim Y, Tanriover I, Zhou W, Li Y, Zhang Y, Aydin K, Glotzer SC, Mirkin CA. DNA-mediated assembly of Au bipyramids into anisotropic light emitting kagome superlattices. SCIENCE ADVANCES 2024; 10:eadp3756. [PMID: 39028823 PMCID: PMC11259166 DOI: 10.1126/sciadv.adp3756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Colloidal crystal engineering with DNA allows one to design diverse superlattices with tunable lattice symmetry, composition, and spacing. Most of these structures follow the complementary contact model, maximizing DNA hybridization on building blocks and producing relatively close-packed lattices. Here, low-symmetry kagome superlattices are assembled from DNA-modified gold bipyramids that can engage only in partial DNA surface matching. The bipyramid dimensions and DNA length can be engineered for two different superlattices with rhombohedral unit cells, including one composed of a periodic stacking of kagome lattices. Enabled by the partial facet alignment, the kagome lattices exhibit lattice distortion, bipyramid twisting, and planar chirality. When conjugated with Cy-5 dyes, the kagome lattices serve as cavities with high-density optical states and large Purcell factors along lateral directions, leading to strong dipole radiation along the z axis and facet-dependent light emission. Such complex optical properties make these materials attractive for lasers, displays, and quantum sensing constructs.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Yein Lim
- Department of Chemical Engineering, University of Michigan, Michigan, Ann Arbor, MI 48109, USA
| | - Ibrahim Tanriover
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wenjie Zhou
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Yuanwei Li
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Ye Zhang
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Koray Aydin
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Sharon C. Glotzer
- Department of Chemical Engineering, University of Michigan, Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
11
|
Tang R, Hughes RA, Tuff WJ, Corcoran A, Neretina S. Rapid formation of gold core-satellite nanostructures using Turkevich-synthesized satellites and dithiol linkers: the do's and don'ts for successful assembly. NANOSCALE ADVANCES 2024; 6:3632-3643. [PMID: 38989523 PMCID: PMC11232561 DOI: 10.1039/d4na00390j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
Turkevich syntheses represent a foundational approach for forming colloids of monodisperse gold nanoparticles where the use of these structures as building blocks when forming multicomponent nanoassemblies is pervasive. The core-satellite motif, which is characterized by a central core structure onto which satellite structures are tethered, distinguishes itself in that it can realize numerous plasmonic nanogaps with nanometer scale widths. Established procedures for assembling these multicomponent structures are, to a large extent, empirically driven, time-consuming, difficult to reproduce, and in need of a strong mechanistic underpinning relating to the close-range electrostatic interactions needed to secure satellite structures onto core materials. Described herein is a rapid, repeatable procedure for assembling core-satellite structures using Turkevich-grown satellites and dithiol linkers. With this successful procedure acting as a baseline for benchmarking modified procedures, a rather complex parameter space is understood in terms of timeline requirements for various processing steps and an analysis of the factors that prove consequential to assembly. It is shown that seemingly innocuous procedures realize sparsely populated cores whereas cores initially obstructed with commonly used capping agents lead to few disruptions to satellite attachment. Once these factors are placed under control, then it is the ionic strength imposed by the reaction biproducts of the Turkevich synthesis that is the critical factor in assembly because they decide the spatial extent of the electrical double layer surrounding each colloidal nanoparticle. With this understanding, it is possible to control the ionic strength through the addition or subtraction of various ionic species and assert control over the assembly process. The work, hence, advances the rules for a robust core-satellite assembly process and, in a broader sense, contributes to the knowhow required for the precise, programmable, and controllable assembly of multicomponent systems.
Collapse
Affiliation(s)
- Runze Tang
- College of Engineering, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Robert A Hughes
- College of Engineering, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Walker J Tuff
- College of Engineering, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Ana Corcoran
- College of Engineering, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame Notre Dame Indiana 46556 USA
- Department of Chemistry & Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| |
Collapse
|
12
|
Aditya T, Moitra P, Alafeef M, Skrodzki D, Pan D. Chiral Induction in 2D Borophene Nanoplatelets through Stereoselective Boron-Sulfur Conjugation. ACS NANO 2024; 18:11921-11932. [PMID: 38651695 DOI: 10.1021/acsnano.4c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Chirality is a structural metric that connects biological and abiological forms of matter. Although much progress has been made in understanding the chemistry and physics of chiral inorganic nanoparticles over the past decade, almost nothing is known about chiral two-dimensional (2D) borophene nanoplatelets and their influence on complex biological networks. Borophene's polymorphic nature, derived from the bonding configurations among boron atoms, distinguishes it from other 2D materials and allows for further customization of its material properties. In this study, we describe a synthetic methodology for producing chiral 2D borophene nanoplatelets applicable to a variety of structural polymorphs. Using this methodology, we demonstrate feasibility of top-down synthesis of chiral χ3 and β12 phases of borophene nanoplatelets via interaction with chiral amino acids. The chiral nanoplatelets were physicochemically characterized extensively by various techniques. Results indicated that the thiol presenting amino acids, i.e., cysteine, coordinates with borophene in a site-selective manner, depending on its handedness through boron-sulfur conjugation. The observation has been validated by circular dichroism, X-ray photoelectron spectroscopy, and 11B NMR studies. To understand how chiral nanoplatelets interact with biological systems, mammalian cell lines were exposed to them. Results showed that the achiral as well as the left- and right-handed biomimetic χ3 and β12 borophene nanoplatelets have distinct interaction with the cellular membrane, and their internalization pathway differs with their chirality. By engineering optical, physical, and chemical properties, these chiral 2D nanomaterials could be applied successfully to tuning complex biological events and find applications in photonics, sensing, catalysis, and biomedicine.
Collapse
Affiliation(s)
- Teresa Aditya
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Parikshit Moitra
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Maha Alafeef
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - David Skrodzki
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dipanjan Pan
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, Millennium Science Complex, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
13
|
Zhang T, Lyu D, Xu W, Feng X, Ni R, Wang Y. Janus particles with tunable patch symmetry and their assembly into chiral colloidal clusters. Nat Commun 2023; 14:8494. [PMID: 38129397 PMCID: PMC10739893 DOI: 10.1038/s41467-023-44154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Janus particles, which have an attractive patch on the otherwise repulsive surface, have been commonly employed for anisotropic colloidal assembly. While current methods of particle synthesis allow for control over the patch size, they are generally limited to producing dome-shaped patches with a high symmetry (C∞). Here, we report on the synthesis of Janus particles with patches of various tunable shapes, having reduced symmetries ranging from C2v to C3v and C4v. The Janus particles are synthesized by partial encapsulation of an octahedral metal-organic framework particle (UiO-66) in a polymer matrix. The extent of encapsulation is precisely regulated by a stepwise, asymmetric dewetting process that exposes selected facets of the UiO-66 particle. With depletion interaction, the Janus particles spontaneously assemble into colloidal clusters reflecting the particles' shapes and patch symmetries. We observe the formation of chiral structures, whereby chirality emerges from achiral building blocks. With the ability to encode symmetry and directional bonding information, our strategy could give access to more complex colloidal superstructures through assembly.
Collapse
Affiliation(s)
- Tianran Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Dengping Lyu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wei Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xuan Feng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Ran Ni
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
14
|
Cheng Z, Jones MR. Separation of Nanoparticle Seed Pseudoisomers via Amplification of Their Crystallographic Differences. J Am Chem Soc 2023; 145:27702-27707. [PMID: 38055680 DOI: 10.1021/jacs.3c09945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Seed-mediated syntheses rely on small nanoparticle (NP) precursors that act as templates for growth but are often inhomogeneous with respect to their internal twinning structures (e.g., single crystalline, multiply twinned), leading to nonuniform product morphologies. To address this, we developed a method for separating seed NPs of the same approximate size (∼ 10 nm) but with different interior twinning (i.e., NP "pseudoisomers") by exaggerating their crystallographic differences through heteroexpitaxial metal overgrowth. Specifically, single crystalline and pentatwinned Au seeds that are natively inseparable via traditional methods exhibit drastically different Ag shell morphologies that allow for their selective precipitation through colloidal depletion forces. Oxidation of the Ag shell from separated particles results in seeds that are both size uniform and crystallographically pure (>99%), allowing for the controlled synthesis of a library of Oh- and D5h-symmetric gold NPs bearing {111}, {110}, {730}, {310}, {720}, and {100} facets, several of which have no precedent in the literature. These results lay the foundation for precision nanosynthesis by establishing a new paradigm for the purification of NP precursors.
Collapse
Affiliation(s)
- Zhihua Cheng
- Department of Chemistry, Rice University, MS 6000, Main Street, Houston, Texas 77005, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, MS 6000, Main Street, Houston, Texas 77005, United States
- Department of Material Science and Nanoengineering, Rice University, MS 6000, Main Street, Houston, Texas 77005, United States
| |
Collapse
|
15
|
Sengupta A, Roy G, Likhar AR, Asthana D. A supramolecular assembly-based strategy towards the generation and amplification of photon up-conversion and circularly polarized luminescence. NANOSCALE 2023; 15:18999-19015. [PMID: 37991436 DOI: 10.1039/d3nr04184k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
For the molecular properties in which energy transfer/migration is determinantal, such as triplet-triplet annihilation-based photon up-conversion (TTAUC), the overall performance is largely affected by the intermolecular distance and relative molecular orientations. In such scenarios, tools that may steer the intermolecular interactions and provide control over molecular organisation in the bulk, become most valuable. Often these non-covalent interactions, found predominantly in supramolecular assemblies, enable pre-programming of the molecular network in the assembled structures. In other words, by employing supramolecular chemistry principles, an arrangement where molecular units are arranged in a desired fashion, very much like a Lego toy, could be achieved. This leads to enhanced energy transfer from one molecule to other. In recent past, chiral luminescent systems have attracted huge attention for producing circularly polarized luminescence (CPL). In such systems, chirality is a necessary requirement. Chirality induction/transfer through supramolecular interactions has been known for a long time. It was realized recently that it may help in the generation and amplification of CPL signals as well. In this review article we have discussed the applicability of self-/co-assembly processes for achieving maximum TTA-UC and CPL in various molecular systems.
Collapse
Affiliation(s)
- Alisha Sengupta
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| | - Gargee Roy
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| | | | - Deepak Asthana
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| |
Collapse
|
16
|
Luo D, Shi M, Guo S, Lin W, Wei J, Ni Y. On-Demand Assembly of Nanocrystals into a Superstructure Library in Co(OH) 2 Single-Walled Nanotubes. NANO LETTERS 2023. [PMID: 37967165 DOI: 10.1021/acs.nanolett.3c03009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The hierarchical self-assembly of colloidal particles facilitates the bottom-up manufacturing of metamaterials with synergistically integrated functionalities. Here, we define a modular assembly methodology that enables multinary co-assembly of nanoparticles in one-dimensional confined space. A series of isotropic and anisotropic nanocrystals such as plasmonic, metallic, visible, and near-infrared responsive nanoparticles as well as transition-metal phosphides can be selectively assembled within the single-walled Co(OH)2 nanotubes to achieve various increasingly sophisticated assembly systems, including unary, binary, ternary, and quaternary superstructures. Moreover, the selective assembly of distinct functional nanoparticles produces different integrated functional superstructures. This generalizable methodology provides predictable pathways to complex architectures with structural programming and customization that are otherwise inaccessible.
Collapse
Affiliation(s)
- Dian Luo
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Manman Shi
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Saiya Guo
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Wentao Lin
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Jieding Wei
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
- Anhui Laboratory of Molecule-Based Materials, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Yonghong Ni
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
- Anhui Laboratory of Molecule-Based Materials, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
- Anhui Key Laboratory of Functional Molecular Solids, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| |
Collapse
|
17
|
Hueckel T, Lewis DJ, Mertiri A, Carter DJD, Macfarlane RJ. Controlling Colloidal Crystal Nucleation and Growth with Photolithographically Defined Templates. ACS NANO 2023; 17:22121-22128. [PMID: 37921570 DOI: 10.1021/acsnano.3c09401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Colloidal crystallization provides a means to synthesize hierarchical nanostructures by design and to use these complex structures for nanodevice fabrication. In particular, DNA provides a means to program interactions between particles with high specificity, thereby enabling the formation of particle superlattice crystallites with tailored unit cell geometries and surface faceting. However, while DNA provides precise control of particle-particle bonding interactions, it does not inherently present a means of controlling higher-level structural features such as the size, shape, position, or orientation of a colloidal crystallite. While altering assembly parameters such as temperature or concentration can enable limited control of crystallite size and geometry, integrating colloidal assemblies into nanodevices requires better tools to manipulate higher-order structuring and improved understanding of how these tools control the fundamental kinetics and mechanisms of colloidal crystal growth. In this work, photolithography is used to produce patterned substrates that can manipulate the placement, size, dispersity, and orientation of colloidal crystals. By adjusting aspects of the pattern, such as feature size and separation, we reveal a diffusion-limited mechanism governing crystal nucleation and growth. Leveraging this insight, patterns are designed that can produce wafer-scale substrates with arrays of nanoparticle superlattices of uniform size and shape. These design principles therefore bridge a gap between a fundamental understanding of nanoparticle assembly and the fabrication of nanostructures compatible with functional devices.
Collapse
Affiliation(s)
- Theodore Hueckel
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Diana J Lewis
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Alket Mertiri
- The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, Massachusetts 02139, United States
| | - David J D Carter
- The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Mirkin CA, Petrosko SH. Inspired Beyond Nature: Three Decades of Spherical Nucleic Acids and Colloidal Crystal Engineering with DNA. ACS NANO 2023; 17:16291-16307. [PMID: 37584399 DOI: 10.1021/acsnano.3c06564] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The conception, synthesis, and invention of a nanostructure, now known as the spherical nucleic acid, or SNA, in 1996 marked the advent of a new field of chemistry. Over the past three decades, the SNA and its analogous anisotropic equivalents have provided an avenue for us to think about some of the most fundamental concepts in chemistry in new ways and led to technologies that are significantly impacting fields from medicine to materials science. A prime example is colloidal crystal engineering with DNA, the framework for using SNAs and related structures to synthesize programmable matter. Herein, we document the evolution of this framework, which was initially inspired by nature, and describe how it now allows researchers to chart paths to move beyond it, as programmable matter with real-world significance is envisioned and created.
Collapse
Affiliation(s)
- Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
19
|
Wang Y, Chen J, Li R, Götz A, Drobek D, Przybilla T, Hübner S, Pelz P, Yang L, Apeleo Zubiri B, Spiecker E, Engel M, Ye X. Controlled Self-Assembly of Gold Nanotetrahedra into Quasicrystals and Complex Periodic Supracrystals. J Am Chem Soc 2023; 145:17902-17911. [PMID: 37534987 DOI: 10.1021/jacs.3c05299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The self-assembly of shape-anisotropic nanocrystals into large-scale structures is a versatile and scalable approach to creating multifunctional materials. The tetrahedral geometry is ubiquitous in natural and manmade materials, yet regular tetrahedra present a formidable challenge in understanding their self-assembly behavior as they do not tile space. Here, we report diverse supracrystals from gold nanotetrahedra including the quasicrystal (QC) and the dimer packing predicted more than a decade ago and hitherto unknown phases. We solve the complex three-dimensional (3D) structure of the QC by a combination of electron microscopy, tomography, and synchrotron X-ray scattering. Nanotetrahedron vertex sharpness, surface ligands, and assembly conditions work in concert to regulate supracrystal structure. We also discover that the surface curvature of supracrystals can induce structural changes of the QC tiling and eventually, for small supracrystals with high curvature, stabilize a hexagonal approximant. Our findings bridge the gap between computational design and experimental realization of soft matter assemblies and demonstrate the importance of accurate control over nanocrystal attributes and the assembly conditions to realize increasingly complex nanopolyhedron supracrystals.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jun Chen
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexander Götz
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Dominik Drobek
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Thomas Przybilla
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Sabine Hübner
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Philipp Pelz
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Benjamin Apeleo Zubiri
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
20
|
Li Z, Fan Q, Ye Z, Wu C, Wang Z, Yin Y. A magnetic assembly approach to chiral superstructures. Science 2023; 380:1384-1390. [PMID: 37384698 DOI: 10.1126/science.adg2657] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/22/2023] [Indexed: 07/01/2023]
Abstract
Colloidal assembly into chiral superstructures is usually accomplished with templating or lithographic patterning methods that are only applicable to materials with specific compositions and morphologies over narrow size ranges. Here, chiral superstructures can be rapidly formed by magnetically assembling materials of any chemical compositions at all scales, from molecules to nano- and microstructures. We show that a quadrupole field chirality is generated by permanent magnets caused by consistent field rotation in space. Applying the chiral field to magnetic nanoparticles produces long-range chiral superstructures controlled by field strength at the samples and orientation of the magnets. Transferring the chirality to any achiral molecules is enabled by incorporating guest molecules such as metals, polymers, oxides, semiconductors, dyes, and fluorophores into the magnetic nanostructures.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Zuyang Ye
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Chaolumen Wu
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Zhongxiang Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
21
|
Dhulipala S, Yee DW, Zhou Z, Sun R, Andrade JE, Macfarlane RJ, Portela CM. Tunable Mechanical Response of Self-Assembled Nanoparticle Superlattices. NANO LETTERS 2023. [PMID: 37216440 DOI: 10.1021/acs.nanolett.3c01058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Self-assembled nanoparticle superlattices (NPSLs) are an emergent class of self-architected nanocomposite materials that possess promising properties arising from precise nanoparticle ordering. Their multiple coupled properties make them desirable as functional components in devices where mechanical robustness is critical. However, questions remain about NPSL mechanical properties and how shaping them affects their mechanical response. Here, we perform in situ nanomechanical experiments that evidence up to an 11-fold increase in stiffness (∼1.49 to 16.9 GPa) and a 5-fold increase in strength (∼88 to 426 MPa) because of surface stiffening/strengthening from shaping these nanomaterials via focused-ion-beam milling. To predict the mechanical properties of shaped NPSLs, we present discrete element method (DEM) simulations and an analytical core-shell model that capture the FIB-induced stiffening response. This work presents a route for tunable mechanical responses of self-architected NPSLs and provides two frameworks to predict their mechanical response and guide the design of future NPSL-containing devices.
Collapse
Affiliation(s)
- Somayajulu Dhulipala
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daryl W Yee
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ziran Zhou
- Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Rachel Sun
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - José E Andrade
- Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Robert J Macfarlane
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carlos M Portela
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Ni B, Zhou J, Stolz L, Cölfen H. A Facile and Rational Method to Tailor the Symmetry of Au@Ag Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209810. [PMID: 36653018 DOI: 10.1002/adma.202209810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Precisely controlling the morphologies of plasmonic metal nanoparticles (NPs) is of great importance for many applications. Here, a facile seed-mediated growth method is demonstrated that tailors the morphologies of Au@Ag NPs from cubes/cuboids to chiral truncated cuboids/octahedra, well-defined octahedra, and tetrahedra, via simply increasing the concentrations of AgNO3 and cysteine in the halide surfactant systems. Accordingly, the particle symmetries are also tuned. The method is quite robust where seeds with distinct shapes including irregular ones can all lead to uniform Au@Ag NPs. The evolution of these shapes can be illustrated by a recently proposed symmetry-based kinematic theory (SBKT). Furthermore, SBKT shows a strategy to optimize the preparation of chiral/dissymmetric NPs, and the experimental results confirm such a dissymmetric synthesis strategy. Cuboids and octahedra with corners differently truncated are identified as two different chiral forms. The chirality of the NPs is additionally probed by electrochemistry, where the chiral NPs show enantioselectivity in the oxidation of d- and l-glucose. Altogether, the results gain fundamental insights into tailoring the plasmonic NP morphologies, and also suggest strategies to obtain chiral NPs.
Collapse
Affiliation(s)
- Bing Ni
- Physical Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Jian Zhou
- Physical Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Levin Stolz
- Department of Physics, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| |
Collapse
|
23
|
Fonseca J, Meng L, Imaz I, Maspoch D. Self-assembly of colloidal metal-organic framework (MOF) particles. Chem Soc Rev 2023; 52:2528-2543. [PMID: 36930224 DOI: 10.1039/d2cs00858k] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Self-assembly of colloidal particles into ordered superstructures enables the development of novel advanced materials for diverse applications such as photonics, electronics, sensing, energy conversion, energy storage, diagnosis, drug or gene delivery, and catalysis. Recently, polyhedral metal-organic framework (MOF) particles have been proposed as promising colloidal particles to form ordered superstructures, based on their colloidal stability, size-tunability, rich polyhedral shapes, porosity and multifunctionality. In this review, we present a comprehensive overview of strategies for the self-assembly of colloidal MOF particles into ordered superstructures of different dimensionalities, highlighting some of their properties and applications, and sharing thoughts on the self-assembly of MOF particles.
Collapse
Affiliation(s)
- Javier Fonseca
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain. .,Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lingxin Meng
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain. .,Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain. .,Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain. .,Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,ICREA, Pg. Lluıs Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
24
|
Li H, Li Y, Jiao J, Lin C. Recent research progress on crystallization strategies for difficult-to-crystallize organic molecules. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
25
|
Wan S, Xi X, Zhang H, Ning J, Zheng Z, Zhang Z, Long Y, Deng Y, Fan P, Yang D, Li T, Dong A. Shape-Mediated Oriented Assembly of Concave Nanoparticles under Cylindrical Confinement. ACS NANO 2022; 16:21315-21323. [PMID: 36468886 DOI: 10.1021/acsnano.2c09479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This contribution describes the self-assembly of colloidal nanodumbbells (NDs) with tunable shapes within cylindrical channels. We present that the intrinsic concave geometry of NDs endows them with peculiar packing and interlocking behaviors, which, in conjunction with the adjustable confinement constraint, leads to a variety of superstructures such as tilted-ladder chains and crossed-chain superlattices. A mechanistic investigation, corroborated by geometric calculations, reveals that the phase behavior of NDs under strong confinement can be rationalized by the entropy-driven maximization of the packing efficiency. Based on the experimental results, an empirical phase diagram is generated, which could provide general guidance in the design of intended superstructures from NDs. This study provides essential insight into how the interplay between the particle shape and confinement conditions can be exploited to direct the orientationally ordered assembly of concave nanoparticles into unusual superlattices.
Collapse
Affiliation(s)
- Siyu Wan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Xiangyun Xi
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Heyang Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Jing Ning
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Ziyue Zheng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhebin Zhang
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Ying Long
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Yuwei Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Pengshuo Fan
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Dong Yang
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Tongtao Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Angang Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
26
|
Song L, Qi Y, Zhang S. Design and Self-Assembly of Polyhedron Particles to Construct Iridescent Structural Colors. ACS Macro Lett 2022; 11:1362-1365. [PMID: 36416205 DOI: 10.1021/acsmacrolett.2c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Polyhedron particles exhibit unique physical properties in constructing novel materials. Here, the polystyrene (PS) polyhedron particles were fabricated via dispersion polymerization, and their morphologies can be controlled by tuning the divinylbenzene (DVB) content and polarity of the reaction medium. The possible formation mechanism is the asymmetric distribution of cross-linked networks during the phase separation process. In addition, the large-scale iridescent structural colors based on polyhedrons were obtained and further explored their applications in smart displays. This presented method guides the fabrication of anisotropic particles and their further assembly to construct novel materials.
Collapse
Affiliation(s)
- Liujun Song
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yong Qi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|