1
|
Xu X, Liu X, Liu L, Chen J, Guan J, Luo D. Metagenomic and transcriptomic profiling of the hypoglycemic and hypotriglyceridemic actions of Tremella fuciformis-derived polysaccharides in high-fat-diet- and streptozotocin-treated mice. Food Funct 2024; 15:11096-11114. [PMID: 39432083 DOI: 10.1039/d4fo01870b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Mushroom polysaccharides have great anti-diabetes potential. The fruiting body of Tremella fuciformis is rich in polysaccharides. However, few studies have been performed to date on T. fuciformis-derived polysaccharides (TPs) in terms of anti-diabetes potential. Our previous studies showed that novel TPs with medium molecular weights exhibited the highest anti-skin aging activities among the tested samples in D-galactose-treated mice. In the present study, the effects of these novel TPs, named TP, on high-fat-diet- and streptozotocin-treated mice were assessed, and their potential biological mechanisms were explored by metagenomic and transcriptomic analyses. Oral administration of TP markedly reduced blood glucose and TG levels, alleviated emaciation, improved anti-oxidant capacity, and protected the functions of β-cells at a dose of 100 mg kg-1 in diabetic mice. Meanwhile, the taxonomic compositions and functional properties of fecal microbiota were altered considerably by TP, as evidenced by partial restoration of the imbalanced gut microbiota and the higher abundances of Bacteroides, Phocaeicola, Bifidobacterium, and Alistipes compared to the model mice, corresponding to the upregulation of four enriched KEGG pathways of microbial communities such as the digestive system, cardiovascular disease, parasitic infectious disease, and cell growth and death. Further transcriptomic analysis of liver tissues identified 35 enriched KEGG pathways associated with metabolism and cellular signaling processes in response to TP. These results demonstrated the biological mechanisms underlying the hypoglycemic and hypotriglyceridemic activities of TP. The findings expanded our understanding of the anti-diabetic mechanisms for mushroom polysaccharides and provided new clues for future studies.
Collapse
Affiliation(s)
- Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| | - Xiaofei Liu
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| | - Liyan Liu
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| | - Jin Chen
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| | - Jingjing Guan
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| | - Donghui Luo
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| |
Collapse
|
2
|
Sheahan ML, Flores K, Coyne MJ, García-Bayona L, Chatzidaki-Livanis M, Holst AQ, Smith RC, Sundararajan A, Barquera B, Comstock LE. A ubiquitous mobile genetic element changes the antagonistic weaponry of a human gut symbiont. Science 2024; 386:414-420. [PMID: 39446952 DOI: 10.1126/science.adj9504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 07/01/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024]
Abstract
DNA transfer is ubiquitous in the human gut microbiota, especially among species of the order Bacteroidales. In silico analyses have revealed hundreds of mobile genetic elements shared between these species, yet little is known about the phenotypes they encode, their effects on fitness, or pleiotropic consequences for the recipient's genome. In this work, we show that acquisition of a ubiquitous integrative conjugative element (ICE) encoding a type VI secretion system (T6SS) shuts down the native T6SS of Bacteroides fragilis. Despite inactivating this T6SS, ICE acquisition increases the fitness of the B. fragilis transconjugant over its progenitor by arming it with the new T6SS. DNA transfer causes the strain to change allegiances so that it no longer targets ecosystem members with the same element yet is armed for communal defense.
Collapse
Affiliation(s)
- Madeline L Sheahan
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Katia Flores
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Michael J Coyne
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leonor García-Bayona
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Chatzidaki-Livanis
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Q Holst
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Rita C Smith
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | | | - Blanca Barquera
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Laurie E Comstock
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Tong M, Xu J, Li W, Jiang K, Yang Y, Chen Z, Jiao X, Meng X, Wang M, Hong J, Long H, Liu SJ, Lim B, Gao X. A highly conserved SusCD transporter determines the import and species-specific antagonism of Bacteroides ubiquitin homologues. Nat Commun 2024; 15:8794. [PMID: 39389974 PMCID: PMC11467351 DOI: 10.1038/s41467-024-53149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Efficient interbacterial competitions and diverse defensive strategies employed by various bacteria play a crucial role in acquiring a hold within a dense microbial community. The gut symbiont Bacteroides fragilis secretes an antimicrobial ubiquitin homologue (BfUbb) that targets an essential periplasmic PPIase to drive intraspecies bacterial competition. However, the mechanisms by which BfUbb enters the periplasm and its potential for interspecies antagonism remain poorly understood. Here, we employ transposon mutagenesis and identify a highly conserved TonB-dependent transporter SusCD (designated as ButCD) in B. fragilis as the BfUbb transporter. As a putative protein-related nutrient utilization system, ButCD is widely distributed across diverse Bacteroides species with varying sequence similarity, resulting in distinct import efficiency of Bacteroides ubiquitin homologues (BUbb) and thereby determining the species-specific toxicity of BUbb. Cryo-EM structural and functional investigations of the BfUbb-ButCD complex uncover distinctive structural features of ButC that are crucial for its targeting by BfUbb. Animal studies further demonstrate the specific and efficient elimination of enterotoxigenic B. fragilis (ETBF) in the murine gut by BfUbb, suggesting its potential as a therapeutic against ETBF-associated inflammatory bowel disease and colorectal cancer. Our findings provide a comprehensive elucidation of the species-specific toxicity exhibited by BUbb and explore its potential applications.
Collapse
Affiliation(s)
- Ming Tong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jinghua Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Weixun Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Kun Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yan Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhe Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xuyao Jiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jie Hong
- NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, 200001, China
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bentley Lim
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
4
|
Zhang ZJ, Cole CG, Coyne MJ, Lin H, Dylla N, Smith RC, Pappas TE, Townson SA, Laliwala N, Waligurski E, Ramaswamy R, Woodson C, Burgo V, Little JC, Moran D, Rose A, McMillin M, McSpadden E, Sundararajan A, Sidebottom AM, Pamer EG, Comstock LE. Comprehensive analyses of a large human gut Bacteroidales culture collection reveal species- and strain-level diversity and evolution. Cell Host Microbe 2024; 32:1853-1867.e5. [PMID: 39293438 PMCID: PMC11466702 DOI: 10.1016/j.chom.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/27/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Species of the Bacteroidales order are among the most abundant and stable bacterial members of the human gut microbiome, with diverse impacts on human health. We cultured and sequenced the genomes of 408 Bacteroidales isolates from healthy human donors representing nine genera and 35 species and performed comparative genomic, gene-specific, metabolomic, and horizontal gene transfer analyses. Families, genera, and species could be grouped based on many distinctive features. We also observed extensive DNA transfer between diverse families, allowing for shared traits and strain evolution. Inter- and intra-species diversity is also apparent in the metabolomic profiling studies. This highly characterized and diverse Bacteroidales culture collection with strain-resolved genomic and metabolomic analyses represents a valuable resource to facilitate informed selection of strains for microbiome reconstitution.
Collapse
Affiliation(s)
- Zhenrun J Zhang
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | - Cody G Cole
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | - Michael J Coyne
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | - Huaiying Lin
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Nicholas Dylla
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Rita C Smith
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Téa E Pappas
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Shannon A Townson
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Nina Laliwala
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Emily Waligurski
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | - Ramanujam Ramaswamy
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Che Woodson
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Victoria Burgo
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Jessica C Little
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - David Moran
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Amber Rose
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Mary McMillin
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Emma McSpadden
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Anitha Sundararajan
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Ashley M Sidebottom
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Eric G Pamer
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Medicine, Section of Infectious Diseases & Global Health, University of Chicago Medicine, 5841 South Maryland Ave., Chicago, IL 60637, USA; Department of Pathology, University of Chicago Medicine, 5841 South Maryland Ave., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA.
| | - Laurie E Comstock
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Torres MDT, Brooks EF, Cesaro A, Sberro H, Gill MO, Nicolaou C, Bhatt AS, de la Fuente-Nunez C. Mining human microbiomes reveals an untapped source of peptide antibiotics. Cell 2024; 187:5453-5467.e15. [PMID: 39163860 DOI: 10.1016/j.cell.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
Drug-resistant bacteria are outpacing traditional antibiotic discovery efforts. Here, we computationally screened 444,054 previously reported putative small protein families from 1,773 human metagenomes for antimicrobial properties, identifying 323 candidates encoded in small open reading frames (smORFs). To test our computational predictions, 78 peptides were synthesized and screened for antimicrobial activity in vitro, with 70.5% displaying antimicrobial activity. As these compounds were different compared with previously reported antimicrobial peptides, we termed them smORF-encoded peptides (SEPs). SEPs killed bacteria by targeting their membrane, synergizing with each other, and modulating gut commensals, indicating a potential role in reconfiguring microbiome communities in addition to counteracting pathogens. The lead candidates were anti-infective in both murine skin abscess and deep thigh infection models. Notably, prevotellin-2 from Prevotella copri presented activity comparable to the commonly used antibiotic polymyxin B. Our report supports the existence of hundreds of antimicrobials in the human microbiome amenable to clinical translation.
Collapse
Affiliation(s)
- Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin F Brooks
- Department of Medicine (Hematology; Blood and Marrow Transplantation), Stanford University, Stanford, CA 94305, USA
| | - Angela Cesaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hila Sberro
- Department of Medicine (Hematology; Blood and Marrow Transplantation), Stanford University, Stanford, CA 94305, USA
| | - Matthew O Gill
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Cosmos Nicolaou
- Department of Medicine (Hematology; Blood and Marrow Transplantation), Stanford University, Stanford, CA 94305, USA
| | - Ami S Bhatt
- Department of Medicine (Hematology; Blood and Marrow Transplantation), Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Cianciotto NP. The type II secretion system as an underappreciated and understudied mediator of interbacterial antagonism. Infect Immun 2024; 92:e0020724. [PMID: 38980047 PMCID: PMC11320942 DOI: 10.1128/iai.00207-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Interbacterial antagonism involves all major phyla, occurs across the full range of ecological niches, and has great significance for the environment, clinical arena, and agricultural and industrial sectors. Though the earliest insight into interbacterial antagonism traces back to the discovery of antibiotics, a paradigm shift happened when it was learned that protein secretion systems (e.g., types VI and IV secretion systems) deliver toxic "effectors" against competitors. However, a link between interbacterial antagonism and the Gram-negative type II secretion system (T2SS), which exists in many pathogens and environmental species, is not evident in prior reviews on bacterial competition or T2SS function. A current examination of the literature revealed four examples of a T2SS or one of its known substrates having a bactericidal activity against a Gram-positive target or another Gram-negative. When further studied, the T2SS effectors proved to be peptidases that target the peptidoglycan of the competitor. There are also reports of various bacteriolytic enzymes occurring in the culture supernatants of some other Gram-negative species, and a link between these bactericidal activities and T2SS is suggested. Thus, a T2SS can be a mediator of interbacterial antagonism, and it is possible that many T2SSs have antibacterial outputs. Yet, at present, the T2SS remains relatively understudied for its role in interbacterial competition. Arguably, there is a need to analyze the T2SSs of a broader range of species for their role in interbacterial antagonism. Such investigation offers, among other things, a possible pathway toward developing new antimicrobials for treating disease.
Collapse
Affiliation(s)
- Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
Abrahamsen HL, Sanford TC, Collamore CE, Johnstone BA, Coyne MJ, García-Bayona L, Christie MP, Evans JC, Farrand AJ, Flores K, Morton CJ, Parker MW, Comstock LE, Tweten RK. Distant relatives of a eukaryotic cell-specific toxin family evolved a complement-like mechanism to kill bacteria. Nat Commun 2024; 15:5028. [PMID: 38866748 PMCID: PMC11169675 DOI: 10.1038/s41467-024-49103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Cholesterol-dependent cytolysins (CDCs) comprise a large family of pore-forming toxins produced by Gram-positive bacteria, which are used to attack eukaryotic cells. Here, we functionally characterize a family of 2-component CDC-like (CDCL) toxins produced by the Gram-negative Bacteroidota that form pores by a mechanism only described for the mammalian complement membrane attack complex (MAC). We further show that the Bacteroides CDCLs are not eukaryotic cell toxins like the CDCs, but instead bind to and are proteolytically activated on the surface of closely related species, resulting in pore formation and cell death. The CDCL-producing Bacteroides is protected from the effects of its own CDCL by the presence of a surface lipoprotein that blocks CDCL pore formation. These studies suggest a prevalent mode of bacterial antagonism by a family of two-component CDCLs that function like mammalian MAC and that are wide-spread in the gut microbiota of diverse human populations.
Collapse
Affiliation(s)
- Hunter L Abrahamsen
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tristan C Sanford
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Casie E Collamore
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Bronte A Johnstone
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael J Coyne
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Leonor García-Bayona
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Michelle P Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jordan C Evans
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Wheeler Bio, Oklahoma City, OK, 73104, USA
| | - Allison J Farrand
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Wheeler Bio, Oklahoma City, OK, 73104, USA
| | - Katia Flores
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Craig J Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
- CSIRO Biomedical Manufacturing Program, Clayton, VIC, 3168, Australia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, VIC, 2065, Australia.
| | - Laurie E Comstock
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL, USA.
| | - Rodney K Tweten
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
8
|
Kennedy NW, Comstock LE. Mechanisms of bacterial immunity, protection, and survival during interbacterial warfare. Cell Host Microbe 2024; 32:794-803. [PMID: 38870897 PMCID: PMC11216714 DOI: 10.1016/j.chom.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024]
Abstract
Most bacteria live in communities, often with closely related strains and species with whom they must compete for space and resources. Consequently, bacteria have acquired or evolved mechanisms to antagonize competitors through the production of antibacterial toxins. Similar to bacterial systems that combat phage infection and mechanisms to thwart antibiotics, bacteria have also acquired and evolved features to protect themselves from antibacterial toxins. Just as there is a large body of research identifying and characterizing antibacterial proteins and toxin delivery systems, studies of bacterial mechanisms to resist and survive assault from competitors' weapons have also expanded tremendously. Emerging data are beginning to reveal protective processes and mechanisms that are as diverse as the toxins themselves. Protection against antibacterial toxins can be acquired by horizontal gene transfer, receptor or target alteration, induction of protective functions, physical barriers, and other diverse processes. Here, we review recent studies in this rapidly expanding field.
Collapse
Affiliation(s)
- Nolan W Kennedy
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Laurie E Comstock
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
9
|
Pardue EJ, Sartorio MG, Jana B, Scott NE, Beatty WL, Ortiz-Marquez JC, Van Opijnen T, Hsu FF, Potter RF, Feldman MF. Dual membrane-spanning anti-sigma factors regulate vesiculation in Bacteroides thetaiotaomicron. Proc Natl Acad Sci U S A 2024; 121:e2321910121. [PMID: 38422018 PMCID: PMC10927553 DOI: 10.1073/pnas.2321910121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Bacteroidota are abundant members of the human gut microbiota that shape the enteric landscape by modulating host immunity and degrading dietary- and host-derived glycans. These processes are mediated in part by Outer Membrane Vesicles (OMVs). Here, we developed a high-throughput screen to identify genes required for OMV biogenesis and its regulation in Bacteroides thetaiotaomicron (Bt). We identified a family of Dual membrane-spanning anti-sigma factors (Dma) that control OMV biogenesis. We conducted molecular and multiomic analyses to demonstrate that deletion of Dma1, the founding member of the Dma family, modulates OMV production by controlling the activity of the ECF21 family sigma factor, Das1, and its downstream regulon. Dma1 has a previously uncharacterized domain organization that enables Dma1 to span both the inner and outer membrane of Bt. Phylogenetic analyses reveal that this common feature of the Dma family is restricted to the phylum Bacteroidota. This study provides mechanistic insights into the regulation of OMV biogenesis in human gut bacteria.
Collapse
Affiliation(s)
- Evan J. Pardue
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Mariana G. Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Biswanath Jana
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC3000, Australia
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | | | | | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO63110
| | - Robert F. Potter
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO63110
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| |
Collapse
|
10
|
Fogarty EC, Schechter MS, Lolans K, Sheahan ML, Veseli I, Moore RM, Kiefl E, Moody T, Rice PA, Yu MK, Mimee M, Chang EB, Ruscheweyh HJ, Sunagawa S, Mclellan SL, Willis AD, Comstock LE, Eren AM. A cryptic plasmid is among the most numerous genetic elements in the human gut. Cell 2024; 187:1206-1222.e16. [PMID: 38428395 PMCID: PMC10973873 DOI: 10.1016/j.cell.2024.01.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/03/2023] [Accepted: 01/25/2024] [Indexed: 03/03/2024]
Abstract
Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.
Collapse
Affiliation(s)
- Emily C Fogarty
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Matthew S Schechter
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Karen Lolans
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Madeline L Sheahan
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Iva Veseli
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Ryan M Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Evan Kiefl
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Thomas Moody
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Phoebe A Rice
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry, University of Chicago, Chicago, IL 60637, USA
| | - Michael K Yu
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Mark Mimee
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich 8093, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich 8093, Switzerland
| | - Sandra L Mclellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Laurie E Comstock
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Microbiology, University of Chicago, Chicago, IL 60637, USA.
| | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany; Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany; Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany.
| |
Collapse
|
11
|
Humińska-Lisowska K, Zielińska K, Mieszkowski J, Michałowska-Sawczyn M, Cięszczyk P, Łabaj PP, Wasąg B, Frączek B, Grzywacz A, Kochanowicz A, Kosciolek T. Microbiome features associated with performance measures in athletic and non-athletic individuals: A case-control study. PLoS One 2024; 19:e0297858. [PMID: 38381714 PMCID: PMC10880968 DOI: 10.1371/journal.pone.0297858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024] Open
Abstract
The influence of human gut microbiota on health and disease is now commonly appreciated. Therefore, it is not surprising that microbiome research has found interest in the sports community, hoping to improve health and optimize performance. Comparative studies found new species or pathways that were more enriched in elites than sedentary controls. In addition, sport-specific and performance-level-specific microbiome features have been identified. However, the results remain inconclusive and indicate the need for further assessment. In this case-control study, we tested two athletic populations (i.e. strength athletes, endurance athletes) and a non-athletic, but physically active, control group across two acute exercise bouts, separated by a 2-week period, that measured explosive and high intensity fitness level (repeated 30-s all-out Wingate test (WT)) and cardiorespiratory fitness level (Bruce Treadmill Test). While we did not identify any group differences in alpha and beta diversity or significant differential abundance of microbiome components at baseline, one-third of the species identified were unique to each group. Longitudinal sample (pre- and post-exercise) analysis revealed an abundance of Alistipes communis in the strength group during the WT and 88 species with notable between-group differences during the Bruce Test. SparCC recognized Bifidobacterium longum and Bifidobacterium adolescentis, short-chain fatty acid producers with probiotic properties, species strongly associated with VO2max. Ultimately, we identified several taxa with different baseline abundances and longitudinal changes when comparing individuals based on their VO2max, average power, and maximal power parameters. Our results confirmed that the health status of individuals are consistent with assumptions about microbiome health. Furthermore, our findings indicate that microbiome features are associated with better performance previously identified in elite athletes.
Collapse
Affiliation(s)
- Kinga Humińska-Lisowska
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Kinga Zielińska
- Malopolska Centre of Biotechnology, Jagiellonian University, Cracow, Poland
| | - Jan Mieszkowski
- Faculty of Health Sciences, University of Lomza, Lomza, Poland
| | | | - Paweł Cięszczyk
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Paweł P Łabaj
- Malopolska Centre of Biotechnology, Jagiellonian University, Cracow, Poland
| | - Bartosz Wasąg
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Barbara Frączek
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education, Cracow, Poland
| | - Anna Grzywacz
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | | | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, Cracow, Poland
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
12
|
Garcia-Morena D, Fernandez-Cantos MV, Escalera SL, Lok J, Iannone V, Cancellieri P, Maathuis W, Panagiotou G, Aranzamendi C, Aidy SE, Kolehmainen M, El-Nezami H, Wellejus A, Kuipers OP. In Vitro Influence of Specific Bacteroidales Strains on Gut and Liver Health Related to Metabolic Dysfunction-Associated Fatty Liver Disease. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10219-1. [PMID: 38319537 DOI: 10.1007/s12602-024-10219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has become a major health risk and a serious worldwide issue. MAFLD typically arises from aberrant lipid metabolism, insulin resistance, oxidative stress, and inflammation. However, subjacent causes are multifactorial. The gut has been proposed as a major factor in health and disease, and over the last decade, bacterial strains with potentially beneficial effects on the host have been identified. In vitro cell models have been commonly used as an early step before in vivo drug assessment and can confer complementary advantages in gut and liver health research. In this study, several selected strains of the order Bacteroidales were used in a three-cell line in vitro analysis (HT-29, Caco-2, and HepG2 cell lines) to investigate their potential as new-generation probiotics and microbiota therapeutics. Antimicrobial activity, a potentially useful trait, was studied, and the results showed that Bacteroidales can be a source of either wide- or narrow-spectrum antimicrobials targeting other closely related strains. Moreover, Bacteroides sp. 4_1_36 induced a significant decrease in gut permeability, as evidenced by the high TEER values in the Caco-2 monolayer assay, as well as a reduction in free fatty acid accumulation and improved fatty acid clearance in a steatosis HepG2 model. These results suggest that Bacteroidales may spearhead the next generation of probiotics to prevent or diminish MAFLD.
Collapse
Affiliation(s)
- Diego Garcia-Morena
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Silvia Lopez Escalera
- Chr. Hansen A/S, Bøge Allé 10-12, 2970, Hørsholm, Denmark
- Friedrich-Schiller Universität Jena, Fakultät für Biowissenschaften, 18K, 07743, Bachstraβe, Germany
| | - Johnson Lok
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Valeria Iannone
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Pierluca Cancellieri
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Willem Maathuis
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745, Jena, Germany
- Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
- Faculty of Biological Sciences, Friedrich Schiller University, 07745, Jena, Germany
| | - Carmen Aranzamendi
- Groningen Biomolecular Sciences and Biotechnology Institute, Host-Microbe Metabolic Interactions, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Sahar El Aidy
- Groningen Biomolecular Sciences and Biotechnology Institute, Host-Microbe Metabolic Interactions, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Marjukka Kolehmainen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Hani El-Nezami
- Molecular and Cell Biology Division, School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Anja Wellejus
- Chr. Hansen A/S, Bøge Allé 10-12, 2970, Hørsholm, Denmark
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
13
|
Jiang K, Li W, Tong M, Xu J, Chen Z, Yang Y, Zang Y, Jiao X, Liu C, Lim B, Jiang X, Wang J, Wu D, Wang M, Liu SJ, Shao F, Gao X. Bacteroides fragilis ubiquitin homologue drives intraspecies bacterial competition in the gut microbiome. Nat Microbiol 2024; 9:70-84. [PMID: 38082149 DOI: 10.1038/s41564-023-01541-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
Interbacterial antagonism and associated defensive strategies are both essential during bacterial competition. The human gut symbiont Bacteroides fragilis secretes a ubiquitin homologue (BfUbb) that is toxic to a subset of B. fragilis strains in vitro. In the present study, we demonstrate that BfUbb lyses certain B. fragilis strains by non-covalently binding and inactivating an essential peptidyl-prolyl isomerase (PPIase). BfUbb-sensitivity profiling of B. fragilis strains revealed a key tyrosine residue (Tyr119) in the PPIase and strains that encode a glutamic acid residue at Tyr119 are resistant to BfUbb. Crystal structural analysis and functional studies of BfUbb and the BfUbb-PPIase complex uncover a unique disulfide bond at the carboxy terminus of BfUbb to mediate the interaction with Tyr119 of the PPIase. In vitro coculture assays and mouse studies show that BfUbb confers a competitive advantage for encoding strains and this is further supported by human gut metagenome analyses. Our findings reveal a previously undescribed mechanism of bacterial intraspecies competition.
Collapse
Affiliation(s)
- Kun Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weixun Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ming Tong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinghua Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhe Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yan Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yuanrong Zang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xuyao Jiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Bentley Lim
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Xianzhi Jiang
- Microbiome Research Center, Moon (Guangzhou) Biotech Co. Ltd., Guangzhou, China
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
14
|
Noh CK, Jung W, Yang MJ, Kim WH, Hwang JC. Alteration of the fecal microbiome in patients with cholecystectomy: potential relationship with postcholecystectomy diarrhea - before and after study. Int J Surg 2023; 109:2585-2597. [PMID: 37288587 PMCID: PMC10498850 DOI: 10.1097/js9.0000000000000518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/14/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Bile acid (BA) is a crucial determinant of the gut microbiome, and cholecystectomy can alter the physiology of BA. Physiological changes in BA resulting from cholecystectomy can also influence the gut microbiome. We aimed to identify the specific taxa associated with perioperative symptoms, including postcholecystectomy diarrhea (PCD), and to evaluate the effect of cholecystectomy on the microbiome by investigating the fecal microbiome of patients with gallstones. METHODS We analyzed the fecal samples of 39 patients with gallstones (GS group) and 26 healthy controls (HC group) to evaluate their gut microbiome. We also collected fecal samples from GS group 3 months postcholecystectomy. Symptoms of patients were evaluated before and after cholecystectomy. Further, 16S ribosomal RNA amplification and sequencing were performed to determine the metagenomic profile of fecal samples. RESULTS The microbiome composition of GS differed from that of HC; however, the alpha diversity was not different. No significant microbiome alterations were observed before and after cholecystectomy. Moreover, GS group showed a significantly lower Firmicutes to Bacteroidetes ratio before and after cholecystectomy than the HC group (6.2, P< 0.05). The inter-microbiome relationship was lower in GS than in HC and tended to recover 3 months after surgery. Furthermore, ~28.1% ( n =9) of patients developed PCD after surgery. The most prominent species among PCD (+) patients was Phocaeicola vulgatus. Compared with the preoperative state, Sutterellaceae , Phocaeicola , and Bacteroidals were the most dominant taxa among PCD (+) patients. CONCLUSION GS group showed a different microbiome from that of HC; however, their microbiomes were not different 3 months after cholecystectomy. Our data revealed taxa-associated PCD, highlighting the possibility of symptom relief by restoring the gut microbiome.
Collapse
Affiliation(s)
| | - Woohyun Jung
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | - Wook Hwan Kim
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | | |
Collapse
|
15
|
Sheahan ML, Coyne MJ, Flores K, Garcia-Bayona L, Chatzidaki-Livanis M, Sundararajan A, Holst AQ, Barquera B, Comstock LE. A ubiquitous mobile genetic element disarms a bacterial antagonist of the gut microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.553775. [PMID: 37662397 PMCID: PMC10473720 DOI: 10.1101/2023.08.25.553775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
DNA transfer is ubiquitous in the gut microbiota, especially among species of Bacteroidales. In silico analyses have revealed hundreds of mobile genetic elements shared between these species, yet little is known about the phenotypes they encode, their effects on fitness, or pleiotropic consequences for the recipient's genome. Here, we show that acquisition of a ubiquitous integrative and conjugative element encoding an antagonistic system shuts down the native contact-dependent antagonistic system of Bacteroides fragilis . Despite inactivating the native antagonism system, mobile element acquisition increases fitness of the B. fragilis transconjugant over its progenitor by arming it with a new weapon. This DNA transfer causes the strain to change allegiances so that it no longer targets ecosystem members containing the same element yet is armed for communal defense.
Collapse
|
16
|
Pardue EJ, Sartorio MG, Jana B, Scott NE, Beatty W, Ortiz-Marquez JC, Van Opijnen T, Hsu FF, Potter R, Feldman MF. Dual Membrane-spanning Anti-Sigma Factors Regulate Vesiculation in Gut Bacteroidota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548920. [PMID: 37503209 PMCID: PMC10369966 DOI: 10.1101/2023.07.13.548920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Bacteroidota are abundant members of the human gut microbiota that shape the enteric landscape by modulating host immunity and degrading dietary- and host-derived glycans. These processes are at least partially mediated by O uter M embrane V esicles (OMVs). In this work, we developed a high-throughput screen to identify genes required for OMV biogenesis and its regulation in Bacteroides thetaiotaomicron ( Bt ). Our screening led us to the identification of a novel family of D ual M embrane-spanning A nti-sigma factors (Dma), which regulate OMV biogenesis in Bt . We employed molecular and multiomic analyses to demonstrate that deletion of Dma1, the founding member of the Dma family, results in hypervesiculation by modulating the expression of NigD1, which belongs to a family of uncharacterized proteins found throughout Bacteroidota. Dma1 has an unprecedented domain organization: it contains a C-terminal β-barrel embedded in the OM; its N-terminal domain interacts with its cognate sigma factor in the cytoplasm, and both domains are tethered via an intrinsically disordered region that traverses the periplasm. Phylogenetic analyses reveal that the Dma family is a unique feature of Bacteroidota. This study provides the first mechanistic insights into the regulation of OMV biogenesis in human gut bacteria.
Collapse
|
17
|
Fernandez-Cantos MV, Garcia-Morena D, Yi Y, Liang L, Gómez-Vázquez E, Kuipers OP. Bioinformatic mining for RiPP biosynthetic gene clusters in Bacteroidales reveals possible new subfamily architectures and novel natural products. Front Microbiol 2023; 14:1219272. [PMID: 37469430 PMCID: PMC10352776 DOI: 10.3389/fmicb.2023.1219272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023] Open
Abstract
The Bacteroidales order, widely distributed among diverse human populations, constitutes a key component of the human microbiota. Members of this Gram-negative order have been shown to modulate the host immune system, play a fundamental role in the gut's microbial food webs, or be involved in pathogenesis. Bacteria inhabiting such a complex environment as the human microbiome are expected to display social behaviors and, hence, possess factors that mediate cooperative and competitive interactions. Different types of molecules can mediate interference competition, including non-ribosomal peptides (NRPs), polyketides, and bacteriocins. The present study investigates the potential of Bacteroidales bacteria to biosynthesize class I bacteriocins, which are ribosomally synthesized and post-translationally modified peptides (RiPPs). For this purpose, 1,136 genome-sequenced strains from this order were mined using BAGEL4. A total of 1,340 areas of interest (AOIs) were detected. The most commonly identified enzymes involved in RiPP biosynthesis were radical S-adenosylmethionine (rSAM), either alone or in combination with other biosynthetic enzymes such as YcaO. A more comprehensive analysis of a subset of 9 biosynthetic gene clusters (BGCs) revealed a consistent association in Bacteroidales BGCs between peptidase-containing ATP-binding transporters (PCATs) and precursor peptides with GG-motifs. This finding suggests a possibly shared mechanism for leader peptide cleavage and transport of mature products. Notably, human metagenomic studies showed a high prevalence and abundance of the RiPP BGCs from Phocaeicola vulgatus and Porphyromonas gulae. The mature product of P. gulae BGC is hypothesized to display γ-thioether linkages and a C-terminal backbone amidine, a potential new combination of post-translational modifications (PTM). All these findings highlight the RiPP biosynthetic potential of Bacteroidales bacteria, as a rich source of novel peptide structures of possible relevance in the human microbiome context.
Collapse
Affiliation(s)
- Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Diego Garcia-Morena
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Yunhai Yi
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | | | - Emilio Gómez-Vázquez
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Fogarty EC, Schechter MS, Lolans K, Sheahan ML, Veseli I, Moore R, Kiefl E, Moody T, Rice PA, Yu MK, Mimee M, Chang EB, Mclellan SL, Willis AD, Comstock LE, Eren AM. A highly conserved and globally prevalent cryptic plasmid is among the most numerous mobile genetic elements in the human gut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534219. [PMID: 36993556 PMCID: PMC10055365 DOI: 10.1101/2023.03.25.534219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Plasmids are extrachromosomal genetic elements that often encode fitness enhancing features. However, many bacteria carry 'cryptic' plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes, and is 14 times as numerous as crAssphage, currently established as the most abundant genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales and although it does not appear to impact bacterial host fitness in vivo, can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an inexpensive alternative for detecting human colonic inflammatory states.
Collapse
Affiliation(s)
- Emily C Fogarty
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Matthew S Schechter
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Karen Lolans
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Madeline L. Sheahan
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA
| | - Iva Veseli
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Ryan Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Evan Kiefl
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Thomas Moody
- Department of Systems Biology, Columbia University, New York, NY, 10032 USA
| | - Phoebe A Rice
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry, University of Chicago, Chicago, IL, 60637, USA
| | | | - Mark Mimee
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Sandra L Mclellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Laurie E Comstock
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA
| | - A Murat Eren
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany
| |
Collapse
|