1
|
Lu Y, Ma Q, Yu L, Liu X, Chen P, Liu W. Circulating CD45RA -Foxp3 ++ Treg cells serve as a biomarker for predicting minimal clinical manifestations status of myasthenia gravis. Life Sci 2024; 358:123162. [PMID: 39433086 DOI: 10.1016/j.lfs.2024.123162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/28/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
AIMS Regulatory T cells (Tregs) are key mediators of the induction of immune tolerance; however, the mechanisms by which they regulate myasthenia gravis (MG) are not fully understood. This study aimed to explore the characteristics of Tregs and their subpopulations in the peripheral blood of patients with minimal clinical manifestations (MM) of MG and identify biomarkers that predict MM-MG for treatment guidance. MATERIALS AND METHODS The clinical data of patients with general MG who visited our hospital were retrospectively analyzed. Age- and sex-matched volunteers were selected as healthy controls (HC). Flow cytometry was used to determine the proportion, function, and subpopulations of total Tregs. A correlation analysis was conducted for subpopulation proportions and MG disease severity. KEY FINDINGS A total of 27 cases of MM-MG, 40 cases of naїve-MG, and 33 cases of HC were included in this study. The number of total Tregs and the suppressive function of total Tregs were elevated in patients with MM-MG compared to those of patients with naїve-MG. Further analysis revealed that the frequency of CD45RA-Foxp3++ Tregs (a-Tregs) negatively correlated with quantitative myasthenia gravis (QMG) scores for patients with naїve-MG. In addition, the number of a-Tregs was significantly greater in patients with MM-MG than in patients with naїve-MG, and CD45RA-Foxp3+ Tregs expressed higher and lower levels of CTLA-4 and CXCR3, respectively. SIGNIFICANCE CD45RA-Foxp3++ Tregs were significantly more abundant and highly expressed surface inhibitory molecules in patients with MM-MG. This profile may serve as a predictive biomarker for MM-MG.
Collapse
Affiliation(s)
- Yaru Lu
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, Guangdong, China
| | - Qian Ma
- Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Lu Yu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Xiaoxi Liu
- Department of Neurology, Nanfang Hospital of Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Pei Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, Guangdong, China
| | - Weibin Liu
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China.
| |
Collapse
|
2
|
Pardini E, Barachini S, Alì G, Infirri GS, Burzi IS, Montali M, Petrini I. Single-cell sequencing has revealed a more complex array of thymic epithelial cells. Immunol Lett 2024; 269:106904. [PMID: 39117004 DOI: 10.1016/j.imlet.2024.106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Thymic epithelial cells participate in the maturation and selection of T lymphocytes. This review explores recent insights from single-cell sequencing regarding classifying thymic epithelial cells in both normal and neoplastic thymus. Cortical thymic epithelial cells facilitate thymocyte differentiation and contribute to positive selection. Medullary epithelial cells are distinguished by their expression of AIRE. Cells progress from a pre-AIRE state, containing precursors with cortical and medullary characteristics, termed junctional cells. Mature medullary epithelial cells exhibit promiscuous gene expression and after that downregulate AIRE mRNA. Post-AIRE cells can adopt a Hassall corpuscle-like phenotype or exhibit distinctive differentiation characteristics including tuft cells, ionocytes, neuroendocrine cells, and myoid cells.
Collapse
Affiliation(s)
- Eleonora Pardini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Greta Alì
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Pisa, Italy
| | - Gisella Sardo Infirri
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Irene Sofia Burzi
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Marina Montali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Yasumizu Y, Kinoshita M, Zhang MJ, Motooka D, Suzuki K, Nojima S, Koizumi N, Okuzaki D, Funaki S, Shintani Y, Ohkura N, Morii E, Okuno T, Mochizuki H. Spatial transcriptomics elucidates medulla niche supporting germinal center response in myasthenia gravis-associated thymoma. Cell Rep 2024; 43:114677. [PMID: 39180749 DOI: 10.1016/j.celrep.2024.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
Myasthenia gravis (MG) is etiologically associated with thymus abnormalities, but its pathology in the thymus remains unclear. In this study, we attempt to narrow down the features associated with MG using spatial transcriptome analysis of thymoma and thymic hyperplasia samples. We find that the majority of thymomas are constituted by the cortical region. However, the small medullary region is enlarged in seropositive thymomas and contains polygenic enrichment and MG-specific germinal center structures. Neuromuscular medullary thymic epithelial cells, previously identified as MG-specific autoantigen-producing cells, are enriched in the cortico-medullary junction. The medulla is characterized by a specific chemokine pattern and immune cell composition, including migratory dendritic cells and effector regulatory T cells. Similar germinal center structures and immune microenvironments are also observed in the thymic hyperplasia medulla. This study shows that the medulla and junction areas are linked to MG pathology and provides insights into future MG research.
Collapse
Affiliation(s)
- Yoshiaki Yasumizu
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Makoto Kinoshita
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Martin Jinye Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Koichiro Suzuki
- BIKEN-RIMD NGS Laboratory, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Biomedical Science Center, The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Japan
| | - Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Naoshi Koizumi
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Naganari Ohkura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Frontier Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Klein L, Petrozziello E. Antigen presentation for central tolerance induction. Nat Rev Immunol 2024:10.1038/s41577-024-01076-8. [PMID: 39294277 DOI: 10.1038/s41577-024-01076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/20/2024]
Abstract
The extent of central T cell tolerance is determined by the diversity of self-antigens that developing thymocytes 'see' on thymic antigen-presenting cells (APCs). Here, focusing on insights from the past decade, we review the functional adaptations of medullary thymic epithelial cells, thymic dendritic cells and thymic B cells for the purpose of tolerance induction. Their distinct cellular characteristics range from unconventional phenomena, such as promiscuous gene expression or mimicry of peripheral cell types, to strategic positioning in distinct microenvironments and divergent propensities to preferentially access endogenous or exogenous antigen pools. We also discuss how 'tonic' inflammatory signals in the thymic microenvironment may extend the intrathymically visible 'self' to include autoantigens that are otherwise associated with highly immunogenic peripheral environments.
Collapse
Affiliation(s)
- Ludger Klein
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
| | - Elisabetta Petrozziello
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
5
|
Kaminski HJ, Sikorski P, Coronel SI, Kusner LL. Myasthenia gravis: the future is here. J Clin Invest 2024; 134:e179742. [PMID: 39105625 DOI: 10.1172/jci179742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
Myasthenia gravis (MG) stands as a prototypical antibody-mediated autoimmune disease: it is dependent on T cells and characterized by the presence of autoantibodies targeting proteins located on the postsynaptic surface of skeletal muscle, known as the neuromuscular junction. Patients with MG exhibit a spectrum of weakness, ranging from limited ocular muscle involvement to life-threatening respiratory failure. Recent decades have witnessed substantial progress in understanding the underlying pathophysiology, leading to the delineation of distinct subcategories within MG, including MG linked to AChR or MuSK antibodies as well as age-based distinction, thymoma-associated, and immune checkpoint inhibitor-induced MG. This heightened understanding has paved the way for the development of more precise and targeted therapeutic interventions. Notably, the FDA has recently approved therapeutic inhibitors of complement and the IgG receptor FcRn, a testament to our improved comprehension of autoantibody effector mechanisms in MG. In this Review, we delve into the various subgroups of MG, stratified by age, autoantibody type, and histology of the thymus with neoplasms. Furthermore, we explore both current and potential emerging therapeutic strategies, shedding light on the evolving landscape of MG treatment.
Collapse
Affiliation(s)
| | | | | | - Linda L Kusner
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| |
Collapse
|
6
|
Nabel CS, Ackman JB, Hung YP, Louissaint A, Riely GJ. Single-Cell Sequencing Illuminates Thymic Development: An Updated Framework for Understanding Thymic Epithelial Tumors. Oncologist 2024; 29:473-483. [PMID: 38520743 PMCID: PMC11145005 DOI: 10.1093/oncolo/oyae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/23/2024] [Indexed: 03/25/2024] Open
Abstract
Thymic epithelial tumors (TETs) are rare tumors for which treatment options are limited. The ongoing need for improved systemic therapies reflects a limited understanding of tumor biology as well as the normal thymus. The essential role of the thymus in adaptive immunity is largely effected by its epithelial compartment, which directs thymocyte (T-cell) differentiation and immunologic self-tolerance. With aging, the thymus undergoes involution whereby epithelial tissue is replaced by adipose and other connective tissue, decreasing immature T-cell production. Against this natural drive toward involution, a fraction of thymuses will instead undergo oncologic transformation, leading to the formation of TETs, including thymoma and thymic carcinoma. The rarity of these tumors restricts investigation of the mechanisms of tumorigenesis and development of rational treatment options. To this end, the development of technologies which allow deep molecular profiling of individual tumor cells permits a new window through which to view normal thymic development and contrast the malignant changes that result in oncogenic transformation. In this review, we describe the findings of recent illuminating studies on the diversity of cell types within the epithelial compartment through thymic differentiation and aging. We contextualize these findings around important unanswered questions regarding the spectrum of known somatic tumor alterations, cell of origin, and tumor heterogeneity. The perspectives informed by single-cell molecular profiling offer new approaches to clinical and basic investigation of thymic epithelial tumors, with the potential to accelerate development of improved therapeutic strategies to address ongoing unmet needs in these rare tumors.
Collapse
Affiliation(s)
- Christopher S Nabel
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeanne B Ackman
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Yin P Hung
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Abner Louissaint
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory J Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
7
|
Liu T, Xia S. The Proteostasis of Thymic Stromal Cells in Health and Diseases. Protein J 2024; 43:447-463. [PMID: 38622349 DOI: 10.1007/s10930-024-10197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
The thymus is the key immune organ for the development of T cells. Different populations of thymic stromal cells interact with T cells, thereby controlling the dynamic development of T cells through their differentiation and function. Proteostasis represents a balance between protein expression, folding, and modification and protein clearance, and its fluctuation usually depends at least partially on related protein regulatory systems for further survival and effects. However, in terms of the substantial requirement for self-antigens and their processing burden, increasing evidence highlights that protein regulation contributes to the physiological effects of thymic stromal cells. Impaired proteostasis may expedite the progression of thymic involution and dysfunction, accompanied by the development of autoimmune diseases or thymoma. Hence, in this review, we summarize the regulation of proteostasis within different types of thymic stromal cells under physiological and pathological conditions to identify potential targets for thymic regeneration and immunotherapy.
Collapse
Affiliation(s)
- Ting Liu
- Department of Immunology, School of Medicine, Jiangsu University, 301, Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, 301, Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
8
|
Altınönder İ, Kaya M, Yentür SP, Çakar A, Durmuş H, Yegen G, Özkan B, Parman Y, Sawalha AH, Saruhan-Direskeneli G. Thymic gene expression analysis reveals a potential link between HIF-1A and Th17/Treg imbalance in thymoma associated myasthenia gravis. J Neuroinflammation 2024; 21:126. [PMID: 38734662 PMCID: PMC11088784 DOI: 10.1186/s12974-024-03095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/07/2024] [Indexed: 05/13/2024] Open
Abstract
Myasthenia gravis (MG) is an immune-mediated disease frequently associated with thymic changes. Increased T helper 17 (Th17) cell activity and dysfunctional regulatory T (Treg) cells have been demonstrated in subgroups of MG. On the other hand, hypoxia-inducible factor 1 (HIF-1) has been shown to regulate the Th17/Treg balance by inducing Th17 differentiation while attenuating Treg development. To identify the underlying mechanisms of different thymic pathologies in MG development, we evaluated thymic samples from thymoma-associated myasthenia gravis (TAMG), MG with hyperplasia (TFH-MG) and thymoma without MG (TOMA) patients. Differential gene expression analysis revealed that TAMG and TFH-MG cells are associated with different functional pathways. A higher RORC/FOXP3 ratio provided evidence for Th17/Treg imbalance in TAMG potentially related to increased HIF1A. The hypoxic microenvironment in thymoma may be a driver of TAMG by increasing HIF1A. These findings may lead to new therapeutic approaches targeting HIF1A in the development of TAMG.
Collapse
Affiliation(s)
- İlayda Altınönder
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Mustafa Kaya
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Sibel P Yentür
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Arman Çakar
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Hacer Durmuş
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Gülçin Yegen
- Department of Thoracic Surgery, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Berker Özkan
- Department of Pathology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Yeşim Parman
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
9
|
Ouyang S, Wu X, Zhan Q, Wu F, Tan H, Duan W, Zeng Q, Gu W, Lu W, Yin W. Unique association of anti-GABA A receptor encephalitis and myasthenia gravis in a patient with type A thymoma. Neurol Sci 2024; 45:2203-2209. [PMID: 38051411 DOI: 10.1007/s10072-023-07239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Association between anti-GABAAR encephalitis and myasthenia gravis is extremely rare with few reported cases. Herein, we report a case of a female patient diagnosed with anti-GABAAR encephalitis and thymoma at the first admission. She was administered glucocorticoids for long-term immunotherapy, and thymectomy with biopsy demonstrated a type A thymoma. After 4 months, the symptoms of encephalitis were relieved, but she then developed post-thymectomy myasthenia gravis with anti-AChR and anti-titin dual positivity. Antibodies to connective tissue (anti-ANA, anti-PCNA) and those characteristics of paraneoplastic syndrome (anti-Ma2/Ta) were also positive. She received oral glucocorticoids and tacrolimus as immunosuppressive therapy, and myasthenic symptoms were stable during a 2-year follow-up. Our case revealed that anti-GABAAR encephalitis and myasthenia gravis can appear in patient with type A thymoma at different periods, which alerts physicians to take long-term follow-up for anti-GABAAR encephalitis with thymoma, even after thymectomy. Concurrent positivity for more than one antibody after thymectomy is rarely observed, and their contribution to the clinical course and treatment decision remains to be further investigated.
Collapse
Affiliation(s)
- Song Ouyang
- Department of Neurology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
- The "Double-First Class" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, Hunan, People's Republic of China
| | - Xiaomei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Qiong Zhan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hong Tan
- Department of Neurology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Weiwei Duan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qiuming Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Wenping Gu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Weifan Yin
- The "Double-First Class" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, Hunan, People's Republic of China.
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Huang X, Liu R, Yang S, Chen X, Li H. scAnnoX: an R package integrating multiple public tools for single-cell annotation. PeerJ 2024; 12:e17184. [PMID: 38560451 PMCID: PMC10981883 DOI: 10.7717/peerj.17184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Background Single-cell annotation plays a crucial role in the analysis of single-cell genomics data. Despite the existence of numerous single-cell annotation algorithms, a comprehensive tool for integrating and comparing these algorithms is also lacking. Methods This study meticulously investigated a plethora of widely adopted single-cell annotation algorithms. Ten single-cell annotation algorithms were selected based on the classification of either reference dataset-dependent or marker gene-dependent approaches. These algorithms included SingleR, Seurat, sciBet, scmap, CHETAH, scSorter, sc.type, cellID, scCATCH, and SCINA. Building upon these algorithms, we developed an R package named scAnnoX for the integration and comparative analysis of single-cell annotation algorithms. Results The development of the scAnnoX software package provides a cohesive framework for annotating cells in scRNA-seq data, enabling researchers to more efficiently perform comparative analyses among the cell type annotations contained in scRNA-seq datasets. The integrated environment of scAnnoX streamlines the testing, evaluation, and comparison processes among various algorithms. Among the ten annotation tools evaluated, SingleR, Seurat, sciBet, and scSorter emerged as top-performing algorithms in terms of prediction accuracy, with SingleR and sciBet demonstrating particularly superior performance, offering guidance for users. Interested parties can access the scAnnoX package at https://github.com/XQ-hub/scAnnoX.
Collapse
Affiliation(s)
- Xiaoqian Huang
- School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, Yunnan Province, China
| | - Ruiqi Liu
- School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, Yunnan Province, China
| | - Shiwei Yang
- School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, Yunnan Province, China
| | - Xiaozhou Chen
- School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, Yunnan Province, China
| | - Huamei Li
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
11
|
Shirafkan F, Hensel L, Rattay K. Immune tolerance and the prevention of autoimmune diseases essentially depend on thymic tissue homeostasis. Front Immunol 2024; 15:1339714. [PMID: 38571951 PMCID: PMC10987875 DOI: 10.3389/fimmu.2024.1339714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
The intricate balance of immune reactions towards invading pathogens and immune tolerance towards self is pivotal in preventing autoimmune diseases, with the thymus playing a central role in establishing and maintaining this equilibrium. The induction of central immune tolerance in the thymus involves the elimination of self-reactive T cells, a mechanism essential for averting autoimmunity. Disruption of the thymic T cell selection mechanisms can lead to the development of autoimmune diseases. In the dynamic microenvironment of the thymus, T cell migration and interactions with thymic stromal cells are critical for the selection processes that ensure self-tolerance. Thymic epithelial cells are particularly significant in this context, presenting self-antigens and inducing the negative selection of autoreactive T cells. Further, the synergistic roles of thymic fibroblasts, B cells, and dendritic cells in antigen presentation, selection and the development of regulatory T cells are pivotal in maintaining immune responses tightly regulated. This review article collates these insights, offering a comprehensive examination of the multifaceted role of thymic tissue homeostasis in the establishment of immune tolerance and its implications in the prevention of autoimmune diseases. Additionally, the developmental pathways of the thymus are explored, highlighting how genetic aberrations can disrupt thymic architecture and function, leading to autoimmune conditions. The impact of infections on immune tolerance is another critical area, with pathogens potentially triggering autoimmunity by altering thymic homeostasis. Overall, this review underscores the integral role of thymic tissue homeostasis in the prevention of autoimmune diseases, discussing insights into potential therapeutic strategies and examining putative avenues for future research on developing thymic-based therapies in treating and preventing autoimmune conditions.
Collapse
|
12
|
Ströbel P, Marx A. The Way Ahead: Lessons Learned from Decades of Cancer Research on Thymomas and Thymic Carcinomas. Cancers (Basel) 2024; 16:1040. [PMID: 38473397 DOI: 10.3390/cancers16051040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The history of thymoma (TH) research begins in the early 20th century, when Bell first recognized the epithelial nature of these tumors and their association with myasthenia gravis (MG) [...].
Collapse
Affiliation(s)
- Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Center Göttingen, D-37075 Göttingen, Germany
| |
Collapse
|
13
|
Agaoglu Sanli B, Duman E, Gulmez B, Aguloglu N, Yazgan S, Ceylan KC, Ucvet A. Evaluation of the effect of PET/CT Fluorodeoxyglucose inclusion on mortality and survival in operated thymoma patients. Nucl Med Commun 2024; 45:236-243. [PMID: 38165166 DOI: 10.1097/mnm.0000000000001805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE In recent years, the use of fluorodeoxyglucose PET-computed tomography (PET-CT) has become widespread to evaluate the diagnosis, metabolism, stage and distant metastases of thymoma. In this study, it was aimed to investigate the connection of malignancy potential, survival and maximum standardized uptake value (SUV max ) measured by PET-CT before surgery according to the histological classification of the WHO in patients operated for thymoma. In addition, the predictive value of the Glasgow prognostic score (GPS) generated by C-reactive protein (CRP) and albumin values on recurrence and survival was investigated and its potential as a prognostic biomarker was evaluated. METHODS Forty-five patients who underwent surgical resection for thymoma and were examined with PET-CT in the preoperative period between January 2010 and January 2022 were included in the study. The relationship between WHO histological classification, tumor size and SUV max values on PET-CT according to TNM classification of retrospectively analyzed corticoafferents were evaluated. Preoperative albumin and CRP values were used to determine GPS. RESULTS The cutoff value for SUV max was found to be 5.65 in the patients and the overall survival rate of low-risk (<5.65) and high-risk (>5.65) patients was compared according to the SUV max threshold value (5.65) and found to be statistically significant. In addition, the power of PET/CT SUV max value to predict mortality (according to receiver operating characteristics analysis) was statistically significant ( P = 0.048). Survival expectancy was 127.6 months in patients with mild GPS (O points), 96.7 months in patients with moderate GPS (1 point), and 25.9 months in patients with severe GPS (2 points). CONCLUSION PET/CT SUV max values can be used to predict histological sub-type in thymoma patients, and preoperative SUV max and GPS are parameters that can provide information about survival times and mortality in thymoma patients.
Collapse
Affiliation(s)
- Bahar Agaoglu Sanli
- University of Health Sciences , Dr Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital, Thoracic Surgery Clinic, İzmir
| | - Elif Duman
- University of Health Sciences , Dr Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital, Thoracic Surgery Clinic, İzmir
| | - Bariş Gulmez
- University of Health Sciences, Van Training and Research Hospital, Thoracic Surgery Clinic, Van
| | - Nurşin Aguloglu
- University of Health Sciences, Dr Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital, Nuclear Medicine Clinic, İzmir, Turkey
| | - Serkan Yazgan
- University of Health Sciences , Dr Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital, Thoracic Surgery Clinic, İzmir
| | - Kenan Can Ceylan
- University of Health Sciences , Dr Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital, Thoracic Surgery Clinic, İzmir
| | - Ahmet Ucvet
- University of Health Sciences , Dr Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital, Thoracic Surgery Clinic, İzmir
| |
Collapse
|
14
|
Yasumizu Y, Takeuchi D, Morimoto R, Takeshima Y, Okuno T, Kinoshita M, Morita T, Kato Y, Wang M, Motooka D, Okuzaki D, Nakamura Y, Mikami N, Arai M, Zhang X, Kumanogoh A, Mochizuki H, Ohkura N, Sakaguchi S. Single-cell transcriptome landscape of circulating CD4 + T cell populations in autoimmune diseases. CELL GENOMICS 2024; 4:100473. [PMID: 38359792 PMCID: PMC10879034 DOI: 10.1016/j.xgen.2023.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 02/17/2024]
Abstract
CD4+ T cells are key mediators of various autoimmune diseases; however, their role in disease progression remains unclear due to cellular heterogeneity. Here, we evaluated CD4+ T cell subpopulations using decomposition-based transcriptome characterization and canonical clustering strategies. This approach identified 12 independent gene programs governing whole CD4+ T cell heterogeneity, which can explain the ambiguity of canonical clustering. In addition, we performed a meta-analysis using public single-cell datasets of over 1.8 million peripheral CD4+ T cells from 953 individuals by projecting cells onto the reference and cataloging cell frequency and qualitative alterations of the populations in 20 diseases. The analyses revealed that the 12 transcriptional programs were useful in characterizing each autoimmune disease and predicting its clinical status. Moreover, genetic variants associated with autoimmune diseases showed disease-specific enrichment within the 12 gene programs. The results collectively provide a landscape of single-cell transcriptomes of CD4+ T cell subpopulations involved in autoimmune disease.
Collapse
Affiliation(s)
- Yoshiaki Yasumizu
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Daiki Takeuchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Faculty of Medicine, Osaka University, Osaka, Japan
| | - Reo Morimoto
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yusuke Takeshima
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Makoto Kinoshita
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Min Wang
- Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yamami Nakamura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Norihisa Mikami
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masaya Arai
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Atsushi Kumanogoh
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Center for Infectious Diseases for Education and Research, Osaka University, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Naganari Ohkura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Frontier Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Shimon Sakaguchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Experimental Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
15
|
Iorio R. Myasthenia gravis: the changing treatment landscape in the era of molecular therapies. Nat Rev Neurol 2024; 20:84-98. [PMID: 38191918 DOI: 10.1038/s41582-023-00916-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder that affects the neuromuscular junction, leading to muscle weakness and fatigue. MG is caused by antibodies against the acetylcholine receptor (AChR), the muscle-specific kinase (MuSK) or other AChR-related proteins that are expressed in the postsynaptic muscle membrane. The standard therapeutic approach for MG has relied on acetylcholinesterase inhibitors, corticosteroids and immunosuppressants, which have shown good efficacy in improving MG-related symptoms in most people with the disease; however, these therapies can carry a considerable burden of long-term adverse effects. Moreover, up to 15% of individuals with MG exhibit limited or no response to these standard therapies. The emergence of molecular therapies, including monoclonal antibodies, B cell-depleting agents and chimeric antigen receptor T cell-based therapies, has the potential to revolutionize the MG treatment landscape. This Review provides a comprehensive overview of the progress achieved in molecular therapies for MG associated with AChR antibodies and MuSK antibodies, elucidating both the challenges and the opportunities these therapies present to the field. The latest developments in MG treatment are described, exploring the potential for personalized medicine approaches.
Collapse
Affiliation(s)
- Raffaele Iorio
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
16
|
Abstract
The thymus is an evolutionarily conserved organ that supports the development of T cells. Not only does the thymic environment support the rearrangement and expression of diverse T cell receptors but also provides a unique niche for the selection of appropriate T cell clones. Thymic selection ensures that the repertoire of available T cells is both useful (being MHC-restricted) and safe (being self-tolerant). The unique antigen-presentation features of the thymus ensure that the display of self-antigens is optimal to induce tolerance to all types of self-tissue. MHC class-specific functions of CD4+ T helper cells, CD8+ killer T cells and CD4+ regulatory T cells are also established in the thymus. Finally, the thymus provides signals for the development of several minor T cell subsets that promote immune and tissue homeostasis. This Review provides an introductory-level overview of our current understanding of the sophisticated thymic selection mechanisms that ensure T cells are useful and safe.
Collapse
Affiliation(s)
- K Maude Ashby
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
17
|
Kawama K, Warabi Y, Bokuda K, Kimura H, Takahashi K. Exacerbation of Thymoma-Associated Myasthenia Gravis Following Efgartigimod Treatment Related to Anti-acetylcholine Receptor Antibody Overshoot: A Report of Two Cases. Cureus 2023; 15:e50692. [PMID: 38229781 PMCID: PMC10791222 DOI: 10.7759/cureus.50692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
Myasthenia gravis (MG), a chronic, autoimmune disease affecting the neuromuscular junction, arises from various autoantibodies, including those against the acetylcholine receptor (AChR). Recently, efgartigimod, a human IgG1 antibody Fc fragment engineered to reduce the pathogenic IgG autoantibody level, was developed as a treatment for MG. However, the long-term effects of the treatment are still unclear. The present report describes two novel cases of thymoma-associated MG exacerbation following efgartigimod treatment related to anti-AChR antibody overshoot. Both cases shared certain characteristics, including anti-AChR antibody positivity and post-thymectomy status. After a few cycles of efgartigimod treatment, their MG deteriorated, and their anti-AChR antibody titer exceeded the level before efgartigimod therapy. Prior studies show that anti-AChR antibody titer does not correlate with the disease severity of MG. However, previous studies have reported antibody overshoot following plasma exchange, which, like efgartigimod, reduces the level of plasma IgG and autoantibodies. Thus, MG exacerbation with anti-AChR antibody overshoot may be an adverse effect of both efgartigimod and plasma exchange. When clinical symptoms in patients with thymoma-associated MG receiving efgartigimod deteriorate despite low IgG, assessing the anti-AChR antibody level can be important for reconsidering the treatment strategy.
Collapse
Affiliation(s)
- Kentaro Kawama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, JPN
| | - Yoko Warabi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, JPN
| | - Kota Bokuda
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, JPN
| | - Hideki Kimura
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, JPN
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, JPN
| |
Collapse
|
18
|
Naganuma R, Amino I, Miyazaki Y, Akimoto S, Niino M, Minami N, Honma N, Kikuchi S. [Thymoma-associated generalized myasthenia gravis complicated with anti-VGKC complex antibody-associated limbic encephalitis: a case report]. Rinsho Shinkeigaku 2023; 63:754-759. [PMID: 37880113 DOI: 10.5692/clinicalneurol.cn-001896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
We present a case of a 54-year-old woman. She was attending our department for thymoma-associated generalized myasthenia gravis. While she was treated with intravenous immunoglobulins for the exacerbation of myasthenic symptoms, she suddenly lost her consciousness for the first time and continued to have mild disorientation along with anterograde and retrograde amnesia afterwards. The symptoms improved after steroid pulse therapy. After searching for autoantibodies, she was diagnosed with anti-VGKC complex antibody-associated limbic encephalitis. As one-third of cases are complicated by thymoma, anti-VGKC complex antibody-positive limbic encephalitis has the aspect of a paraneoplastic neurological syndrome. In this case, masses suspected to be a recurrence of thymoma were found. In cases of thymoma, involvement of anti-VGKC complex antibodies should be considered when central nervous system symptoms appear, and when anti-VGKC complex antibodies are positive, recurrence or exacerbation of thymoma should be considered.
Collapse
Affiliation(s)
- Ryoji Naganuma
- Department of Neurology, National Hospital Organization Hokkaido Medical Center
| | - Itaru Amino
- Department of Neurology, National Hospital Organization Hokkaido Medical Center
| | - Yusei Miyazaki
- Department of Neurology, National Hospital Organization Hokkaido Medical Center
| | - Sachiko Akimoto
- Department of Neurology, National Hospital Organization Hokkaido Medical Center
| | - Masaaki Niino
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center
| | - Naoya Minami
- Department of Neurology, National Hospital Organization Hokkaido Medical Center
| | - Naotake Honma
- Department of Respiratory Surgery, National Hospital Organization Hokkaido Medical Center
| | - Seiji Kikuchi
- Department of Neurology, National Hospital Organization Hokkaido Medical Center
| |
Collapse
|
19
|
Tsukita K, Sakamaki-Tsukita H, Kaiser S, Zhang L, Messa M, Serrano-Fernandez P, Takahashi R. High-Throughput CSF Proteomics and Machine Learning to Identify Proteomic Signatures for Parkinson Disease Development and Progression. Neurology 2023; 101:e1434-e1447. [PMID: 37586882 PMCID: PMC10573147 DOI: 10.1212/wnl.0000000000207725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/30/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND AND OBJECTIVES This study aimed to identify CSF proteomic signatures characteristic of Parkinson disease (PD) and evaluate their clinical utility. METHODS This observational study used data from the Parkinson's Progression Markers Initiative (PPMI), which enrolled patients with PD, healthy controls (HCs), and non-PD participants carrying GBA1, LRRK2, and/or SNCA pathogenic variants (genetic prodromals) at international sites. Study participants were chosen from PPMI enrollees based on the availability of aptamer-based CSF proteomic data, quantifying 4,071 proteins, and classified as patients with PD without GBA1, LRRK2, and/or SNCA pathogenic variants (nongenetic PD), HCs, patients with PD carrying the aforementioned pathogenic variants (genetic PD), or genetic prodromals. Differentially expressed protein (DEP) analysis and the least absolute shrinkage and selection operator (LASSO) were applied to the data from nongenetic PD and HCs. Signatures characteristics of nongenetic PD were quantified as a PD proteomic score (PD-ProS), validated internally and then externally using data of 1,556 CSF proteins from the LRRK2 Cohort Consortium (LCC). We further tested the PD-ProS in genetic PD and genetic prodromals and examined associations with clinical progression. RESULTS Data from 279 patients with nongenetic PD (mean ± SD, age 62.0 ± 9.6 years; male 67.7%) and 141 HCs (age 60.5 ± 11.9 years; male 64.5%) were used for PD-ProS derivation. From 23 DEPs, LASSO determined weights of 14 DEPs for the PD-ProS (area under the curve [AUC] 0.83, 95% CI 0.78-0.87), validated in an independent internal validation cohort of 71 patients with nongenetic PD and 35 HCs (AUC 0.81, 95% CI 0.73-0.90). In the LCC, only 5 of the 14 DEPs were also measured. Notably, these 5 DEPs still distinguished 34 patients with nongenetic PD from 31 HCs with the same weights (AUC 0.75, 95% CI 0.63-0.87). Furthermore, the PD-ProS distinguished 258 patients with genetic PD from 365 genetic prodromals. Finally, regardless of genetic status, the PD-ProS independently predicted both cognitive and motor decline in PD (dementia, adjusted hazard ratio in the highest quintile [aHR-Q5] 2.8 [95% CI 1.6-5.0]; Hoehn and Yahr stage IV, aHR-Q5 2.1 [95% CI 1.1-4.0]). DISCUSSION By integrating high-throughput proteomics with machine learning, we identified PD-associated CSF proteomic signatures crucial for PD development and progression. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov (NCT01176565). A link to the trial registry page is clinicaltrials.gov/ct2/show/NCT01141023. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that the CSF proteome contains clinically important information regarding the development and progression of Parkinson disease that can be deciphered by a combination of high-throughput proteomics and machine learning.
Collapse
Affiliation(s)
- Kazuto Tsukita
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA.
| | - Haruhi Sakamaki-Tsukita
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Sergio Kaiser
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Luqing Zhang
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Mirko Messa
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Pablo Serrano-Fernandez
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Ryosuke Takahashi
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| |
Collapse
|
20
|
Zhang X, Zhang P, Cong A, Feng Y, Chi H, Xia Z, Tang H. Unraveling molecular networks in thymic epithelial tumors: deciphering the unique signatures. Front Immunol 2023; 14:1264325. [PMID: 37849766 PMCID: PMC10577431 DOI: 10.3389/fimmu.2023.1264325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
Thymic epithelial tumors (TETs) are a rare and diverse group of neoplasms characterized by distinct molecular signatures. This review delves into the complex molecular networks of TETs, highlighting key aspects such as chromosomal abnormalities, molecular subtypes, aberrant gene mutations and expressions, structural gene rearrangements, and epigenetic changes. Additionally, the influence of the dynamic tumor microenvironment on TET behavior and therapeutic responses is examined. A thorough understanding of these facets elucidates TET pathogenesis, offering avenues for enhancing diagnostic accuracy, refining prognostic assessments, and tailoring targeted therapeutic strategies. Our review underscores the importance of deciphering TETs' unique molecular signatures to advance personalized treatment paradigms and improve patient outcomes. We also discuss future research directions and anticipated challenges in this intriguing field.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ansheng Cong
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yanlong Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chi
- School of Clinical Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians University Munich, Munich, Germany
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
21
|
Zhong H, Huan X, Zhao R, Su M, Yan C, Song J, Xi J, Zhao C, Luo F, Luo S. Peripheral immune landscape for hypercytokinemia in myasthenic crisis utilizing single-cell transcriptomics. J Transl Med 2023; 21:564. [PMID: 37620910 PMCID: PMC10464341 DOI: 10.1186/s12967-023-04421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Myasthenia gravis (MG) is the most prevalent autoimmune disorder affecting the neuromuscular junction. A rapid deterioration in respiratory muscle can lead to a myasthenic crisis (MC), which represents a life-threatening condition with high mortality in MG. Multiple CD4+ T subsets and hypercytokinemia have been identified in the peripheral pro-inflammatory milieu during the crisis. However, the pathogenesis is complicated due to the many types of cells involved, leaving the underlying mechanism largely unexplored. METHODS We conducted single-cell transcriptomic and immune repertoire sequencing on 33,577 peripheral blood mononuclear cells (PBMCs) from two acetylcholine receptor antibody-positive (AChR +) MG patients during MC and again three months post-MC. We followed the Scanpy workflow for quality control, dimension reduction, and clustering of the single-cell data. Subsequently, we annotated high-resolution cell types utilizing transfer-learning models derived from publicly available single-cell immune datasets. RNA velocity calculations from unspliced and spliced mRNAs were applied to infer cellular state progression. We analyzed cell communication and MG-relevant cytokines and chemokines to identify potential inflammation initiators. RESULTS We identified a unique subset of monocytes, termed monocytes 3 (FCGR3B+ monocytes), which exhibited significant differential expression of pro-inflammatory signaling pathways during and after the crisis. In line with the activated innate immune state indicated by MC, a high neutrophil-lymphocyte ratio (NLR) was confirmed in an additional 22 AChR + MC patients in subsequent hemogram analysis and was associated with MG-relevant clinical scores. Furthermore, oligoclonal expansions were identified in age-associated B cells exhibiting high autoimmune activity, and in CD4+ and CD8+ T cells demonstrating persistent T exhaustion. CONCLUSIONS In summary, our integrated analysis of single-cell transcriptomics and TCR/BCR sequencing has underscored the role of innate immune activation which is associated with hypercytokinemia in MC. The identification of a specific monocyte cluster that dominates the peripheral immune profile may provide some hints into the etiology and pathology of MC. However, future functional studies are required to explore causality.
Collapse
Affiliation(s)
- Huahua Zhong
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, 200040, China
| | - Xiao Huan
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, 200040, China
| | - Rui Zhao
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, 200040, China
| | - Manqiqige Su
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, 200040, China
| | - Chong Yan
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, 200040, China
| | - Jie Song
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, 200040, China
| | - Jianying Xi
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, 200040, China
| | - Chongbo Zhao
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, 200040, China
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Sushan Luo
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
22
|
Yamada Y. Histogenetic and disease-relevant phenotypes in thymic epithelial tumors (TETs): The potential significance for future TET classification. Pathol Int 2023; 73:265-280. [PMID: 37278579 DOI: 10.1111/pin.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Thymic epithelial tumors (TETs) encompass morphologically various subtypes. Thus, it would be meaningful to explore the expression phenotypes that delineate each TET subtype or overarching multiple subtypes. If these profiles are related to thymic physiology, they will improve our biological understanding of TETs and may contribute to the establishment of a more rational TET classification. Against this background, pathologists have attempted to identify histogenetic features in TETs for a long time. As part of this work, our group has reported several TET expression profiles that are histotype-dependent and related to the nature of thymic epithelial cells (TECs). For example, we found that beta5t, a constituent of thymoproteasome unique to cortical TECs, is expressed mainly in type B thymomas, for which the nomenclature of cortical thymoma was once considered. Another example is the discovery that most thymic carcinomas, especially thymic squamous cell carcinomas, exhibit expression profiles similar to tuft cells, a recently discovered special type of medullary TEC. This review outlines the currently reported histogenetic phenotypes of TETs, including those related to thymoma-associated myasthenia gravis, summarizes their genetic signatures, and provides a perspective for the future direction of TET classification.
Collapse
Affiliation(s)
- Yosuke Yamada
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
23
|
Wen C, Yang J, Xu C, Wei D, Luo L. Myasthenia-like paraneoplastic syndrome with multiple cranial nerve tumor infiltration: A case report and literature review. Medicine (Baltimore) 2023; 102:e33774. [PMID: 37335736 DOI: 10.1097/md.0000000000033774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
RATIONALE Approximately 0.001% of patients with cancer have paraneoplastic nerve system syndrome, which can affect the central nervous system, neuromuscular junction, or peripheral nervous system. Although myasthenia gravis (MG) may exist as a thymic paraneoplastic syndrome (PNPS), its association with primary lung cancer remains unknown. PATIENT CONCERNS A 55-year-old female presented with slurred speech, weakness in chewing, sporadic difficulty in swallowing, and weakness in both lower limbs for half a year. DIAGNOSES Based on cerebrospinal fluid and electromyography findings, we present the case of a female patient diagnosed with overlapping multicranial nerve tumor infiltration and MG-like neurological PNPS secondary to lung adenocarcinoma. INTERVENTIONS The patient received intrathecal injections of pemetrexed and neurotrophic (vitamin B) therapy before ceasing chemoradiotherapy and chose cabozantinib on her own. OUTCOMES Weakness of the proximal limbs, choking cough, and chewing problems did not improve significantly. LESSONS Although it is unclear why MG coexists with lung cancer, it is probable that MG is a paraneoplastic condition. Cerebrospinal fluid testing should be carried out along with electrophysiological, serological, and pharmacological procedures pertinent to the diagnosis of MG to thoroughly examine if people simultaneously experience MG-like PNPS and tumor growth. Starting immunotherapy and anticancer medication at the same time that tumor development and MG-like syndrome are discovered is crucial.
Collapse
Affiliation(s)
- Chunbei Wen
- Department of Neurology, The First Hospital of Wuhan, Wuhan, P. R. China
- The First Clinical Medical Institute, Hubei University of Traditional Chinese Medicine, Wuhan, P. R. China
| | - Jie Yang
- Department of Neurology, The First Hospital of Wuhan, Wuhan, P. R. China
| | - Changyou Xu
- Department of Neurology, The First Hospital of Wuhan, Wuhan, P. R. China
- The First Clinical Medical Institute, Hubei University of Traditional Chinese Medicine, Wuhan, P. R. China
| | - Dongsheng Wei
- Department of Neurology, The First Hospital of Wuhan, Wuhan, P. R. China
| | - Lijun Luo
- Department of Neurology, The First Hospital of Wuhan, Wuhan, P. R. China
| |
Collapse
|
24
|
Zhang S, Wu L, Li Z, Li Q, Zong Y, Zhu K, Chen L, Qin H, Meng R. An unusual ectopic thymoma clonal evolution analysis: A case report. Open Life Sci 2023; 18:20220600. [PMID: 37215501 PMCID: PMC10199323 DOI: 10.1515/biol-2022-0600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 05/24/2023] Open
Abstract
Thymomas and thymic carcinomas are rare and primary tumors of the mediastinum which is derived from the thymic epithelium. Thymomas are the most common primary anterior mediastinal tumor, while ectopic thymomas are rarer. Mutational profiles of ectopic thymomas may help expand our understanding of the occurrence and treatment options of these tumors. In this report, we sought to elucidate the mutational profiles of two ectopic thymoma nodules to gain deeper understanding of the molecular genetic information of this rare tumor and to provide guidance treatment options. We presented a case of 62-year-old male patient with a postoperative pathological diagnosis of type A mediastinal thymoma and ectopic pulmonary thymoma. After mediastinal lesion resection and thoracoscopic lung wedge resection, the mediastinal thymoma was completely removed, and the patient recovered from the surgery and no recurrence was found by examination until now. Whole exome sequencing was performed on both mediastinal thymoma and ectopic pulmonary thymoma tissue samples of the patient and clonal evolution analysis were further conducted to analyze the genetic characteristics. We identified eight gene mutations that were co-mutated in both lesions. Consistent with a previous exome sequencing analysis of thymic epithelial tumor, HRAS was also observed in both mediastinal lesion and lung lesion tissues. We also evaluated the intratumor heterogeneity of non-silent mutations. The results showed that the mediastinal lesion tissue has higher degree of heterogeneity and the lung lesion tissue has relatively low amount of variant heterogeneity in the detected variants. Through pathology and genomics sequencing detection, we initially revealed the genetic differences between mediastinal thymoma and ectopic thymoma, and clonal evolution analysis showed that these two lesions originated from multi-ancestral regions.
Collapse
Affiliation(s)
- Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 156 Wujiadun, Jianghan District, Wuhan, Hubei Province, 430022, China
| | - Lu Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 156 Wujiadun, Jianghan District, Wuhan, Hubei Province, 430022, China
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 156 Wujiadun, Jianghan District, Wuhan, Hubei Province, 430022, China
| | - Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 156 Wujiadun, Jianghan District, Wuhan, Hubei Province, 430022, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 156 Wujiadun, Jianghan District, Wuhan, Hubei Province, 430022, China
| | - Kuikui Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 156 Wujiadun, Jianghan District, Wuhan, Hubei Province, 430022, China
| | - Leichong Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 156 Wujiadun, Jianghan District, Wuhan, Hubei Province, 430022, China
| | - Haifeng Qin
- Department of Pulmonary Neoplasm Internal Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 156 Wujiadun, Jianghan District, Wuhan, Hubei Province, 430022, China
| |
Collapse
|
25
|
Sun R, Wang Y, Abolhassani H. Cellular mechanisms and clinical applications for phenocopies of inborn errors of immunity: infectious susceptibility due to cytokine autoantibodies. Expert Rev Clin Immunol 2023:1-14. [PMID: 37114623 DOI: 10.1080/1744666x.2023.2208863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
INTRODUCTION With a growing knowledge of Inborn error immunity (IEI), immunological profiling and genetic predisposition to IEI phenocopies have been developed in recent years. AREAS COVERED Here we summarized the correlation between various pathogen invasions, autoantibody profiles, and corresponding clinical features in the context of patients with IEI phenocopies. It has been extensively evident that patients with anti-cytokine autoantibodies underly impaired anti-pathogen immune responses and lead to broad unregulated inflammation and tissue damage. Several hypotheses of anti-cytokine autoantibodies production were summarized here, including a defective negative selection of autoreactive T cells, abnormal germinal center formation, molecular mimicry, HLA class II allele region, lack of auto-reactive lymphocyte apoptosis, and other possible hypotheses. EXPERT OPINION Phenocopies of IEI associated with anti-cytokine autoantibodies are increasingly recognized as one of the causes of acquired immunodeficiency and susceptibility to certain pathogen infections, especially facing the current challenge of the COVID-19 pandemic. By investigating clinical, genetic, and pathogenesis autoantibodies profiles associated with various pathogens' susceptibilities, we could better understand the IEI phenocopies with anti-cytokine autoantibodies, especially for those that underlie life-threatening SARS-CoV-2.
Collapse
Affiliation(s)
- Rui Sun
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Yating Wang
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
26
|
Shimada M, Taniguchi H, Yamaguchi H, Gyotoku H, Sasaki D, Kaku N, Senju C, Senju H, Imamura E, Takemoto S, Yamamoto K, Sakamoto N, Obase Y, Tsuchiya T, Fukuda M, Soda H, Ashizawa K, Fukuoka J, Nagayasu T, Yanagihara K, Mukae H. Genetic profile of thymic epithelial tumors in the Japanese population: an exploratory study examining potential therapeutic targets. Transl Lung Cancer Res 2023; 12:707-718. [PMID: 37197618 PMCID: PMC10183388 DOI: 10.21037/tlcr-22-794] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Background Thymic epithelial tumors (TETs) are prone to developing in East Asian populations. However, little is known about the genomic profile of TETs in East Asian populations, and the genomic aberrations in TETs have not yet been fully clarified. Thus, molecular targeted therapies for patients with TETs have not been established. This prospective study was conducted to explore the genetic abnormalities of surgically resected TETs in a Japanese cohort and to identify clues for carcinogenesis and potential therapeutic targets in TETs. Methods Genetic profiles of TETs were investigated using fresh-frozen specimens resected from operable cases with TETs. DNA sequencing was performed using a next-generation sequencing (NGS) gene panel test with Ion Reporter™ and CLC Genomics Workbench 11.0. The mutation sites were further confirmed by Sanger sequencing, digital droplet polymerase chain reaction (ddPCR), and TA cloning for validation. Results Among 43 patients diagnosed with anterior mediastinal tumors between January 2013 and March 2019, NGS and validation analyses were performed in 31 patients [29 thymomas and two thymic cancers (TCs)] who met the study criteria. Of these, 12 cases of thymoma types A, AB, B1, and B2 harbored the general transcription factor 2-I (GTF2I) mutation (L424H). Conversely, the mutation was not detected in type B3 thymoma or TC, suggesting that the GTF2I mutation existed in indolent types of TETs. Rat sarcoma viral oncogene (RAS) mutations were detected in three cases [Harvey RAS (HRAS) in two cases of type AB thymoma and neuroblastoma RAS (NRAS)] in one case of type B1 thymoma), and additional sex combs like 1 (ASXL1) mutation was present in one case of TC. All RAS mutations were observed in GTF2I-mutated cases. Conclusions The GTF2I mutation (L424H) is the most frequently occurring mutation in the limited histology of thymoma, consistent with those in the non-Asian population. HRAS and NRAS mutations co-occurred in cases harboring the GTF2I mutation. These findings suggest that the existence of the GTF2I mutation might be related to indolent types of TETs, and RAS mutations could be candidates as therapeutic targets in TETs.
Collapse
Affiliation(s)
- Midori Shimada
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Clinical Research Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Hirokazu Taniguchi
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroyuki Yamaguchi
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Clinical Oncology Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroshi Gyotoku
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daisuke Sasaki
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Norihito Kaku
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Chikako Senju
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Senju Hospital, Sasebo, Japan
| | - Hiroaki Senju
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Senju Hospital, Sasebo, Japan
| | - Erika Imamura
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinnosuke Takemoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuko Yamamoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Division of Infectious, Respiratory, and Digestive Medicine, First Department of Internal Medicine, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasushi Obase
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoshi Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Thoracic Surgery, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Minoru Fukuda
- Clinical Oncology Center, Nagasaki University Hospital, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki Prefecture Shimabara Hospital, Shimabara, Japan
| | - Hiroshi Soda
- Department of Respiratory Medicine, Sasebo City General Hospital, Sasebo, Japan
| | - Kazuto Ashizawa
- Clinical Oncology Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Junya Fukuoka
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
27
|
Huda R. Inflammation and autoimmune myasthenia gravis. Front Immunol 2023; 14:1110499. [PMID: 36793733 PMCID: PMC9923104 DOI: 10.3389/fimmu.2023.1110499] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Myasthenia gravis (MG) is a neuromuscular autoimmune disorder characterized by chronic but intermittent fatigue of the eye- and general body muscles. Muscle weakness is caused primarily by the binding of an autoantibody to the acetylcholine receptors, resulting in blockage of normal neuromuscular signal transmission. Studies revealed substantial contributions of different proinflammatory or inflammatory mediators in the pathogenesis of MG. Despite these findings, compared to therapeutic approaches that target autoantibody and complements, only a few therapeutics against key inflammatory molecules have been designed or tested in MG clinical trials. Recent research focuses largely on identifying unknown molecular pathways and novel targets involved in inflammation associated with MG. A well-designed combination or adjunct treatment utilizing one or more selective and validated promising biomarkers of inflammation as a component of targeted therapy may yield better treatment outcomes. This review briefly discusses some preclinical and clinical findings of inflammation associated with MG and current therapy approaches and suggest the potential of targeting important inflammatory marker(s) along with current monoclonal antibody or antibody fragment based targeted therapies directed to a variety of cell surface receptors.
Collapse
|
28
|
Matsumoto M, Yoshida H, Tsuneyama K, Oya T, Matsumoto M. Revisiting Aire and tissue-restricted antigens at single-cell resolution. Front Immunol 2023; 14:1176450. [PMID: 37207224 PMCID: PMC10191227 DOI: 10.3389/fimmu.2023.1176450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
The thymus is a highly specialized organ that plays an indispensable role in the establishment of self-tolerance, a process characterized by the "education" of developing T-cells. To provide competent T-cells tolerant to self-antigens, medullary thymic epithelial cells (mTECs) orchestrate negative selection by ectopically expressing a wide range of genes, including various tissue-restricted antigens (TRAs). Notably, recent advancements in the high-throughput single-cell analysis have revealed remarkable heterogeneity in mTECs, giving us important clues for dissecting the mechanisms underlying TRA expression. We overview how recent single-cell studies have furthered our understanding of mTECs, with a focus on the role of Aire in inducing mTEC heterogeneity to encompass TRAs.
Collapse
Affiliation(s)
- Minoru Matsumoto
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
- *Correspondence: Minoru Matsumoto,
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Oya
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| |
Collapse
|