1
|
Liu W, Wang Y, Jiang P, Huang K, Zhang H, Chen J, Chen P. DNAzyme and controllable cholesterol stacking DNA machine integrates dual-target recognition CTCs enable homogeneous liquid biopsy of breast cancer. Biosens Bioelectron 2024; 261:116493. [PMID: 38901393 DOI: 10.1016/j.bios.2024.116493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/22/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Although circulating tumor cells (CTCs) have demonstrated considerable importance in liquid biopsy, their detection is limited by low concentrations and complex sample components. Herein, we developed a homogeneous, simple, and high-sensitivity strategy targeting breast cancer cells. This method was based on a non-immunological stepwise centrifugation preprocessing approach to isolate CTCs from whole blood. Precise quantification is achieved through the specific binding of aptamers to the overexpressed mucin 1 (MUC1) and human epidermal growth factor receptor 2 (HER2) proteins of breast cancer cells. Subsequently, DNAzyme cleavage and parallel catalytic hairpin assembly (CHA) reactions on the cholesterol-stacking DNA machine were initiated, which opened the hairpin structures T-Hg2+-T and C-Ag+-C, enabling multiple amplifications. This leads to the fluorescence signal reduction from Hg2+-specific carbon dots (CDs) and CdTe quantum dots (QDs) by released ions. This strategy demonstrated a detection performance with a limit of detection (LOD) of 3 cells/mL and a linear range of 5-100 cells/mL. 42 clinical samples have been validated, confirming their consistency with clinical imaging, pathology findings and the folate receptor (FR)-PCR kit results, exhibiting desirable specificity of 100% and sensitivity of 80.6%. These results highlight the promising applicability of our method for diagnosing and monitoring breast cancer.
Collapse
Affiliation(s)
- Weijing Liu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Breast Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yue Wang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Pengjun Jiang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - He Zhang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jie Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Breast Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of General Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Wu MS, Zhou ZR, Wang XY, Du XC, Li DW, Qian RC. Design of a Membrane-Anchored DNAzyme-Based Molecular Machine for Enhanced Cancer Therapy by Customized Cascade Regulation. ACS Pharmacol Transl Sci 2024; 7:2869-2877. [PMID: 39296274 PMCID: PMC11406680 DOI: 10.1021/acsptsci.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/21/2024]
Abstract
Synthetic DNAzyme-based structures enable dynamic cell regulation. However, engineering an effective and targeted DNAzyme-based structure to perform customizable multistep regulation remains largely unexplored. Herein, we designed a membrane-anchored DNAzyme-based molecular machine to implement dynamic inter- and intracellular cascade regulation, which realizes efficient T-cell/cancer cell interactions and subsequent receptor mediated cancer cell uptake. Using CD8+ T-cells and HeLa cancer cells as a proof of concept, we demonstrate that the designed DNAzyme-based molecular machine enables customized cascade regulation including (1) specific recognition between T-cells and cancer cells, (2) specific response and fluorescence sensing upon extracellular stimuli, and (3) cascade regulation including intercellular distance shortening, cell-cell communication, and intracellular delivery of anticancer drugs. Together, this work provides a promising pathway for customized cascade cell regulation based on a DNAzyme-based molecular machine, which enables enhanced cancer therapy by combining T-cell immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Man-Sha Wu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Yuan Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xi-Chen Du
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
3
|
Zhao T, Xiao R, Li Y, Ren J, Niu L, Chang B. An Exo III-powered closed-loop DNA circuit architecture for biosensing/imaging. Mikrochim Acta 2024; 191:395. [PMID: 38877347 DOI: 10.1007/s00604-024-06476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
With their regulated Boolean logic operations in vitro and in vivo, DNA logic circuits have shown great promise for target recognition and disease diagnosis. However, significant obstacles must be overcome to improve their operational efficiency and broaden their range of applications. In this study, we propose an Exo III-powered closed-loop DNA circuit (ECDC) architecture that integrates four highly efficient AND logic gates. The ECDC utilizes Exo III as the sole enzyme-activated actuator, simplifying the circuit design and ensuring optimal performance. Moreover, the use of Exo III enables a self-feedback (autocatalytic) mechanism in the dynamic switching between AND logic gates within this circulating logic circuit. After validating the signal flow and examining the impact of each AND logic gate on the regulation of the circuit, we demonstrate the intelligent determination of miR-21 using the carefully designed ECDC architecture in vitro. The proposed ECDC exhibits a linear detection range for miR-21 from 0 to 300 nM, with a limit of detection (LOD) of approximately 0.01 nM, surpassing most reported methods. It also shows excellent selectivity for miR-21 detection and holds potential for identifying and imaging live cancer cells. This study presents a practical and efficient strategy for monitoring various nucleic acid-based biomarkers in vitro and in vivo through specific sequence modifications, offering significant potential for early cancer diagnosis, bioanalysis, and prognostic clinical applications.
Collapse
Affiliation(s)
- Tangtang Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030000, Shanxi, P.R. China
| | - Ruilin Xiao
- College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Taiyuan, 030000, Shanxi, China
| | - Yueqi Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030000, Shanxi, P.R. China
| | - Jierong Ren
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030000, Shanxi, P.R. China
| | - Liyun Niu
- Department of Colorectal and Anal Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030000, Shanxi, China
| | - Bingmei Chang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030000, Shanxi, P.R. China.
| |
Collapse
|
4
|
Wu R, Chen Y, Zhang Y, Liu R, Zhang Q, Zhang C. Catalytic Gold Nanoparticle Assembly Programmed by DNAzyme Circuits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307107. [PMID: 38191832 DOI: 10.1002/smll.202307107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Assembled gold nanoparticle (AuNP) superstructures can generate unique physicochemical characteristics and be used in various applications, thus becoming an attractive research field. Recently, several DNA-assisted gold nanoparticle assembly methods have been rigorously developed that typically require a non-catalytic equimolar molecular assembly to guarantee the designed assembly. Although efficient and accurate, exploring such non-catalytic nanoparticle assemblies in the complex cellular milieu under low trigger concentrations remains challenging. Therefore, developing a catalytic method that facilitates gold nanoparticle assemblies with relatively low DNA trigger concentrations is desirable. In this report, a catalytic method to program gold nanoparticle assemblies by DNAzyme circuits is presented, where only a small number of DNA triggers are able to induce the production of a large number of the desired nanoparticle assemblies. The feasibility of using logic DNAzyme circuits to control catalytic nanoparticle assemblies is experimentally verified. Additionally, catalytic AuNP assembly systems are established with cascading and feedback functions. The work provides an alternative research direction to enrich the tool library of nanoparticle assembly and their application in biosensing and nanomedicine.
Collapse
Affiliation(s)
- Ranfeng Wu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yiming Chen
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing, 100871, China
| | - Yongpeng Zhang
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 100096, China
| | - Rongming Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Cheng Zhang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Wang L, Luo W, Weng Z, Wang Z, Wu Y, Zhao R, Han X, Liu X, Zhang J, Yang Y, Xie G. Building a stable and robust anti-interference DNA dissipation system by eliminating the accumulation of systemic specified errors. Anal Chim Acta 2024; 1302:342493. [PMID: 38580407 DOI: 10.1016/j.aca.2024.342493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND The emergence of DNA nanotechnology has enabled the systematic design of diverse bionic dissipative behaviors under the precise control of nucleic acid nanodevices. Nevertheless, when compared to the dissipation observed in robust living systems, it is highly desirable to enhance the anti-interference for artificial DNA dissipation to withstand perturbations and facilitate repairs within the complex biological environments. RESULTS In this study, we introduce strategically designed "trash cans" to facilitate kinetic control over interferences, transforming the stochastic binding of individual components within a homogeneous solution into a competitive binding process. This approach effectively eliminates incorrect binding and the accumulation of systemic interferences while ensuring a consistent pattern of energy fluctuation from response to silence. Remarkably, even in the presence of numerous interferences differing by only one base, we successfully achieve complete system reset through multiple cycles, effectively restoring the energy level to a minimum. SIGNIFICANCE The system was able to operate stably without any adverse effect under conditions of irregular interference, high-abundance interference, and even multiplex interferences including DNA and RNA crosstalk. This work not only provides an effective paradigm for constructing robust DNA dissipation systems but also greatly broadens the potential of DNA dissipation for applications in high-precision molecular recognition and complex biological reaction networks.
Collapse
Affiliation(s)
- Luojia Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Wang Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhi Weng
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhongzhong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - You Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Rong Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaole Han
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xin Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jianhong Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yujun Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
6
|
Liu X, Zhang X, Cui S, Xu S, Liu R, Wang B, Wei X, Zhang Q. A signal transmission strategy driven by gap-regulated exonuclease hydrolysis for hierarchical molecular networks. Commun Biol 2024; 7:335. [PMID: 38493265 PMCID: PMC10944543 DOI: 10.1038/s42003-024-06036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Exonucleases serve as efficient tools for signal processing and play an important role in biochemical reactions. Here, we identify the mechanism of cooperative exonuclease hydrolysis, offering a method to regulate the cooperative hydrolysis driven by exonucleases through the modulation of the number of bases in gap region. A signal transmission strategy capable of producing amplified orthogonal DNA signal is proposed to resolve the polarity of signals and byproducts, which provides a solution to overcome the signal attenuation. The gap-regulated mechanism combined with DNA strand displacement (DSD) reduces the unpredictable secondary structures, allowing for the coexistence of similar structures in hierarchical molecular networks. For the application of the strategy, a molecular computing model is constructed to solve the maximum weight clique problems (MWCP). This work enhances for our knowledge of these important enzymes and promises application prospects in molecular computing, signal detection, and nanomachines.
Collapse
Affiliation(s)
- Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Shuang Cui
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Shujuan Xu
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
| | - Rongming Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian, 116622, Liaoning, China
| | - Xiaopeng Wei
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| |
Collapse
|
7
|
Yang S, Bögels BWA, Wang F, Xu C, Dou H, Mann S, Fan C, de Greef TFA. DNA as a universal chemical substrate for computing and data storage. Nat Rev Chem 2024; 8:179-194. [PMID: 38337008 DOI: 10.1038/s41570-024-00576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
DNA computing and DNA data storage are emerging fields that are unlocking new possibilities in information technology and diagnostics. These approaches use DNA molecules as a computing substrate or a storage medium, offering nanoscale compactness and operation in unconventional media (including aqueous solutions, water-in-oil microemulsions and self-assembled membranized compartments) for applications beyond traditional silicon-based computing systems. To build a functional DNA computer that can process and store molecular information necessitates the continued development of strategies for computing and data storage, as well as bridging the gap between these fields. In this Review, we explore how DNA can be leveraged in the context of DNA computing with a focus on neural networks and compartmentalized DNA circuits. We also discuss emerging approaches to the storage of data in DNA and associated topics such as the writing, reading, retrieval and post-synthesis editing of DNA-encoded data. Finally, we provide insights into how DNA computing can be integrated with DNA data storage and explore the use of DNA for near-memory computing for future information technology and health analysis applications.
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Bas W A Bögels
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Can Xu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China.
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Tom F A de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Wang R, Yu L, He W, Wu Z, Jiang JH. Chemically Inducible DNAzyme Sensor for Controllable Imaging of Metal Ions. Anal Chem 2024; 96:1268-1274. [PMID: 38193766 DOI: 10.1021/acs.analchem.3c04523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
RNA-cleaving DNAzymes have emerged as a promising tool for metal ion detection. Achieving spatiotemporal control over their catalytic activity is essential for understanding the role of metal ions in various biological processes. While photochemical and endogenous stimuli-responsive approaches have shown potential for controlled metal ion imaging using DNAzymes, limitations such as photocytotoxicity, poor tissue penetration, or off-target activation have hindered their application for safe and precise detection of metal ions in vivo. We herein report a chemically inducible DNAzyme in which the catalytic core is modified to contain chemical caging groups at the selected backbone sites through systematic screening. This inducible DNAzyme exhibits minimal leakage of catalytic activity and can be reactivated by small molecule selenocysteines, which effectively remove the caging groups and restore the activity of DNAzyme. Benefiting from these findings, we designed a fluorogenic chemically inducible DNAzyme sensor for controlled imaging of metal ions with tunable activity and high selectivity in live cells and in vivo. This chemically inducible DNAzyme design expands the toolbox for controlling DNAzyme activity and can be easily adapted to detect other metal ions in vivo by changing the DNAzyme module, offering opportunities for precise biomedical diagnosis.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lanxing Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wenhan He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Ouyang Y, Dong J, Willner I. Dynamic DNA Networks-Guided Directional and Orthogonal Transient Biocatalytic Cascades. J Am Chem Soc 2023; 145:22135-22149. [PMID: 37773962 PMCID: PMC10571085 DOI: 10.1021/jacs.3c08020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 10/01/2023]
Abstract
DNA frameworks, consisting of constitutional dynamic networks (CDNs) undergoing fuel-driven reconfiguration, are coupled to a dissipative reaction module that triggers the reconfigured CDNs into a transient intermediate CDNs recovering the parent CDN state. Biocatalytic cascades consisting of the glucose oxidase (GOx)/horseradish peroxidase (HRP) couple or the lactate dehydrogenase (LDH)/nicotinamide adenine dinucleotide (NAD+) couple are tethered to the constituents of two different CDNs, allowing the CDNs-guided operation of the spatially confined GOx/HRP or LDH/NAD+ biocatalytic cascades. By applying two different fuel triggers, the directional transient CDN-guided upregulation/downregulation of the two biocatalytic cascades are demonstrated. By mixing the GOx/HRP-biocatalyst-modified CDN with the LDH/NAD+-biocatalyst-functionalized CDN, a composite CDN is assembled. Triggering the composite CDN with two different fuel strands results in orthogonal transient upregulation of the GOx/HRP cascade and transient downregulation of the LDH/NAD+ cascade or vice versa. The transient CDNs-guided biocatalytic cascades are computationally simulated by kinetic models, and the computational analyses allow the prediction of the performance of transient biocatalytic cascades under different auxiliary conditions. The concept of orthogonally triggered temporal, transient, biocatalytic cascades by means of CDN frameworks is applied to design an orthogonally operating CDN for the temporal upregulated or downregulated transient thrombin-induced coagulation of fibrinogen to fibrin.
Collapse
Affiliation(s)
- Yu Ouyang
- The Institute of Chemistry,
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- The Institute of Chemistry,
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry,
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
10
|
Kamra A, Das S, Bhatt P, Solra M, Maity T, Rana S. A transient vesicular glue for amplification and temporal regulation of biocatalytic reaction networks. Chem Sci 2023; 14:9267-9282. [PMID: 37712020 PMCID: PMC10498679 DOI: 10.1039/d3sc00195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Regulation of enzyme activity and biocatalytic cascades on compartmentalized cellular components is key to the adaptation of cellular processes such as signal transduction and metabolism in response to varying external conditions. Synthetic molecular glues have enabled enzyme inhibition and regulation of protein-protein interactions. So far, all the molecular glue systems based on covalent interactions operated under steady-state conditions. To emulate dynamic biological processes under dissipative conditions, we introduce herein a transient supramolecular glue with a controllable lifetime. The transient system uses multivalent supramolecular interactions between guanidinium group-bearing surfactants and adenosine triphosphate (ATP), resulting in bilayer vesicle structures. Unlike the conventional chemical agents for dissipative assemblies, ATP here plays the dual role of providing a structural component for the assembly as well as presenting active functional groups to "glue" enzymes on the surface. While gluing of the enzymes on the vesicles achieves augmented catalysis, oscillation of ATP concentration allows temporal control of the catalytic activities similar to the dissipative cellular nanoreactors. We further demonstrate temporal upregulation and control of complex biocatalytic reaction networks on the vesicles. Altogether, the temporal activation of biocatalytic cascades on the dissipative vesicular glue presents an adaptable and dynamic system emulating heterogeneous cellular processes, opening up avenues for effective protocell construction and therapeutic interventions.
Collapse
Affiliation(s)
- Alisha Kamra
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Sourav Das
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Preeti Bhatt
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Manju Solra
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Tanmoy Maity
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| |
Collapse
|
11
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
12
|
Li Z, Wang J, Willner B, Willner I. Topologically Triggered Dynamic DNA Frameworks. Isr J Chem 2023. [DOI: 10.1002/ijch.202300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zhenzhen Li
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Jianbang Wang
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Bilha Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Itamar Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
13
|
Dong J, Willner I. Dynamic Transcription Machineries Guide the Synthesis of Temporally Operating DNAzymes, Gated and Cascaded DNAzyme Catalysis. ACS NANO 2023; 17:687-696. [PMID: 36576858 PMCID: PMC9836355 DOI: 10.1021/acsnano.2c10108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Transient transcription machineries play important roles in the dynamic modulation of gene expression and the sequestered regulation of cellular networks. The present study emulates such processes by designing artificial reaction modules consisting of transcription machineries that guide the transient synthesis of catalytic DNAzymes, the transient operation of gated DNAzymes, and the temporal activation of an intercommunicated DNAzyme cascade. The reaction modules rely on functional constituents that lead to the triggered activation of transcription machineries in the presence of the nucleoside triphosphates oligonucleotide fuel, yielding the transient formation and dissipative depletion of the intermediate DNAzyme(s) products. The kinetics of the transient DNAzyme networks are computationally simulated, allowing to predict and experimentally validate the performance of the systems under different auxiliary conditions. The study advances the field of systems chemistry by introducing transcription machinery-based networks for the dynamic control over transient catalysis─a primary step toward life-like cellular assemblies.
Collapse
|
14
|
Wang B, Wang M, Peng F, Fu X, Wen M, Shi Y, Chen M, Ke G, Zhang XB. Construction and Application of DNAzyme-based Nanodevices. Chem Res Chin Univ 2023; 39:42-60. [PMID: 36687211 PMCID: PMC9841151 DOI: 10.1007/s40242-023-2334-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
The development of stimuli-responsive nanodevices with high efficiency and specificity is very important in biosensing, drug delivery, and so on. DNAzymes are a class of DNA molecules with the specific catalytic activity. Owing to their unique catalytic activity and easy design and synthesis, the construction and application of DNAzymes-based nanodevices have attracted much attention in recent years. In this review, the classification and properties of DNAzyme are first introduced. The construction of several common kinds of DNAzyme-based nanodevices, such as DNA motors, signal amplifiers, and logic gates, is then systematically summarized. We also introduce the application of DNAzyme-based nanodevices in sensing and therapeutic fields. In addition, current limitations and future directions are discussed.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Menghui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Fangqi Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Xiaoyi Fu
- Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, 310022 P. R. China
| | - Mei Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Yuyan Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Mei Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| |
Collapse
|