1
|
Roshan P, Kaushik V, Mistry A, Vayyeti A, Antony A, Luebbers R, Deveryshetty J, Antony E, Origanti S. Mechanism of RPA phosphocode priming and tuning by Cdk1/Wee1 signaling circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633180. [PMID: 39868089 PMCID: PMC11761648 DOI: 10.1101/2025.01.16.633180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Replication protein A (RPA) is a heterotrimeric single-strand DNA binding protein that is integral to DNA metabolism. Segregation of RPA functions in response to DNA damage is fine-tuned by hyperphosphorylation of the RPA32 subunit that is dependent on Cyclin-dependent kinase (Cdk)-mediated priming phosphorylation at the Ser-23 and Ser-29 sites. However, the mechanism of priming-driven hyperphosphorylation of RPA remains unresolved. Furthermore, the modulation of cell cycle progression by the RPA-Cdk axis is not clearly understood. Here, we uncover that the RPA70 subunit is also phosphorylated by Cdk1 at Thr-191. This modification is crucial for the G2 to M phase transition. This function is enacted through reciprocal regulation of Cdk1 activity through a feedback circuit espoused by stabilization of Wee1 kinase. The Thr-191 phosphosite on RPA70 is also crucial for priming hyperphosphorylation of RPA32 in response to DNA damage. Structurally, phosphorylation by Cdk1 primes RPA by reconfiguring the domains to release the N-terminus of RPA32 and the two protein-interaction domains that markedly enhances the efficiency of multisite phosphorylation by other kinases. Our findings establish a unique phosphocode-dependent feedback mechanism between RPA and RPA-regulating kinases that is fine-tuned to enact bipartite functions in cell cycle progression and DNA damage response.
Collapse
|
2
|
Chadda R, Kaushik V, Ahmad IM, Deveryshetty J, Holehouse A, Sigurdsson S, Biswas G, Levy Y, Bothner B, Cooley R, Mehl R, Dastvan R, Origanti S, Antony E. Partial wrapping of single-stranded DNA by replication protein A and modulation through phosphorylation. Nucleic Acids Res 2024; 52:11626-11640. [PMID: 38989614 PMCID: PMC11514480 DOI: 10.1093/nar/gkae584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/30/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Single-stranded DNA (ssDNA) intermediates which emerge during DNA metabolic processes are shielded by replication protein A (RPA). RPA binds to ssDNA and acts as a gatekeeper to direct the ssDNA towards downstream DNA metabolic pathways with exceptional specificity. Understanding the mechanistic basis for such RPA-dependent functional specificity requires knowledge of the structural conformation of ssDNA when RPA-bound. Previous studies suggested a stretching of ssDNA by RPA. However, structural investigations uncovered a partial wrapping of ssDNA around RPA. Therefore, to reconcile the models, in this study, we measured the end-to-end distances of free ssDNA and RPA-ssDNA complexes using single-molecule FRET and double electron-electron resonance (DEER) spectroscopy and found only a small systematic increase in the end-to-end distance of ssDNA upon RPA binding. This change does not align with a linear stretching model but rather supports partial wrapping of ssDNA around the contour of DNA binding domains of RPA. Furthermore, we reveal how phosphorylation at the key Ser-384 site in the RPA70 subunit provides access to the wrapped ssDNA by remodeling the DNA-binding domains. These findings establish a precise structural model for RPA-bound ssDNA, providing valuable insights into how RPA facilitates the remodeling of ssDNA for subsequent downstream processes.
Collapse
Affiliation(s)
- Rahul Chadda
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Vikas Kaushik
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Iram Munir Ahmad
- Department of Chemistry, Science Institute, University of Iceland, 107 Reykjavik, Iceland
| | - Jaigeeth Deveryshetty
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, 107 Reykjavik, Iceland
| | - Gargi Biswas
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Reza Dastvan
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Sofia Origanti
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
3
|
Wang X, Zhao X, Yu Z, Fan T, Guo Y, Liang J, Wang Y, Zhan J, Chen G, Zhou C, Zhang X, Li X, Chen X. Rtt105 stimulates Rad51-ssDNA assembly and orchestrates Rad51 and RPA actions to promote homologous recombination repair. Proc Natl Acad Sci U S A 2024; 121:e2402262121. [PMID: 39145931 PMCID: PMC11348298 DOI: 10.1073/pnas.2402262121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
Homologous recombination (HR) is essential for the maintenance of genome stability. During HR, Replication Protein A (RPA) rapidly coats the 3'-tailed single-strand DNA (ssDNA) generated by end resection. Then, the ssDNA-bound RPA must be timely replaced by Rad51 recombinase to form Rad51 nucleoprotein filaments that drive homology search and HR repair. How cells regulate Rad51 assembly dynamics and coordinate RPA and Rad51 actions to ensure proper HR remains poorly understood. Here, we identified that Rtt105, a Ty1 transposon regulator, acts to stimulate Rad51 assembly and orchestrate RPA and Rad51 actions during HR. We found that Rtt105 interacts with Rad51 in vitro and in vivo and restrains the adenosine 5' triphosphate (ATP) hydrolysis activity of Rad51. We showed that Rtt105 directly stimulates dynamic Rad51-ssDNA assembly, strand exchange, and D-loop formation in vitro. Notably, we found that Rtt105 physically regulates the binding of Rad51 and RPA to ssDNA via different motifs and that both regulations are necessary and epistatic in promoting Rad51 nucleation, strand exchange, and HR repair. Consequently, disrupting either of the interactions impaired HR and conferred DNA damage sensitivity, underscoring the importance of Rtt105 in orchestrating the actions of Rad51 and RPA. Our work reveals additional layers of mechanisms regulating Rad51 filament dynamics and the coordination of HR.
Collapse
Affiliation(s)
- Xuejie Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Xiaocong Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Zhengshi Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Tianai Fan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Yunjing Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Jianqiang Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Yanyan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Jingfei Zhan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Guifang Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Chun Zhou
- School of Public Health, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Xinghua Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Xiangpan Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Department of Radiation Oncology, Renmin Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan430072, China
| |
Collapse
|
4
|
Chua GNL, Liu S. When Force Met Fluorescence: Single-Molecule Manipulation and Visualization of Protein-DNA Interactions. Annu Rev Biophys 2024; 53:169-191. [PMID: 38237015 DOI: 10.1146/annurev-biophys-030822-032904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Myriad DNA-binding proteins undergo dynamic assembly, translocation, and conformational changes while on DNA or alter the physical configuration of the DNA substrate to control its metabolism. It is now possible to directly observe these activities-often central to the protein function-thanks to the advent of single-molecule fluorescence- and force-based techniques. In particular, the integration of fluorescence detection and force manipulation has unlocked multidimensional measurements of protein-DNA interactions and yielded unprecedented mechanistic insights into the biomolecular processes that orchestrate cellular life. In this review, we first introduce the different experimental geometries developed for single-molecule correlative force and fluorescence microscopy, with a focus on optical tweezers as the manipulation technique. We then describe the utility of these integrative platforms for imaging protein dynamics on DNA and chromatin, as well as their unique capabilities in generating complex DNA configurations and uncovering force-dependent protein behaviors. Finally, we give a perspective on the future directions of this emerging research field.
Collapse
Affiliation(s)
- Gabriella N L Chua
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
- Tri-Institutional PhD Program in Chemical Biology, New York, New York, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
| |
Collapse
|
5
|
Rips J, Halstuk O, Fuchs A, Lang Z, Sido T, Gershon-Naamat S, Abu-Libdeh B, Edvardson S, Salah S, Breuer O, Hadhud M, Eden S, Simon I, Slae M, Damseh NS, Abu-Libdeh A, Eskin-Schwartz M, Birk OS, Varga J, Schueler-Furman O, Rosenbluh C, Elpeleg O, Yanovsky-Dagan S, Mor-Shaked H, Harel T. Unbiased phenotype and genotype matching maximizes gene discovery and diagnostic yield. Genet Med 2024; 26:101068. [PMID: 38193396 DOI: 10.1016/j.gim.2024.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024] Open
Abstract
PURPOSE Widespread application of next-generation sequencing, combined with data exchange platforms, has provided molecular diagnoses for countless families. To maximize diagnostic yield, we implemented an unbiased semi-automated genematching algorithm based on genotype and phenotype matching. METHODS Rare homozygous variants identified in 2 or more affected individuals, but not in healthy individuals, were extracted from our local database of ∼12,000 exomes. Phenotype similarity scores (PSS), based on human phenotype ontology terms, were assigned to each pair of individuals matched at the genotype level using HPOsim. RESULTS 33,792 genotype-matched pairs were discovered, representing variants in 7567 unique genes. There was an enrichment of PSS ≥0.1 among pathogenic/likely pathogenic variant-level pairs (94.3% in pathogenic/likely pathogenic variant-level matches vs 34.75% in all matches). We highlighted founder or region-specific variants as an internal positive control and proceeded to identify candidate disease genes. Variant-level matches were particularly helpful in cases involving inframe indels and splice region variants beyond the canonical splice sites, which may otherwise have been disregarded, allowing for detection of candidate disease genes, such as KAT2A, RPAIN, and LAMP3. CONCLUSION Semi-automated genotype matching combined with PSS is a powerful tool to resolve variants of uncertain significance and to identify candidate disease genes.
Collapse
Affiliation(s)
- Jonathan Rips
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Orli Halstuk
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Adina Fuchs
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Ziv Lang
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Tal Sido
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | | | - Bassam Abu-Libdeh
- Department of Pediatrics & Genetics, Makassed Hospital & Al-Quds Medical School, E. Jerusalem, Palestine
| | - Simon Edvardson
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; Pediatric Neurology Unit, Hadassah Medical Center, Jerusalem, Israel
| | - Somaya Salah
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Oded Breuer
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; Pediatric Pulmonology and CF Unit, Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Mohamad Hadhud
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; Pediatric Pulmonology and CF Unit, Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Sharon Eden
- Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Itamar Simon
- Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Mordechai Slae
- Pediatric Gastroenterology Unit, Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Nadirah S Damseh
- Department of Pediatrics & Genetics, Makassed Hospital & Al-Quds Medical School, E. Jerusalem, Palestine
| | - Abdulsalam Abu-Libdeh
- Department of Pediatrics & Genetics, Makassed Hospital & Al-Quds Medical School, E. Jerusalem, Palestine; Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Marina Eskin-Schwartz
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Julia Varga
- Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ora Schueler-Furman
- Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | | | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel.
| |
Collapse
|
6
|
Olson CL, Wuttke DS. Guardians of the Genome: How the Single-Stranded DNA-Binding Proteins RPA and CST Facilitate Telomere Replication. Biomolecules 2024; 14:263. [PMID: 38540683 PMCID: PMC10968030 DOI: 10.3390/biom14030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 04/26/2024] Open
Abstract
Telomeres act as the protective caps of eukaryotic linear chromosomes; thus, proper telomere maintenance is crucial for genome stability. Successful telomere replication is a cornerstone of telomere length regulation, but this process can be fraught due to the many intrinsic challenges telomeres pose to the replication machinery. In addition to the famous "end replication" problem due to the discontinuous nature of lagging strand synthesis, telomeres require various telomere-specific steps for maintaining the proper 3' overhang length. Bulk telomere replication also encounters its own difficulties as telomeres are prone to various forms of replication roadblocks. These roadblocks can result in an increase in replication stress that can cause replication forks to slow, stall, or become reversed. Ultimately, this leads to excess single-stranded DNA (ssDNA) that needs to be managed and protected for replication to continue and to prevent DNA damage and genome instability. RPA and CST are single-stranded DNA-binding protein complexes that play key roles in performing this task and help stabilize stalled forks for continued replication. The interplay between RPA and CST, their functions at telomeres during replication, and their specialized features for helping overcome replication stress at telomeres are the focus of this review.
Collapse
Affiliation(s)
- Conner L. Olson
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Deborah S. Wuttke
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
7
|
Deveryshetty J, Chadda R, Mattice JR, Karunakaran S, Rau MJ, Basore K, Pokhrel N, Englander N, Fitzpatrick JAJ, Bothner B, Antony E. Yeast Rad52 is a homodecamer and possesses BRCA2-like bipartite Rad51 binding modes. Nat Commun 2023; 14:6215. [PMID: 37798272 PMCID: PMC10556141 DOI: 10.1038/s41467-023-41993-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Homologous recombination (HR) is an essential double-stranded DNA break repair pathway. In HR, Rad52 facilitates the formation of Rad51 nucleoprotein filaments on RPA-coated ssDNA. Here, we decipher how Rad52 functions using single-particle cryo-electron microscopy and biophysical approaches. We report that Rad52 is a homodecameric ring and each subunit possesses an ordered N-terminal and disordered C-terminal half. An intrinsic structural asymmetry is observed where a few of the C-terminal halves interact with the ordered ring. We describe two conserved charged patches in the C-terminal half that harbor Rad51 and RPA interacting motifs. Interactions between these patches regulate ssDNA binding. Surprisingly, Rad51 interacts with Rad52 at two different bindings sites: one within the positive patch in the disordered C-terminus and the other in the ordered ring. We propose that these features drive Rad51 nucleation onto a single position on the DNA to promote formation of uniform pre-synaptic Rad51 filaments in HR.
Collapse
Affiliation(s)
- Jaigeeth Deveryshetty
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jenna R Mattice
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Simrithaa Karunakaran
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Michael J Rau
- Center for Cellular Imaging, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Katherine Basore
- Center for Cellular Imaging, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
- Aera Therapeutics, Boston, MA, USA
| | - Noah Englander
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - James A J Fitzpatrick
- Center for Cellular Imaging, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Hoitsma NM, Norris J, Khoang TH, Kaushik V, Chadda R, Antony E, Hedglin M, Freudenthal BD. Mechanistic insight into AP-endonuclease 1 cleavage of abasic sites at stalled replication fork mimics. Nucleic Acids Res 2023; 51:6738-6753. [PMID: 37264933 PMCID: PMC10359615 DOI: 10.1093/nar/gkad481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/13/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023] Open
Abstract
Many types of damage, including abasic sites, block replicative DNA polymerases causing replication fork uncoupling and generating ssDNA. AP-Endonuclease 1 (APE1) has been shown to cleave abasic sites in ssDNA. Importantly, APE1 cleavage of ssDNA at a replication fork has significant biological implications by generating double strand breaks that could collapse the replication fork. Despite this, the molecular basis and efficiency of APE1 processing abasic sites at replication forks remain elusive. Here, we investigate APE1 cleavage of abasic substrates that mimic APE1 interactions at stalled replication forks or gaps. We determine that APE1 has robust activity on these substrates, like dsDNA, and report rates for cleavage and product release. X-ray structures visualize the APE1 active site, highlighting an analogous mechanism is used to process ssDNA substrates as canonical APE1 activity on dsDNA. However, mutational analysis reveals R177 to be uniquely critical for the APE1 ssDNA cleavage mechanism. Additionally, we investigate the interplay between APE1 and Replication Protein A (RPA), the major ssDNA-binding protein at replication forks, revealing that APE1 can cleave an abasic site while RPA is still bound to the DNA. Together, this work provides molecular level insights into abasic ssDNA processing by APE1, including the presence of RPA.
Collapse
Affiliation(s)
- Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jessica Norris
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Thu H Khoang
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Vikas Kaushik
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
9
|
Deveryshetty J, Chadda R, Mattice J, Karunakaran S, Rau MJ, Basore K, Pokhrel N, Englander N, Fitzpatrick JA, Bothner B, Antony E. Homodecameric Rad52 promotes single-position Rad51 nucleation in homologous recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.05.527205. [PMID: 36778491 PMCID: PMC9915710 DOI: 10.1101/2023.02.05.527205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Homologous recombination (HR) is a pathway for the accurate repair of double-stranded DNA breaks. These breaks are resected to yield single-stranded DNA (ssDNA) that are coated by Replication Protein A (RPA). Saccharomyces cerevisiae Rad52 is a mediator protein that promotes HR by facilitating formation of Rad51 nucleoprotein filaments on RPA-coated ssDNA. Canonically, Rad52 has been described to function by displacing RPA to promote Rad51 binding. However, in vitro, Rad51 readily forms a filament by displacing RPA in the absence of Rad52. Yet, in vivo, Rad52 is essential for HR. Here, we resolve how Rad52 functions as a mediator using single-particle cryo-electron microscopy and biophysical approaches. We show that Rad52 functions as a homodecamer and catalyzes single-position nucleation of Rad51. The N-terminal half of Rad52 is a well-ordered ring, while the C-terminal half is disordered. An intrinsic asymmetry within Rad52 is observed, where one or a few of the C-terminal halves interact with the ordered N-terminal ring. Within the C-terminal half, we identify two conserved charged patches that harbor the Rad51 and RPA interacting motifs. Interactions between these two charged patches regulate a ssDNA binding. These features drive Rad51 binding to a single position on the Rad52 decameric ring. We propose a Rad52 catalyzed single-position nucleation model for the formation of pre-synaptic Rad51 filaments in HR.
Collapse
Affiliation(s)
- Jaigeeth Deveryshetty
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Jenna Mattice
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT
| | - Simrithaa Karunakaran
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Michael J. Rau
- Center for Cellular Imaging, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Katherine Basore
- Center for Cellular Imaging, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI (Present address: Aera Therapeutics, Boston, MA, USA)
| | - Noah Englander
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - James A.J. Fitzpatrick
- Center for Cellular Imaging, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
10
|
Roshan P, Kuppa S, Mattice JR, Kaushik V, Chadda R, Pokhrel N, Tumala BR, Biswas A, Bothner B, Antony E, Origanti S. An Aurora B-RPA signaling axis secures chromosome segregation fidelity. Nat Commun 2023; 14:3008. [PMID: 37230964 PMCID: PMC10212944 DOI: 10.1038/s41467-023-38711-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Errors in chromosome segregation underlie genomic instability associated with cancers. Resolution of replication and recombination intermediates and protection of vulnerable single-stranded DNA (ssDNA) intermediates during mitotic progression requires the ssDNA binding protein Replication Protein A (RPA). However, the mechanisms that regulate RPA specifically during unperturbed mitotic progression are poorly resolved. RPA is a heterotrimer composed of RPA70, RPA32 and RPA14 subunits and is predominantly regulated through hyperphosphorylation of RPA32 in response to DNA damage. Here, we have uncovered a mitosis-specific regulation of RPA by Aurora B kinase. Aurora B phosphorylates Ser-384 in the DNA binding domain B of the large RPA70 subunit and highlights a mode of regulation distinct from RPA32. Disruption of Ser-384 phosphorylation in RPA70 leads to defects in chromosome segregation with loss of viability and a feedback modulation of Aurora B activity. Phosphorylation at Ser-384 remodels the protein interaction domains of RPA. Furthermore, phosphorylation impairs RPA binding to DSS1 that likely suppresses homologous recombination during mitosis by preventing recruitment of DSS1-BRCA2 to exposed ssDNA. We showcase a critical Aurora B-RPA signaling axis in mitosis that is essential for maintaining genomic integrity.
Collapse
Affiliation(s)
- Poonam Roshan
- Department of Biology, St. Louis University, St. Louis, MO, 63103, USA
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Jenna R Mattice
- Department of Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Vikas Kaushik
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53217, USA
| | - Brunda R Tumala
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Aparna Biswas
- Department of Biology, St. Louis University, St. Louis, MO, 63103, USA
| | - Brian Bothner
- Department of Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA.
| | - Sofia Origanti
- Department of Biology, St. Louis University, St. Louis, MO, 63103, USA.
| |
Collapse
|
11
|
Safar M, Saurabh A, Sarkar B, Fazel M, Ishii K, Tahara T, Sgouralis I, Pressé S. Single-photon smFRET. III. Application to pulsed illumination. BIOPHYSICAL REPORTS 2022; 2:100088. [PMID: 36530182 PMCID: PMC9747580 DOI: 10.1016/j.bpr.2022.100088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Förster resonance energy transfer (FRET) using pulsed illumination has been pivotal in leveraging lifetime information in FRET analysis. However, there remain major challenges in quantitative single-photon, single-molecule FRET (smFRET) data analysis under pulsed illumination including 1) simultaneously deducing kinetics and number of system states; 2) providing uncertainties over estimates, particularly uncertainty over the number of system states; and 3) taking into account detector noise sources such as cross talk and the instrument response function contributing to uncertainty; in addition to 4) other experimental noise sources such as background. Here, we implement the Bayesian nonparametric framework described in the first companion article that addresses all aforementioned issues in smFRET data analysis specialized for the case of pulsed illumination. Furthermore, we apply our method to both synthetic as well as experimental data acquired using Holliday junctions.
Collapse
Affiliation(s)
- Matthew Safar
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Mathematics and Statistical Science, Arizona State University, Tempe, Arizona
| | - Ayush Saurabh
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Bidyut Sarkar
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama, Japan
| | - Mohamadreza Fazel
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Kunihiko Ishii
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama, Japan
| | - Ioannis Sgouralis
- Department of Mathematics, University of Tennessee Knoxville, Knoxville, Tennessee
| | - Steve Pressé
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
- School of Molecular Sciences, Arizona State University, Phoenix, Arizona
| |
Collapse
|