1
|
Shan L, Guo P, Wen M, Sun Y, Gao F, Zhang K, Zhang N, Yang B. Knockdown of regulator of Calcineurin 2 promotes transcription factor EB-mediated lipophagy to prevent non-alcoholic fatty liver disease. Toxicol Appl Pharmacol 2024; 495:117210. [PMID: 39710154 DOI: 10.1016/j.taap.2024.117210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease. The present work aimed to explore the function of regulator of Calcineurin 2 (RCAN2) in NAFLD and its related mechanisms. Mice were fed with high-fat diet (HFD) to construct NAFLD model. Adeno-associated virus injection was performed to interference with RCAN2 in mice. RCAN2 knockdown meliorated HFD-induced NAFLD and impaired glucose metabolism. Abnormal lipid metabolism and inflammation in HFD-fed mice were relieved when RCAN2 was downregulated. Besides, hepatocyte Huh-7 cells, treated with free fatty acids (oleic acid and palmitic acid), were used as NAFLD models in vitro. We found that knockdown of RCAN2 inhibited the accumulation of lipid droplets and inflammation induced by free fatty acids. RCAN2 interference increased the activity of calcineurin (CaN), which enhanced the nuclear translocation of Transcription factor EB (TFEB). Autophagosome and lysosome biogenesis was augmented, and autophagy-dependent lipid degradation (lipophagy) was promoted. Collectively, we demonstrate that RCAN2 insufficiency protects against NAFLD by promoting TFEB-mediated lipophagy.
Collapse
Affiliation(s)
- Lei Shan
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Pengzhan Guo
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Mumeike Wen
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Yue Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Fei Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Kai Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Ning Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Baoshan Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
2
|
Shalash R, Levi-Ferber M, von Chrzanowski H, Atrash MK, Shav-Tal Y, Henis-Korenblit S. HLH-30/TFEB rewires the chaperone network to promote proteostasis under conditions of Coenzyme A and Iron-Sulfur Cluster Deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597553. [PMID: 38895373 PMCID: PMC11185684 DOI: 10.1101/2024.06.05.597553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The maintenance of a properly folded proteome is critical for cellular function and organismal health, and its age-dependent collapse is associated with a wide range of diseases. Here, we find that despite the central role of Coenzyme A as a molecular cofactor in hundreds of cellular reactions, limiting Coenzyme A levels in C. elegans and in human cells, by inhibiting the conserved pantothenate kinase, promotes proteostasis. Impairment of the cytosolic iron-sulfur clusters formation pathway, which depends on Coenzyme A, similarly promotes proteostasis and acts in the same pathway. Proteostasis improvement by Coenzyme A/iron-sulfur cluster deficiencies are dependent on the conserved HLH-30/TFEB transcription factor. Strikingly, under these conditions, HLH-30 promotes proteostasis by potentiating the expression of select chaperone genes providing a chaperone-mediated proteostasis shield, rather than by its established role as an autophagy and lysosome biogenesis promoting factor. This reflects the versatile nature of this conserved transcription factor, that can transcriptionally activate a wide range of protein quality control mechanisms, including chaperones and stress response genes alongside autophagy and lysosome biogenesis genes. These results highlight TFEB as a key proteostasis-promoting transcription factor and underscore it and its upstream regulators as potential therapeutic targets in proteostasis-related diseases.
Collapse
Affiliation(s)
- Rewayd Shalash
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Mor Levi-Ferber
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Henrik von Chrzanowski
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Mohammad Khaled Atrash
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Sivan Henis-Korenblit
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
3
|
Li Z, Peng W, Zhou J, Shui S, Liu Y, Li T, Zhan X, Chen Y, Lan F, Ying B, Wu Y. Multidimensional Interactive Cascading Nanochips for Detection of Multiple Liver Diseases via Precise Metabolite Profiling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312799. [PMID: 38263756 DOI: 10.1002/adma.202312799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/11/2024] [Indexed: 01/25/2024]
Abstract
It is challenging to detect and differentiate multiple diseases with high complexity/similarity from the same organ. Metabolic analysis based on nanomatrix-assisted laser desorption/ionization mass spectrometry (NMALDI-MS) is a promising platform for disease diagnosis, while the enhanced property of its core nanomatrix materials has plenty of room for improvement. Herein, a multidimensional interactive cascade nanochip composed of iron oxide nanoparticles (FeNPs)/MXene/gold nanoparticles (AuNPs), IMG, is reported for serum metabolic profiling to achieve high-throughput detection of multiple liver diseases. MXene serves as a multi-binding site and an electron-hole source for ionization during NMALDI-MS analysis. Introduction of AuNPs with surface plasmon resonance (SPR) properties facilitates surface charge accumulation and rapid energy conversion. FeNPs are integrated into the MXene/Au nanocomposite to sharply reduce the thermal conductivity of the nanochip with negligible heat loss for strong thermally-driven desorption, and construct a multi-interaction proton transport pathway with MXene and AuNPs for strong ionization. Analysis of these enhanced serum fingerprint signals detected from the IMG nanochip through a neural network model results in differentiation of multiple liver diseases via a single pass and revelation of potential metabolic biomarkers. The promising method can rapidly and accurately screen various liver diseases, thus allowing timely treatment of liver diseases.
Collapse
Affiliation(s)
- Zhiyu Li
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Weili Peng
- Machine Intelligence Lab, College of Computer Science, Sichuan University, Chengdu, 610064, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Shaoxuan Shui
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yicheng Liu
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Tan Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Xiaohui Zhan
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yuanyuan Chen
- Machine Intelligence Lab, College of Computer Science, Sichuan University, Chengdu, 610064, China
| | - Fang Lan
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
4
|
Li T, Hasan MN, Gu L. Bile acids regulation of cellular stress responses in liver physiology and diseases. EGASTROENTEROLOGY 2024; 2:e100074. [PMID: 39027418 PMCID: PMC11257078 DOI: 10.1136/egastro-2024-100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Bile acids are physiological detergents and signalling molecules that are critically implicated in liver health and diseases. Dysregulation of bile acid homeostasis alters cell function and causes cell injury in chronic liver diseases. Therapeutic agents targeting bile acid synthesis, transport and signalling hold great potential for treatment of chronic liver diseases. The broad cellular and physiological impacts of pharmacological manipulations of bile acid metabolism are still incompletely understood. Recent research has discovered new links of bile acid signalling to the regulation of autophagy and lysosome biology, redox homeostasis and endoplasmic reticulum stress. These are well-conserved mechanisms that allow cells to adapt to nutrient and organelle stresses and play critical roles in maintaining cellular integrity and promoting survival. However, dysregulation of these cellular pathways is often observed in chronic liver diseases, which exacerbates cellular dysfunction to contribute to disease pathogenesis. Therefore, identification of these novel links has significantly advanced our knowledge of bile acid biology and physiology, which is needed to understand the contributions of bile acid dysregulation in disease pathogenesis, establish bile acids as diagnostic markers and develop bile acid-based pharmacological interventions. In this review, we will first discuss the roles of bile acid dysregulation in the pathogenesis of chronic liver diseases, and then discuss the recent findings on the crosstalk of bile acid signalling and cellular stress responses. Future investigations are needed to better define the roles of these crosstalks in regulating cellular function and disease processes.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Mohammad Nazmul Hasan
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lijie Gu
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
5
|
Chen J, Matye D, Dai Clayton Y, Du Y, Nazmul Hasan M, Gu L, Li T. Deletion of hepatocyte cysteine dioxygenase type 1, a bile acid repressed gene, enhances glutathione synthesis and ameliorates acetaminophen hepatotoxicity. Biochem Pharmacol 2024; 222:116103. [PMID: 38428825 PMCID: PMC10976970 DOI: 10.1016/j.bcp.2024.116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Liver is a major organ that metabolizes sulfur amino acids cysteine, which is the substrate for the synthesis of many essential cellular molecules including GSH, taurine, and coenzyme A. Bile acid-activated farnesoid x receptor (FXR) inhibits cysteine dioxygenase type 1 (CDO1), which mediates hepatic cysteine catabolism and taurine synthesis. To define the impact of bile acid inhibition of CDO1 on hepatic sulfur amino acid metabolism and antioxidant capacity, we developed hepatocyte-specific CDO1 knockout mice (Hep-CDO1 KO) and hepatocyte specific CDO1 transgenic mice (Hep-CDO1 Tg). Liver metabolomics revealed that genetic deletion of hepatic CDO1 reduced de novo taurine synthesis but had no impact on hepatic taurine abundance or bile acid conjugation. Consistent with reduced cysteine catabolism, Hep-CDO1 KO mice showed increased hepatic cysteine abundance but unaltered methionine cycle intermediates and coenzyme A synthesis. Upon acetaminophen overdose, Hep-CDO1 KO mice showed increased GSH synthesis capacity and alleviated liver injury. In contrast, hepatic CDO1 overexpression in Hep-CDO1 Tg mice stimulated hepatic cysteine to taurine conversion, resulting in reduced hepatic cysteine abundance. However, Hep-CDO1 Tg mice and WT showed similar susceptibility to acetaminophen-induced liver injury. Hep-CDO1 Tg mice showed similar hepatic taurine and coenzyme A compared to WT mice. In summary, these findings suggest that bile acid and FXR signaling inhibition of CDO1-mediated hepatic cysteine catabolism preferentially modulates hepatic GSH synthesis capacity and antioxidant defense, but has minimal effect on hepatic taurine and coenzyme A abundance. Repression of hepatic CDO1 may contribute to the hepatoprotective effects of FXR activation under certain pathologic conditions.
Collapse
Affiliation(s)
- Jianglei Chen
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - David Matye
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Yung Dai Clayton
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Yanhong Du
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Mohammad Nazmul Hasan
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Lijie Gu
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
| |
Collapse
|
6
|
Hecht F, Zocchi M, Alimohammadi F, Harris IS. Regulation of antioxidants in cancer. Mol Cell 2024; 84:23-33. [PMID: 38029751 PMCID: PMC10843710 DOI: 10.1016/j.molcel.2023.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
Scientists in this field often joke, "If you don't have a mechanism, say it's ROS." Seemingly connected to every biological process ever described, reactive oxygen species (ROS) have numerous pleiotropic roles in physiology and disease. In some contexts, ROS act as secondary messengers, controlling a variety of signaling cascades. In other scenarios, they initiate damage to macromolecules. Finally, in their worst form, ROS are deadly to cells and surrounding tissues. A set of molecules with detoxifying abilities, termed antioxidants, is the direct counterpart to ROS. Notably, antioxidants exist in the public domain, touted as a "cure-all" for diseases. Research has disproved many of these claims and, in some cases, shown the opposite. Of all the diseases, cancer stands out in its paradoxical relationship with antioxidants. Although the field has made numerous strides in understanding the roles of antioxidants in cancer, many questions remain.
Collapse
Affiliation(s)
- Fabio Hecht
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Marco Zocchi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Fatemeh Alimohammadi
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Isaac S Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
7
|
Fu S, Yang B, Gao Y, Qiu Y, Sun N, Li Z, Feng S, Xu Y, Zhang J, Luo Z, Han X, Miao J. A critical role for host-derived cystathionine-β-synthase in Staphylococcus aureus-induced udder infection. Free Radic Biol Med 2024; 210:13-24. [PMID: 37951283 DOI: 10.1016/j.freeradbiomed.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
Cystathionine-β-synthase (CBS) catalyzes the first step of the transsulfuration pathway. The role of host-derived CBS in Staphylococcus aureus (S. aureus)-induced udder infection remains elusive. Herein, we report that S. aureus infection enhances the expression of CBS in mammary epithelial cells in vitro and in vivo. A negative correlation is present between the expression of CBS and inflammation after employing a pharmacological inhibitor/agonist of CBS. In addition, CBS achieves a fine balance between eliciting sufficient protective innate immunity and preventing excessive damage to cells and tissues preserving the integrity of the blood-milk barrier (BMB). CBS/H2S reduces bacterial load by promoting the generation of antibacterial substances (ROS, RNS) and inhibiting apoptosis, as opposed to relying solely on intense inflammatory reactions. Conversely, H2S donor alleviate inflammation via S-sulfhydrating HuR. Finally, CBS/H2S promotes the expression of Abcb1b, which in turn strengthens the integrity of the BMB. The study described herein demonstrates the importance of CBS in regulating the mammary immune response to S. aureus. Increased CBS in udder tissue modulates excessive inflammation, which suggests a novel target for drug development in the battle against S. aureus and other infections.
Collapse
Affiliation(s)
- Shaodong Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yabin Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yawei Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Naiyan Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiyuan Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinqiu Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhenhua Luo
- School of Water, Energy & Environment, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, United Kingdom
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Xu S, Zhang Y, Liu X, Liu H, Zou X, Zhang L, Wang J, Zhang Z, Xu X, Li M, Li K, Shi S, Zhang Y, Miao Z, Zha J, Yu Y. Nr4a1 marks a distinctive ILC2 activation subset in the mouse inflammatory lung. BMC Biol 2023; 21:218. [PMID: 37833706 PMCID: PMC10576290 DOI: 10.1186/s12915-023-01690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/25/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) are critical sources of type 2 cytokines and represent one of the major tissue-resident lymphoid cells in the mouse lung. However, the molecular mechanisms underlying ILC2 activation under challenges are not fully understood. RESULTS Here, using single-cell transcriptomics, genetic reporters, and gene knockouts, we identify four ILC2 subsets, including two non-activation subsets and two activation subsets, in the mouse acute inflammatory lung. Of note, a distinct activation subset, marked by the transcription factor Nr4a1, paradoxically expresses both tissue-resident memory T cell (Trm), and effector/central memory T cell (Tem/Tcm) signature genes, as well as higher scores of proliferation, activation, and wound healing, all driven by its particular regulons. Furthermore, we demonstrate that the Nr4a1+ILC2s are restrained from activating by the programmed cell death protein-1 (PD-1), which negatively modulates their activation-related regulons. PD-1 deficiency places the non-activation ILC2s in a state that is prone to activation, resulting in Nr4a1+ILC2 differentiation through different activation trajectories. Loss of PD-1 also leads to the expansion of Nr4a1+ILC2s by the increase of their proliferation ability. CONCLUSIONS The findings show that activated ILC2s are a heterogenous population encompassing distinct subsets that have different propensities, and therefore provide an opportunity to explore PD-1's role in modulating the activity of ILC2s for disease prevention and therapy.
Collapse
Affiliation(s)
- Shasha Xu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yu Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xingjie Liu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Huisheng Liu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xinya Zou
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Linlin Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Wang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhiwei Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiang Xu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Mingxia Li
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Kairui Li
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shuyue Shi
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ying Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhichao Miao
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200081, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China.
| | - Yong Yu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK.
| |
Collapse
|
9
|
Hansen AW, Venkatachalam KV. Sulfur-Element containing metabolic pathways in human health and crosstalk with the microbiome. Biochem Biophys Rep 2023; 35:101529. [PMID: 37601447 PMCID: PMC10439400 DOI: 10.1016/j.bbrep.2023.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
In humans, methionine derived from dietary proteins is necessary for cellular homeostasis and regeneration of sulfur containing pathways, which produce inorganic sulfur species (ISS) along with essential organic sulfur compounds (OSC). In recent years, inorganic sulfur species have gained attention as key players in the crosstalk of human health and the gut microbiome. Endogenously, ISS includes hydrogen sulfide (H2S), sulfite (SO32-), thiosulfate (S2O32-), and sulfate (SO42-), which are produced by enzymes in the transsulfuration and sulfur oxidation pathways. Additionally, sulfate-reducing bacteria (SRB) in the gut lumen are notable H2S producers which can contribute to the ISS pools of the human host. In this review, we will focus on the systemic effects of sulfur in biological pathways, describe the contrasting mechanisms of sulfurylation versus phosphorylation on the hydroxyl of serine/threonine and tyrosine residues of proteins in post-translational modifications, and the role of the gut microbiome in human sulfur metabolism.
Collapse
Affiliation(s)
- Austin W. Hansen
- College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This review aims to provide a concise update on recent advances in understanding of the bile acid metabolism and signaling in health and diseases. RECENT FINDINGS CYP2C70 has been identified as the murine cytochrome p450 enzyme that mediates the synthesis of muricholic acids to account for the major different bile acid composition between human and mice. Several studies have linked nutrient sensing bile acid signaling to the regulation of hepatic autophagy-lysosome activity, an integral pathway of the cellular adaptive response to starvation. Distinct bile acid-mediated signaling mechanisms have been shown to contribute to the complex metabolic changes post bariatric surgery, suggesting that pharmacological manipulation of the enterohepatic bile acid signaling could be a potential nonsurgical alternative to weight loss surgery. SUMMARY Basic and clinical studies have continued to discover novel roles of the enterohepatic bile acid signaling in regulation of key metabolic pathways. Such knowledge forms the molecular basis needed for developing safe and effective bile acid-based therapeutics for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - John Y L Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|