1
|
Bare Y, Defourny K, Bretou M, Van Niel G, Nolte-'t Hoen E, Gaudin R. The endoplasmic reticulum as a cradle for virus and extracellular vesicle secretion. Trends Cell Biol 2024:S0962-8924(24)00250-2. [PMID: 39730274 DOI: 10.1016/j.tcb.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024]
Abstract
Extracellular vesicles (EVs) are small membranous carriers of protein, lipid, and nucleic acid cargoes and play a key role in intercellular communication. Recent work has revealed the previously under-recognized participation of endoplasmic reticulum (ER)-associated proteins (ERAPs) during EV secretion, using pathways reminiscent of viral replication and secretion. Here, we present highlights of the literature involving ER/ERAPs in EV biogenesis and propose mechanistic parallels with ERAPs exploited during viral infections. We propose that ERAPs play an active role in the release of EVs and viral particles, and we present views on whether viruses hijack or enhance pre-existing ERAP-dependent secretory machineries or whether they repurpose ERAPs to create new secretory pathways.
Collapse
Affiliation(s)
- Yonis Bare
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR9004, Université Montpellier, Montpellier, France.
| | - Kyra Defourny
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marine Bretou
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM U1266, Paris, France
| | - Guillaume Van Niel
- CRCI2NA, Nantes Université, INSERM UMR1307, CNRS UMR6075, Université d'Angers, Nantes, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Esther Nolte-'t Hoen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Raphael Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR9004, Université Montpellier, Montpellier, France.
| |
Collapse
|
2
|
Vallbracht M, Bodmer BS, Fischer K, Makroczyova J, Winter SL, Wendt L, Wachsmuth-Melm M, Hoenen T, Chlanda P. Nucleocapsid assembly drives Ebola viral factory maturation and dispersion. Cell 2024:S0092-8674(24)01340-0. [PMID: 39742805 DOI: 10.1016/j.cell.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/11/2024] [Accepted: 11/15/2024] [Indexed: 01/04/2025]
Abstract
Replication and genome encapsidation of many negative-sense RNA viruses take place in virus-induced membraneless organelles termed viral factories (VFs). Although liquid properties of VFs are believed to control the transition from genome replication to nucleocapsid (NC) assembly, VF maturation and interactions with the cellular environment remain elusive. Here, we apply in situ cryo-correlative light and electron tomography to follow NC assembly and changes in VF morphology and their liquid properties during Ebola virus infection. We show that viral NCs transition from loosely packed helical assemblies in early VFs to compact cylinders that arrange into highly organized parallel bundles later in infection. Early VFs associate with intermediate filaments and are devoid of other host material but become progressively accessible to cellular components. Our data suggest that this process is coupled to VF solidification, loss of sphericity, and dispersion and promotes cytoplasmic exposure of NCs to facilitate their transport to budding sites.
Collapse
Affiliation(s)
- Melina Vallbracht
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany.
| | - Bianca S Bodmer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Konstantin Fischer
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany
| | - Jana Makroczyova
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany
| | - Sophie L Winter
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Moritz Wachsmuth-Melm
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Petr Chlanda
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Aponte-Diaz D, Harris JM, Kang TE, Korboukh V, Sotoudegan MS, Gray JL, Yennawar NH, Moustafa IM, Macadam A, Cameron CE. Non-lytic spread of poliovirus requires the nonstructural protein 3CD. mBio 2024:e0327624. [PMID: 39665531 DOI: 10.1128/mbio.03276-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Non-enveloped viruses like poliovirus (PV) have evolved the capacity to spread by non-lytic mechanisms. For PV, this mechanism exploits the host secretory autophagy pathway. Virions are selectively incorporated into autophagosomes, double-membrane vesicles that travel to the plasma membrane, fuse, and release single-membrane vesicles containing virions. Loading of cellular cargo into autophagosomes relies on direct or indirect interactions with microtubule-associated protein 1B-light chain 3 (LC3) that are mediated by motifs referred to as LC3-interaction regions (LIRs). We have identified a PV mutant with a severe defect in non-lytic spread. An F-to-Y substitution in a putative LIR of the nonstructural protein 3CD prevented virion incorporation into LC3-positive autophagosomes and virion trafficking to the plasma membrane for release. Using high-angle annular dark-field scanning transmission electron microscopy to monitor PV-induced autophagosome biogenesis, for the first time, we show that virus-induced autophagic signals yield normal autophagosomes, even in the absence of virions. The F-to-Y derivative of PV 3CD was unable to support normal autophagosome biogenesis. Together, these studies make a compelling case for the direct role of a viral nonstructural protein in the formation and loading of the vesicular carriers used for non-lytic spread that may depend on the proper structure, accessibility, and/or dynamics of its LIR. The studies of PV 3CD protein reported here will hopefully provoke a more deliberate look at the presence and function of LIR motifs in viral proteins of viruses known to use autophagy as the basis for non-lytic spread. IMPORTANCE Poliovirus (PV) and other enteroviruses hijack the cellular secretory autophagy pathway for non-lytic virus transmission. While much is known about the cellular factors required for non-lytic transmission, much less is known about viral factors contributing to transmission. We have discovered a PV nonstructural protein required for multiple steps of the pathway leading to vesicle-enclosed virions. This discovery should facilitate the identification of the specific steps of the cellular secretory autophagy pathway and corresponding factors commandeered by the virus and may uncover novel targets for antiviral therapy.
Collapse
Affiliation(s)
- David Aponte-Diaz
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jayden M Harris
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tongjia Ella Kang
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victoria Korboukh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mohamad S Sotoudegan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer L Gray
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew Macadam
- Division of Vaccines, Medicines and Healthcare Products Regulatory Agency, Potters Bar, Herts., United Kingdom
| | - Craig E Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Dahmane S, Schexnaydre E, Zhang J, Rosendal E, Chotiwan N, Kumari Singh B, Yau WL, Lundmark R, Barad B, Grotjahn DA, Liese S, Carlson A, Overby A, Carlson LA. Cryo-electron tomography reveals coupled flavivirus replication, budding and maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618056. [PMID: 39416041 PMCID: PMC11482891 DOI: 10.1101/2024.10.13.618056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Flaviviruses replicate their genomes in replication organelles (ROs) formed as bud-like invaginations on the endoplasmic reticulum (ER) membrane, which also functions as the site for virion assembly. While this localization is well established, it is not known to what extent viral membrane remodeling, genome replication, virion assembly, and maturation are coordinated. Here, we imaged tick-borne flavivirus replication in human cells using cryo-electron tomography. We find that the RO membrane bud is shaped by a combination of a curvature-establishing coat and the pressure from intraluminal template RNA. A protein complex at the RO base extends to an adjacent membrane, where immature virions bud. Naturally occurring furin site variants determine whether virions mature in the immediate vicinity of ROs. We further visualize replication in mouse brain tissue by cryo-electron tomography. Taken together, these findings reveal a close spatial coupling of flavivirus genome replication, budding, and maturation.
Collapse
|
5
|
Aponte-Diaz D, Harris JM, Kang TE, Korboukh V, Sotoudegan MS, Gray JL, Yennawar NH, Moustafa IM, Macadam A, Cameron CE. Non-lytic spread of poliovirus requires the nonstructural protein 3CD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619132. [PMID: 39464037 PMCID: PMC11507938 DOI: 10.1101/2024.10.18.619132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Non-enveloped viruses like poliovirus (PV) have evolved the capacity to spread by non-lytic mechanisms. For PV, this mechanism exploits the host secretory autophagy pathway. Virions are selectively incorporated into autophagosomes, double-membrane vesicles that travel to the plasma membrane, fuse, and release single-membrane vesicles containing virions. Loading of cellular cargo into autophagosomes relies on direct or indirect interactions with microtubule-associated protein 1B-light chain 3 (LC3) that are mediated by motifs referred to as LC3-interaction regions (LIRs). We have identified a PV mutant with a severe defect in non-lytic spread. An F-to-Y substitution in a putative LIR of the nonstructural protein 3CD prevented virion incorporation into LC3-positive autophagosomes and virion trafficking to the plasma membrane for release. Using high-angle annular dark-field scanning transmission electron microscopy to monitor PV-induced autophagosome biogenesis, for the first time, we show that virus-induced autophagic signals yield normal autophagosomes, even in the absence of virions. The F-to-Y derivative of PV 3CD was unable to support normal autophagosome biogenesis. Together, these studies make a compelling case for a direct role of a viral nonstructural protein in the formation and loading of the vesicular carriers used for non-lytic spread that may depend on the proper structure, accessibility, and/or dynamics of its LIR. The studies of PV 3CD protein reported here will hopefully provoke a more deliberate look at the presence and function of LIR motifs in viral proteins of viruses known to use autophagy as the basis for non-lytic spread.
Collapse
Affiliation(s)
- David Aponte-Diaz
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jayden M Harris
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tongjia Ella Kang
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria Korboukh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Present address: Strategic Alliances and Program Management, C4 Therapeutics, Inc., Watertown, MA 02472, USA
| | - Mohamad S Sotoudegan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer L Gray
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew Macadam
- Division of Vaccines, Medicines and Healthcare Products Regulatory Agency, Herts. EN6 3QG, UK
| | - Craig E Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Stancheva VG, Sanyal S. Positive-strand RNA virus replication organelles at a glance. J Cell Sci 2024; 137:jcs262164. [PMID: 39254430 PMCID: PMC11423815 DOI: 10.1242/jcs.262164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Membrane-bound replication organelles (ROs) are a unifying feature among diverse positive-strand RNA viruses. These compartments, formed as alterations of various host organelles, provide a protective niche for viral genome replication. Some ROs are characterised by a membrane-spanning pore formed by viral proteins. The RO membrane separates the interior from immune sensors in the cytoplasm. Recent advances in imaging techniques have revealed striking diversity in RO morphology and origin across virus families. Nevertheless, ROs share core features such as interactions with host proteins for their biogenesis and for lipid and energy transfer. The restructuring of host membranes for RO biogenesis and maintenance requires coordinated action of viral and host factors, including membrane-bending proteins, lipid-modifying enzymes and tethers for interorganellar contacts. In this Cell Science at a Glance article and the accompanying poster, we highlight ROs as a universal feature of positive-strand RNA viruses reliant on virus-host interplay, and we discuss ROs in the context of extensive research focusing on their potential as promising targets for antiviral therapies and their role as models for understanding fundamental principles of cell biology.
Collapse
Affiliation(s)
- Viktoriya G. Stancheva
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
7
|
Shankar K, Sorin MN, Sharma H, Skoglund O, Dahmane S, ter Beek J, Tesfalidet S, Nenzén L, Carlson LA. In vitro reconstitution reveals membrane clustering and RNA recruitment by the enteroviral AAA+ ATPase 2C. PLoS Pathog 2024; 20:e1012388. [PMID: 39102425 PMCID: PMC11326647 DOI: 10.1371/journal.ppat.1012388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/15/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Enteroviruses are a vast genus of positive-sense RNA viruses that cause diseases ranging from common cold to poliomyelitis and viral myocarditis. They encode a membrane-bound AAA+ ATPase, 2C, that has been suggested to serve several roles in virus replication, e.g. as an RNA helicase and capsid assembly factor. Here, we report the reconstitution of full-length, poliovirus 2C's association with membranes. We show that the N-terminal membrane-binding domain of 2C contains a conserved glycine, which is suggested by structure predictions to divide the domain into two amphipathic helix regions, which we name AH1 and AH2. AH2 is the main mediator of 2C oligomerization, and is necessary and sufficient for its membrane binding. AH1 is the main mediator of a novel function of 2C: clustering of membranes. Cryo-electron tomography reveal that several 2C copies mediate this function by localizing to vesicle-vesicle interfaces. 2C-mediated clustering is partially outcompeted by RNA, suggesting a way by which 2C can switch from an early role in coalescing replication organelles and lipid droplets, to a later role where 2C assists RNA replication and particle assembly. 2C is sufficient to recruit RNA to membranes, with a preference for double-stranded RNA (the replicating form of the viral genome). Finally, the in vitro reconstitution revealed that full-length, membrane-bound 2C has ATPase activity and ATP-independent, single-strand ribonuclease activity, but no detectable helicase activity. Together, this study suggests novel roles for 2C in membrane clustering, RNA membrane recruitment and cleavage, and calls into question a role of 2C as an RNA helicase. The reconstitution of functional, 2C-decorated vesicles provides a platform for further biochemical studies into this protein and its roles in enterovirus replication.
Collapse
Affiliation(s)
- Kasturika Shankar
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Marie N. Sorin
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Himanshu Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Oskar Skoglund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Selma Dahmane
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Josy ter Beek
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | | | - Louise Nenzén
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Lars-Anders Carlson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Li Q, Peng G, Liu H, Wang L, Lu R, Li L. Molecular mechanisms of secretory autophagy and its potential role in diseases. Life Sci 2024; 347:122653. [PMID: 38663839 DOI: 10.1016/j.lfs.2024.122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Autophagy is a cellular degradation system that recycles or degrades damaged organelles, viral particles, and aggregated proteins through the lysosomal pathway. Autophagy plays an indispensable role in cellular homeostasis and communication processes. An interesting aspect is that autophagy also mediates the secretion of cellular contents, a process known as secretory autophagy. Secretory autophagy differs from macroautophagy, which sequesters recruited proteins, organelles, or viral particles into autophagosomes and degrades these sequesters in lysosomes, while the secretory autophagy pathway participates in the extracellular export of cellular contents sequestered by autophagosomes through autophagy and endosomal modulators. Recent evidence reveals that secretory autophagy is pivotal in the occurrence and progression of diseases. In this review, we summarize the molecular mechanisms of secretory autophagy. Furthermore, we review the impact of secretory autophagy on diseases, including cancer, viral infectious diseases, neurodegenerative diseases, and cardiovascular diseases. Considering the pleiotropic actions of secretory autophagy on diseases, studying the mechanism of secretory autophagy may help to understand the relevant pathophysiological processes.
Collapse
Affiliation(s)
- Qin Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Guolong Peng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Huimei Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Liwen Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Ruirui Lu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
9
|
Keller J, Fernández-Busnadiego R. In situ studies of membrane biology by cryo-electron tomography. Curr Opin Cell Biol 2024; 88:102363. [PMID: 38677049 DOI: 10.1016/j.ceb.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Cryo-electron tomography (cryo-ET) allows high resolution 3D imaging of biological samples in near-native environments. Thus, cryo-ET has become the method of choice to analyze the unperturbed organization of cellular membranes. Here, we briefly discuss current cryo-ET workflows and their application to study membrane biology in situ, under basal and pathological conditions.
Collapse
Affiliation(s)
- Jenny Keller
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077, Germany; Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Göttingen, Germany.
| | - Rubén Fernández-Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077, Germany; Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, 37077, Germany; Faculty of Physics, University of Göttingen, Göttingen, 37077, Germany.
| |
Collapse
|
10
|
López-Bueno A, Gil-Ranedo J, Almendral JM. Assembly of Structurally Simple Icosahedral Viruses. Subcell Biochem 2024; 105:403-430. [PMID: 39738953 DOI: 10.1007/978-3-031-65187-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Icosahedral viruses exhibit elegant pathways of capsid assembly and maturation regulated by symmetry principles. Assembly is a dynamic process driven by consecutive and genetically programmed morphogenetic interactions between protein subunits. The non-symmetric capsid subunits are gathered by non-covalent contacts and interactions in assembly intermediates, which serve as blocks to build a symmetric capsid. In some virus examples, the assembly of the protein shell further requires non-symmetric interactions among intermediates to fold into specific conformations. In this chapter, the morphogenesis of some small and structurally simple icosahedral viruses, including representative members of the parvoviruses, picornaviruses, and polyomaviruses as paradigms, is described in some detail. Despite their small size, the assembly of these icosahedral viruses may follow rather complex pathways, as they may occur in different subcellular compartments, involve a panoply of cellular and viral factors, and regulatory protein post-translational modifications that challenge its comprehensive understanding. Mechanisms of viral genome encapsidation may imply direct interactions between the genome and the assembly intermediates, or active packaging into a preformed empty capsid. Further, membranes and factors at specific subcellular compartments may also be critically required for virus maturation. The high stability of intermediates and the process of viral maturation contribute to the overall irreversible character of the assembly process. These and other small, structurally less complex icosahedral viruses were pioneer models to understand basic principles of virus assembly, continue to be leading subjects of morphogenetic analyses, and have inspired ongoing studies on the assembly of larger, structurally more complex viruses as well as cellular and synthetic macromolecular complexes.
Collapse
Affiliation(s)
- Alberto López-Bueno
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jon Gil-Ranedo
- Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - José M Almendral
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
11
|
Han Y, Zheng J, Ge L. Activated STING1 rides the Rafeesome. Autophagy 2023; 19:3230-3233. [PMID: 37543953 PMCID: PMC10621249 DOI: 10.1080/15548627.2023.2240154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Over the past decade, accumulated studies have reported the presence of non-canonical macroautophagy/autophagy characterized by the shared usage of the autophagy machinery and distinct components that function in multiple scenarios but do not involve lysosomal degradation. One type of non-canonical autophagy is secretory autophagy, which facilitates the secretion of various cargoes. In a recent work from Gao et al. the ER-membrane protein STING1 has been identified as a novel substrate of secretory autophagy. The secretion of activated STING1 is mediated by its packing into the rafeesome, a newly identified organelle formed upon the fusion of RAB22A-mediated non-canonical autophagosome with an early endosome. Moreover, extracellular vesicles containing activated STING1 induce antitumor immunity in recipient cells, a process potentially promoted by RAB22A.
Collapse
Affiliation(s)
- Yaping Han
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jianfei Zheng
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Liang Ge
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Zimmermann L, Zhao X, Makroczyova J, Wachsmuth-Melm M, Prasad V, Hensel Z, Bartenschlager R, Chlanda P. SARS-CoV-2 nsp3 and nsp4 are minimal constituents of a pore spanning replication organelle. Nat Commun 2023; 14:7894. [PMID: 38036567 PMCID: PMC10689437 DOI: 10.1038/s41467-023-43666-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus replication is associated with the remodeling of cellular membranes, resulting in the formation of double-membrane vesicles (DMVs). A DMV-spanning pore was identified as a putative portal for viral RNA. However, the exact components and the structure of the SARS-CoV-2 DMV pore remain to be determined. Here, we investigate the structure of the DMV pore by in situ cryo-electron tomography combined with subtomogram averaging. We identify non-structural protein (nsp) 3 and 4 as minimal components required for the formation of a DMV-spanning pore, which is dependent on nsp3-4 proteolytic cleavage. In addition, we show that Mac2-Mac3-DPUP-Ubl2 domains are critical for nsp3 oligomerization and crown integrity which influences membrane curvature required for biogenesis of DMVs. Altogether, SARS-CoV-2 nsp3-4 have a dual role by driving the biogenesis of replication organelles and assembly of DMV-spanning pores which we propose here to term replicopores.
Collapse
Affiliation(s)
- Liv Zimmermann
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, 69120, Heidelberg, Germany
| | - Xiaohan Zhao
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, 69120, Heidelberg, Germany
| | - Jana Makroczyova
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, 69120, Heidelberg, Germany
| | - Moritz Wachsmuth-Melm
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, 69120, Heidelberg, Germany
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120, Heidelberg, Germany
| | - Zach Hensel
- ITQB NOVA, Universidade NOVA de Lisboa, 2780-157, Oeiras, Portugal
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, 69120, Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Yang Y, Chen H, Zhang C, Shin HJ, Qian Y, Jung YS. HDAC-Specific Inhibitors Induce the Release of Porcine Epidemic Diarrhea Virus via the COPII-Coated Vesicles. Viruses 2023; 15:1874. [PMID: 37766280 PMCID: PMC10534748 DOI: 10.3390/v15091874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an alpha-coronavirus causing acute diarrhea and high mortality in neonatal suckling piglets, resulting in huge economic losses for the global swine industry. The replication, assembly and cell egression of PEDV, an enveloped RNA virus, are mediated via altered intracellular trafficking. The underlying mechanisms of PEDV secretion are poorly understood. In this study, we found that the histone deacetylase (HDAC)-specific inhibitors, trichostatin A (TSA) and sodium butyrate (NaB), facilitate the secretion of infectious PEDV particles without interfering with its assembly. We found that PEDV N protein and its replicative intermediate dsRNA colocalize with coat protein complex II (COPII)-coated vesicles. We also showed that the colocalization of PEDV and COPII is enhanced by the HDAC-specific inhibitors. In addition, ultrastructural analysis revealed that the HDAC-specific inhibitors promote COPII-coated vesicles carrying PEDV virions and the secretion of COPII-coated vesicles. Consistently, HDAC-specific inhibitors-induced PEDV particle secretion was abolished by Sec24B knockdown, implying that the HDAC-specific inhibitors-mediated COPII-coated vesicles are required for PEDV secretion. Taken together, our findings provide initial evidence suggesting that PEDV virions can assemble in the endoplasmic reticulum (ER) and bud off from the ER in the COPII-coated vesicles. HDAC-specific inhibitors promote PEDV release by hijacking the COPII-coated vesicles.
Collapse
Affiliation(s)
- Ying Yang
- One Health Laboratory, Jiangsu Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Chen
- One Health Laboratory, Jiangsu Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Caisheng Zhang
- One Health Laboratory, Jiangsu Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yingjuan Qian
- One Health Laboratory, Jiangsu Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Taizhou 225300, China
| | - Yong-Sam Jung
- One Health Laboratory, Jiangsu Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Das A, Rivera-Serrano EE, Yin X, Walker CM, Feng Z, Lemon SM. Cell entry and release of quasi-enveloped human hepatitis viruses. Nat Rev Microbiol 2023; 21:573-589. [PMID: 37185947 PMCID: PMC10127183 DOI: 10.1038/s41579-023-00889-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
Infectious hepatitis type A and type E are caused by phylogenetically distinct single-stranded, positive-sense RNA viruses that were once considered to be non-enveloped. However, studies show that both are released nonlytically from hepatocytes as 'quasi-enveloped' virions cloaked in host membranes. These virion types predominate in the blood of infected individuals and mediate virus spread within the liver. They lack virally encoded proteins on their surface and are resistant to neutralizing anti-capsid antibodies induced by infection, yet they efficiently enter cells and initiate new rounds of virus replication. In this Review, we discuss the mechanisms by which specific peptide sequences in the capsids of these quasi-enveloped virions mediate their endosomal sorting complexes required for transport (ESCRT)-dependent release from hepatocytes through multivesicular endosomes, what is known about how they enter cells, and the impact of capsid quasi-envelopment on host immunity and pathogenesis.
Collapse
Affiliation(s)
- Anshuman Das
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lentigen Technology, Inc., Gaithersburg, MD, USA
| | - Efraín E Rivera-Serrano
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, Elon University, Elon, NC, USA
| | - Xin Yin
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Paediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Paediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Laurent T, Carlson LA. The organization of double-stranded RNA in the chikungunya virus replication organelle. PLoS Negl Trop Dis 2023; 17:e0011404. [PMID: 37406010 DOI: 10.1371/journal.pntd.0011404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/22/2023] [Indexed: 07/07/2023] Open
Abstract
Alphaviruses are mosquito-borne, positive-sense single-stranded RNA viruses. Amongst the alphaviruses, chikungunya virus is notable as a large source of human illness, especially in tropical and subtropical regions. When they invade a cell, alphaviruses generate dedicated organelles for viral genome replication, so-called spherules. Spherules form as outward-facing buds at the plasma membrane, and it has recently been shown that the thin membrane neck that connects this membrane bud with the cytoplasm is guarded by a two-megadalton protein complex that contains all the enzymatic functions necessary for RNA replication. The lumen of the spherules contains a single copy of the negative-strand template RNA, present in a duplex with newly synthesized positive-sense RNA. Less is known about the organization of this double-stranded RNA as compared to the protein components of the spherule. Here, we analyzed cryo-electron tomograms of chikungunya virus spherules in terms of the organization of the double-stranded RNA replication intermediate. We find that the double-stranded RNA has a shortened apparent persistence length as compared to unconstrained double-stranded RNA. Around half of the genome is present in either of five conformations identified by subtomogram classification, each representing a relatively straight segment of ~25-32 nm. Finally, the RNA occupies the spherule lumen at a homogeneous density, but has a preferred orientation to be perpendicular to a vector pointing from the membrane neck towards the spherule center. Taken together, this analysis lays another piece of the puzzle of the highly coordinated alphavirus genome replication.
Collapse
Affiliation(s)
- Timothée Laurent
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå, Sweden
| | - Lars-Anders Carlson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå, Sweden
| |
Collapse
|
16
|
Dahmane S, Shankar K, Carlson LA. A 3D view of how enteroviruses hijack autophagy. Autophagy 2023; 19:2156-2158. [PMID: 36471479 PMCID: PMC10283406 DOI: 10.1080/15548627.2022.2153572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Viruses are masters at using cellular pathways to aid their replication. Cryo-electron tomography of poliovirus-infected cells revealed how it utilizes macroautophagy to its advantage. Assembly of these non-enveloped virions takes place directly on membranes and requires PIK3C3/VPS34 activity to be completed, whereas the canonical autophagy inducer ULK1 restricts virus assembly. The tomograms further revealed that enterovirus-induced autophagy is selective for RNA-loaded virions, which may help ensure maximum infectivity of the virus-laden vesicles released through secretory autophagy.
Collapse
Affiliation(s)
- Selma Dahmane
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Kasturika Shankar
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Lars-Anders Carlson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
17
|
Kim H, Aponte-Diaz D, Sotoudegan MS, Shengjuler D, Arnold JJ, Cameron CE. The enterovirus genome can be translated in an IRES-independent manner that requires the initiation factors eIF2A/eIF2D. PLoS Biol 2023; 21:e3001693. [PMID: 36689548 PMCID: PMC9894558 DOI: 10.1371/journal.pbio.3001693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 02/02/2023] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
RNA recombination in positive-strand RNA viruses is a molecular-genetic process, which permits the greatest evolution of the genome and may be essential to stabilizing the genome from the deleterious consequences of accumulated mutations. Enteroviruses represent a useful system to elucidate the details of this process. On the biochemical level, it is known that RNA recombination is catalyzed by the viral RNA-dependent RNA polymerase using a template-switching mechanism. For this mechanism to function in cells, the recombining genomes must be located in the same subcellular compartment. How a viral genome is trafficked to the site of genome replication and recombination, which is membrane associated and isolated from the cytoplasm, is not known. We hypothesized that genome translation was essential for colocalization of genomes for recombination. We show that complete inactivation of internal ribosome entry site (IRES)-mediated translation of a donor enteroviral genome enhanced recombination instead of impairing it. Recombination did not occur by a nonreplicative mechanism. Rather, sufficient translation of the nonstructural region of the genome occurred to support subsequent steps required for recombination. The noncanonical translation initiation factors, eIF2A and eIF2D, were required for IRES-independent translation. Our results support an eIF2A/eIF2D-dependent mechanism under conditions in which the eIF2-dependent mechanism is inactive. Detection of an IRES-independent mechanism for translation of the enterovirus genome provides an explanation for a variety of debated observations, including nonreplicative recombination and persistence of enteroviral RNA lacking an IRES. The existence of an eIF2A/eIF2D-dependent mechanism in enteroviruses predicts the existence of similar mechanisms in other viruses.
Collapse
Affiliation(s)
- Hyejeong Kim
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David Aponte-Diaz
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Mohamad S. Sotoudegan
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | | | - Jamie J. Arnold
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Craig E. Cameron
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|