1
|
Raines ZM, Glazman LI, Chubukov AV. Unconventional Discontinuous Transitions in Isospin Systems. PHYSICAL REVIEW LETTERS 2024; 133:146501. [PMID: 39423386 DOI: 10.1103/physrevlett.133.146501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/26/2024] [Indexed: 10/21/2024]
Abstract
We show that two-dimensional fermions with dispersion k^{2} or k^{4} undergo a first-order Stoner transition to a fully spin-polarized state despite the fact that the spin susceptibility diverges at the critical point. We extend our analysis to systems with dispersion k^{2α} and spin and valley isospin and show that there is a cascade of instabilities into fractional-metal states with some electron bands fully depleted; narrow intermediate ranges of partially depleted bands exist for α<1 or α>2. The susceptibility becomes large near each transition. We discuss applications to biased bi- and trilayer graphene and moiré systems.
Collapse
|
2
|
Valenti A, Calvera V, Kivelson SA, Berg E, Huber SD. Nematic Metal in a Multivalley Electron Gas: Variational Monte Carlo Analysis and Application to AlAs. PHYSICAL REVIEW LETTERS 2024; 132:266501. [PMID: 38996276 DOI: 10.1103/physrevlett.132.266501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 07/14/2024]
Abstract
The two-dimensional electron gas is of fundamental importance in quantum many-body physics. We study a minimal extension of this model with C_{4} (as opposed to full rotational) symmetry and an electronic dispersion with two valleys with anisotropic effective masses. Electrons in our model interact via Coulomb repulsion, screened by distant metallic gates. Using variational Monte Carlo simulations, we find a broad intermediate range of densities with a metallic valley-polarized, spin-unpolarized ground state. Our results are of direct relevance to the recently discovered "nematic" state in AlAs quantum wells. For the effective mass anisotropy relevant to this system, m_{x}/m_{y}≈5.2, we obtain a transition from an anisotropic metal to a valley-polarized metal at r_{s}≈12 (where r_{s} is the dimensionless Wigner-Seitz radius). At still lower densities, we find a (possibly metastable) valley and spin-polarized state with a reduced electronic anisotropy.
Collapse
|
3
|
Zhumagulov Y, Kochan D, Fabian J. Emergent Correlated Phases in Rhombohedral Trilayer Graphene Induced by Proximity Spin-Orbit and Exchange Coupling. PHYSICAL REVIEW LETTERS 2024; 132:186401. [PMID: 38759183 DOI: 10.1103/physrevlett.132.186401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/28/2023] [Accepted: 03/22/2024] [Indexed: 05/19/2024]
Abstract
The impact of proximity-induced spin-orbit and exchange coupling on the correlated phase diagram of rhombohedral trilayer graphene (RTG) is investigated theoretically. By employing ab initio-fitted effective models of RTG encapsulated by transition metal dichalcogenides (spin-orbit proximity effect) and ferromagnetic Cr_{2}Ge_{2}Te_{6} (exchange proximity effect), we incorporate the Coulomb interactions within the random-phase approximation to explore potential correlated phases at different displacement fields and doping. We find a rich spectrum of spin-valley resolved Stoner and intervalley coherence instabilities induced by the spin-orbit proximity effects, such as the emergence of a spin-valley-coherent phase due to the presence of valley-Zeeman coupling. Similarly, proximity exchange removes the phase degeneracies by biasing the spin direction, enabling a magnetocorrelation effect-strong sensitivity of the correlated phases to the relative magnetization orientations (parallel or antiparallel) of the encapsulating ferromagnetic layers.
Collapse
Affiliation(s)
- Yaroslav Zhumagulov
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Denis Kochan
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
- Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
- Center for Quantum Frontiers of Research and Technology (QFort), National Cheng Kung University, Tainan 70101, Taiwan
| | - Jaroslav Fabian
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
4
|
Wang T, Vila M, Zaletel MP, Chatterjee S. Electrical Control of Spin and Valley in Spin-Orbit Coupled Graphene Multilayers. PHYSICAL REVIEW LETTERS 2024; 132:116504. [PMID: 38563932 DOI: 10.1103/physrevlett.132.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024]
Abstract
Electrical control of magnetism has been a major technological pursuit of the spintronics community, owing to its far-reaching implications for data storage and transmission. Here, we propose and analyze a new mechanism for electrical switching of isospin, using chiral-stacked graphene multilayers, such as Bernal bilayer graphene or rhombohedral trilayer graphene, encapsulated by transition metal dichalcogenide (TMD) substrates. Leveraging the proximity-induced spin-orbit coupling from the TMD, we demonstrate electrical switching of correlation-induced spin and/or valley polarization, by reversing a perpendicular displacement field or the chemical potential. We substantiate our proposal with both analytical arguments and self-consistent Hartree-Fock numerics. Finally, we illustrate how the relative alignment of the TMDs, together with the top and bottom gate voltages, can be used to selectively switch distinct isospin flavors, putting forward correlated Van der Waals heterostructures as a promising platform for spintronics and valleytronics.
Collapse
Affiliation(s)
- Taige Wang
- Department of Physics, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Marc Vila
- Department of Physics, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Michael P Zaletel
- Department of Physics, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Shubhayu Chatterjee
- Department of Physics, University of California, Berkeley, California 94720, USA
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
5
|
Antebi O, Stern A, Berg E. Stoner Ferromagnetism in a Momentum-Confined Interacting 2D Electron Gas. PHYSICAL REVIEW LETTERS 2024; 132:086501. [PMID: 38457700 DOI: 10.1103/physrevlett.132.086501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/11/2023] [Accepted: 01/19/2024] [Indexed: 03/10/2024]
Abstract
In this work we investigate the ground state of a momentum-confined interacting 2D electron gas, a momentum-space analog of an infinite quantum well. The study is performed by combining analytical results with a numerical exact diagonalization procedure. We find a ferromagnetic ground state near a particular electron density and for a range of effective electron (or hole) masses. We argue that this observation may be relevant to the generalized Stoner ferromagnetism recently observed in multilayer graphene systems. The collective magnon excitations exhibit a linear dispersion, which originates from a diverging spin stiffness.
Collapse
Affiliation(s)
- Ohad Antebi
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ady Stern
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Erez Berg
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
6
|
Xie YM, Lantagne-Hurtubise É, Young AF, Nadj-Perge S, Alicea J. Gate-Defined Topological Josephson Junctions in Bernal Bilayer Graphene. PHYSICAL REVIEW LETTERS 2023; 131:146601. [PMID: 37862641 DOI: 10.1103/physrevlett.131.146601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/07/2023] [Indexed: 10/22/2023]
Abstract
Recent experiments on Bernal bilayer graphene (BLG) deposited on monolayer WSe_{2} revealed robust, ultraclean superconductivity coexisting with sizable induced spin-orbit coupling. Here, we propose BLG/WSe_{2} as a platform to engineer gate-defined planar topological Josephson junctions, where the normal and superconducting regions descend from a common material. More precisely, we show that if superconductivity in BLG/WSe_{2} is gapped and emerges from a parent state with intervalley coherence, then Majorana zero-energy modes can form in the barrier region upon applying weak in-plane magnetic fields. Our results spotlight a potential pathway for "internally engineered" topological superconductivity that minimizes detrimental disorder and orbital-magnetic-field effects.
Collapse
Affiliation(s)
- Ying-Ming Xie
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA
| | - Étienne Lantagne-Hurtubise
- Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA
| | - Andrea F Young
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Stevan Nadj-Perge
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - Jason Alicea
- Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
7
|
Dong Z, Lee PA, Levitov LS. Signatures of Cooper pair dynamics and quantum-critical superconductivity in tunable carrier bands. Proc Natl Acad Sci U S A 2023; 120:e2305943120. [PMID: 37738298 PMCID: PMC10523641 DOI: 10.1073/pnas.2305943120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/21/2023] [Indexed: 09/24/2023] Open
Abstract
Different superconducting pairing mechanisms are markedly distinct in the underlying Cooper pair kinematics. Quantum-critical soft modes drive pairing interactions in which the pair scattering processes are highly collinear and can be classified into two categories: forward scattering and backscattering. Conversely, in conventional phonon mechanisms, Cooper pair scattering is of a generic noncollinear character. In this study, we present a method to discern the kinematic type by observing the evolution of superconductivity while adjusting the Fermi surface geometry. To demonstrate our approach, we utilize the recently reported phase diagrams of untwisted graphene multilayers. Our analysis connects the emergence of superconductivity at "ghost crossings" of Fermi surfaces in distinct valleys to the pair kinematics of a backscattering type. Together with the observed nonmonotonic behavior of superconductivity near its onset (sharp rise followed by a drop), it lends strong support to a particular quantum-critical superconductivity scenario in which pairing is driven by intervalley coherence fluctuations. These findings offer direct insights into the genesis of pairing in these systems, providing compelling evidence for the electron-electron interactions driving superconductivity. More broadly, our work highlights the potential of tuning bands via ghost crossings as a promising means of boosting superconductivity.
Collapse
Affiliation(s)
- Zhiyu Dong
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Patrick A. Lee
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Leonid S. Levitov
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
8
|
Liang J, Yang D, Xiao Y, Chen S, Dadap JI, Rottler J, Ye Z. Shear Strain-Induced Two-Dimensional Slip Avalanches in Rhombohedral MoS 2. NANO LETTERS 2023; 23:7228-7235. [PMID: 37358360 DOI: 10.1021/acs.nanolett.3c01487] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Slip avalanches are ubiquitous phenomena occurring in three-dimensional materials under shear strain, and their study contributes immensely to our understanding of plastic deformation, fragmentation, and earthquakes. So far, little is known about the role of shear strain in two-dimensional (2D) materials. Here we show some evidence of 2D slip avalanches in exfoliated rhombohedral MoS2, triggered by shear strain near the threshold level. Utilizing interfacial polarization in 3R-MoS2, we directly probe the stacking order in multilayer flakes and discover a wide variety of polarization domains with sizes following a power-law distribution. These findings suggest that slip avalanches can occur during the exfoliation of 2D materials, and the stacking orders can be changed via shear strain. Our observation has far-reaching implications for the development of new materials and technologies, where precise control over the atomic structure of these materials is essential for optimizing their properties as well as for our understanding of fundamental physical phenomena.
Collapse
Affiliation(s)
- Jing Liang
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Dongyang Yang
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yunhuan Xiao
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sean Chen
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jerry I Dadap
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joerg Rottler
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ziliang Ye
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
9
|
González J, Stauber T. Ising superconductivity induced from spin-selective valley symmetry breaking in twisted trilayer graphene. Nat Commun 2023; 14:2746. [PMID: 37173312 PMCID: PMC10182018 DOI: 10.1038/s41467-023-38250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
We show that the e-e interaction induces a strong breakdown of valley symmetry for each spin channel in twisted trilayer graphene, leading to a ground state where the two spin projections have opposite sign of the valley symmetry breaking order parameter. This leads to a spin-valley locking in which the electrons of a Cooper pair are forced to live on different Fermi lines attached to opposite valleys. Furthermore, we find an effective intrinsic spin-orbit coupling explaining the protection of the superconductivity against in-plane magnetic fields. The effect of spin-selective valley symmetry breaking is validated as it reproduces the experimental observation of the reset of the Hall density at 2-hole doping. It also implies a breakdown of the symmetry of the bands from C6 to C3, with an enhancement of the anisotropy of the Fermi lines which is at the origin of a Kohn-Luttinger (pairing) instability. The isotropy of the bands is gradually recovered, however, when the Fermi level approaches the bottom of the second valence band, explaining why the superconductivity fades away in the doping range beyond 3 holes per moiré unit cell in twisted trilayer graphene.
Collapse
Affiliation(s)
- J González
- Instituto de Estructura de la Materia, CSIC, E-28006, Madrid, Spain.
| | - T Stauber
- Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049, Madrid, Spain.
| |
Collapse
|
10
|
Curtis JB, Poniatowski NR, Xie Y, Yacoby A, Demler E, Narang P. Stabilizing Fluctuating Spin-Triplet Superconductivity in Graphene via Induced Spin-Orbit Coupling. PHYSICAL REVIEW LETTERS 2023; 130:196001. [PMID: 37243633 DOI: 10.1103/physrevlett.130.196001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/11/2023] [Indexed: 05/29/2023]
Abstract
A recent experiment showed that a proximity-induced Ising spin-orbit coupling enhances the spin-triplet superconductivity in Bernal bilayer graphene. Here, we show that, due to the nearly perfect spin rotation symmetry of graphene, the fluctuations of the spin orientation of the triplet order parameter suppress the superconducting transition to nearly zero temperature. Our analysis shows that both an Ising spin-orbit coupling and an in-plane magnetic field can eliminate these low-lying fluctuations and can greatly enhance the transition temperature, consistent with the recent experiment. Our model also suggests the possible existence of a phase at small anisotropy and magnetic field which exhibits quasilong-range ordered spin-singlet charge 4e superconductivity, even while the triplet 2e superconducting order only exhibits short-ranged correlations. Finally, we discuss relevant experimental signatures.
Collapse
Affiliation(s)
- Jonathan B Curtis
- College of Letters and Science, University of California, Los Angeles, California 90095, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | - Yonglong Xie
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Amir Yacoby
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Eugene Demler
- Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - Prineha Narang
- College of Letters and Science, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
11
|
Qin W, Huang C, Wolf T, Wei N, Blinov I, MacDonald AH. Functional Renormalization Group Study of Superconductivity in Rhombohedral Trilayer Graphene. PHYSICAL REVIEW LETTERS 2023; 130:146001. [PMID: 37084431 DOI: 10.1103/physrevlett.130.146001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/01/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
We employ a functional renormalization group approach to ascertain the pairing mechanism and symmetry of the superconducting phase observed in rhombohedral trilayer graphene. Superconductivity in this system occurs in a regime of carrier density and displacement field with a weakly distorted annular Fermi sea. We find that repulsive Coulomb interactions can induce electron pairing on the Fermi surface by taking advantage of momentum-space structure associated with the finite width of the Fermi sea annulus. The degeneracy between spin-singlet and spin-triplet pairing is lifted by valley-exchange interactions that strengthen under the RG flow and develop nontrivial momentum-space structure. We find that the leading pairing instability is d-wave-like and spin singlet, and that the theoretical phase diagram versus carrier density and displacement field agrees qualitatively with experiment.
Collapse
Affiliation(s)
- Wei Qin
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - Chunli Huang
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
- Theoretical Division, T-4, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Tobias Wolf
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - Nemin Wei
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - Igor Blinov
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - Allan H MacDonald
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
12
|
Juričić V, Muñoz E, Soto-Garrido R. Optical Conductivity as a Probe of the Interaction-Driven Metal in Rhombohedral Trilayer Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3727. [PMID: 36364504 PMCID: PMC9657299 DOI: 10.3390/nano12213727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Study of the strongly correlated states in van der Waals heterostructures is one of the central topics in modern condensed matter physics. Among these, the rhombohedral trilayer graphene (RTG) occupies a prominent place since it hosts a variety of interaction-driven phases, with the metallic ones yielding exotic superconducting orders upon doping. Motivated by these experimental findings, we show within the framework of the low-energy Dirac theory that the optical conductivity can distinguish different candidates for a paramagnetic metallic ground state in this system. In particular, this observable shows a single peak in the fully gapped valence-bond state. On the other hand, the bond-current state features two pronounced peaks in the optical conductivity as the probing frequency increases. Finally, the rotational symmetry breaking charge-density wave exhibits a minimal conductivity with the value independent of the amplitude of the order parameter, which corresponds precisely to the splitting of the two cubic nodal points at the two valleys into two triplets of the band touching points featuring linearly dispersing quasiparticles. These features represent the smoking gun signatures of different candidate order parameters for the paramagnetic metallic ground state, which should motivate further experimental studies of the RTG.
Collapse
Affiliation(s)
- Vladimir Juričić
- Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110, Valparaíso 2340000, Chile
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, 106 91 Stockholm, Sweden
| | - Enrique Muñoz
- Facultad de Física, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 8331150, Chile
| | - Rodrigo Soto-Garrido
- Facultad de Física, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 8331150, Chile
| |
Collapse
|