1
|
Liu W, Heij J, Liu S, Liebrand L, Caan M, van der Zwaag W, Veltman DJ, Lu L, Aghajani M, van Wingen G. Structural connectivity of thalamic subnuclei in major depressive disorder: An ultra-high resolution diffusion MRI study at 7-Tesla. J Affect Disord 2025; 370:412-426. [PMID: 39505018 DOI: 10.1016/j.jad.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND The thalamus serves as a central relay station within the brain, and thalamic connectional anomalies are increasingly thought to be present in major depressive disorder (MDD). However, the use of conventional MRI scanners and acquisition techniques has prevented a thorough examination of the thalamus and its subnuclear connectional profile. We combined ultra-high field diffusion MRI acquired at 7.0 Tesla to map the white matter connectivity of thalamic subnuclei. METHODS Fifty-three MDD patients and 12 healthy controls (HCs) were involved in the final analysis. FreeSurfer was used to segment the thalamic subnuclei, and MRtrix was used to perform the preprocessing and tractography. Fractional anisotropy, axial diffusivity, mean diffusivity, radial diffusivity, and streamline count of thalamic subnuclear tracts were measured as proxies of white matter microstructure. Bayesian multilevel model was used to assess group differences in white matter metrics for each thalamic subnuclear tract and the association between these white matter metrics and clinical features in MDD. RESULTS Evidence was found for reduced whiter matter metrics of the tracts spanning from all thalamic subnuclei among MDD versus HC participants. Moreover, evidence was found that white matter in various thalamic subnuclear tracts is related to medication status, age of onset and recurrence in MDD. CONCLUSIONS Structural connectivity was generally reduced in thalamic subnuclei in MDD participants. Several clinical characteristics are related to perturbed subnuclear thalamic connectivity with cortical and subcortical circuits that govern sensory processing, emotional function, and goal-directed behavior.
Collapse
Affiliation(s)
- Weijian Liu
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands; Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China.
| | - Jurjen Heij
- Spinoza Centre for Neuroimaging, KNAW, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, KNAW, Amsterdam, the Netherlands
| | - Shu Liu
- Key Laboratory of Genetic Evolution & Animal Models, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Luka Liebrand
- Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiation Oncology, Amsterdam, the Netherlands
| | - Matthan Caan
- Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering & Physics, Amsterdam, the Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, KNAW, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, KNAW, Amsterdam, the Netherlands
| | - Dick J Veltman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China; Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.
| | - Moji Aghajani
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Institute of Education & Child Studies, Section Forensic Family & Youth Care, Leiden University, the Netherlands
| | - Guido van Wingen
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Jang G, Kragel PA. Understanding human amygdala function with artificial neural networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605621. [PMID: 39131372 PMCID: PMC11312467 DOI: 10.1101/2024.07.29.605621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The amygdala is a cluster of subcortical nuclei that receives diverse sensory inputs and projects to the cortex, midbrain and other subcortical structures. Numerous accounts of amygdalar contributions to social and emotional behavior have been offered, yet an overarching description of amygdala function remains elusive. Here we adopt a computationally explicit framework that aims to develop a model of amygdala function based on the types of sensory inputs it receives, rather than individual constructs such as threat, arousal, or valence. Characterizing human fMRI signal acquired as participants viewed a full-length film, we developed encoding models that predict both patterns of amygdala activity and self-reported valence evoked by naturalistic images. We use deep image synthesis to generate artificial stimuli that distinctly engage encoding models of amygdala subregions that systematically differ from one another in terms of their low-level visual properties. These findings characterize how the amygdala compresses high-dimensional sensory inputs into low-dimensional representations relevant for behavior.
Collapse
|
3
|
Carrasco M, Spering M. Perception-action Dissociations as a Window into Consciousness. J Cogn Neurosci 2024; 36:1557-1566. [PMID: 38865201 DOI: 10.1162/jocn_a_02122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Understanding the neural correlates of unconscious perception stands as a primary goal of experimental research in cognitive psychology and neuroscience. In this Perspectives paper, we explain why experimental protocols probing qualitative dissociations between perception and action provide valuable insights into conscious and unconscious processing, along with their corresponding neural correlates. We present research that utilizes human eye movements as a sensitive indicator of unconscious visual processing. Given the increasing reliance on oculomotor and pupillary responses in consciousness research, these dissociations also provide a cautionary tale about inferring conscious perception solely based on no-report protocols.
Collapse
|
4
|
Jungmann RM, Feliciano T, Aguiar LAA, Soares-Cunha C, Coimbra B, Rodrigues AJ, Copelli M, Matias FS, de Vasconcelos NAP, Carelli PV. State-dependent complexity of the local field potential in the primary visual cortex. Phys Rev E 2024; 110:014402. [PMID: 39160943 DOI: 10.1103/physreve.110.014402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/06/2024] [Indexed: 08/21/2024]
Abstract
The local field potential (LFP) is as a measure of the combined activity of neurons within a region of brain tissue. While biophysical modeling schemes for LFP in cortical circuits are well established, there is a paramount lack of understanding regarding the LFP properties along the states assumed in cortical circuits over long periods. Here we use a symbolic information approach to determine the statistical complexity based on Jensen disequilibrium measure and Shannon entropy of LFP data recorded from the primary visual cortex (V1) of urethane-anesthetized rats and freely moving mice. Using these information quantifiers, we find consistent relations between LFP recordings and measures of cortical states at the neuronal level. More specifically, we show that LFP's statistical complexity is sensitive to cortical state (characterized by spiking variability), as well as to cortical layer. In addition, we apply these quantifiers to characterize behavioral states of freely moving mice, where we find indirect relations between such states and spiking variability.
Collapse
Affiliation(s)
| | | | | | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | | | | | | | | |
Collapse
|
5
|
Taubert J, Wardle SG, Patterson A, Baker CI. Beyond faces: the contribution of the amygdala to visual processing in the macaque brain. Cereb Cortex 2024; 34:bhae245. [PMID: 38864574 PMCID: PMC11485272 DOI: 10.1093/cercor/bhae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/03/2024] [Accepted: 05/25/2024] [Indexed: 06/13/2024] Open
Abstract
The amygdala is present in a diverse range of vertebrate species, such as lizards, rodents, and primates; however, its structure and connectivity differs across species. The increased connections to visual sensory areas in primate species suggests that understanding the visual selectivity of the amygdala in detail is critical to revealing the principles underlying its function in primate cognition. Therefore, we designed a high-resolution, contrast-agent enhanced, event-related fMRI experiment, and scanned 3 adult rhesus macaques, while they viewed 96 naturalistic stimuli. Half of these stimuli were social (defined by the presence of a conspecific), the other half were nonsocial. We also nested manipulations of emotional valence (positive, neutral, and negative) and visual category (faces, nonfaces, animate, and inanimate) within the stimulus set. The results reveal widespread effects of emotional valence, with the amygdala responding more on average to inanimate objects and animals than faces, bodies, or social agents in this experimental context. These findings suggest that the amygdala makes a contribution to primate vision that goes beyond an auxiliary role in face or social perception. Furthermore, the results highlight the importance of stimulus selection and experimental design when probing the function of the amygdala and other visually responsive brain regions.
Collapse
Affiliation(s)
- Jessica Taubert
- Laboratory of Brain and Cognition, National Institute of Mental Health, 10 Center Dr, Bethesda, MD 20892 USA
- School of Psychology, Level 3, McElwain Building (24A), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Susan G Wardle
- Laboratory of Brain and Cognition, National Institute of Mental Health, 10 Center Dr, Bethesda, MD 20892 USA
| | - Amanda Patterson
- Laboratory of Brain and Cognition, National Institute of Mental Health, 10 Center Dr, Bethesda, MD 20892 USA
| | - Chris I Baker
- Laboratory of Brain and Cognition, National Institute of Mental Health, 10 Center Dr, Bethesda, MD 20892 USA
| |
Collapse
|
6
|
Bachmann HP, Japee S, Merriam EP, Liu TT. Emotion and anxiety interact to bias spatial attention. Emotion 2024; 24:1109-1124. [PMID: 38127536 PMCID: PMC11116080 DOI: 10.1037/emo0001322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Emotional expressions are an evolutionarily conserved means of social communication essential for social interactions. It is important to understand how anxious individuals perceive their social environments, including emotional expressions, especially with the rising prevalence of anxiety during the COVID-19 pandemic. Anxiety is often associated with an attentional bias for threat-related stimuli, such as angry faces. Yet the mechanisms by which anxiety enhances or impairs two key components of spatial attention-attentional capture and attentional disengagement-to emotional expressions are still unclear. Moreover, positive valence is often ignored in studies of threat-related attention and anxiety, despite the high occurrence of happy faces during everyday social interaction. Here, we investigated the relationship between anxiety, emotional valence, and spatial attention in 574 participants across two preregistered studies (data collected in 2021 and 2022; Experiment 1: n = 154, 54.5% male, Mage = 43.5 years; Experiment 2: n = 420, 58% male, Mage = 36.46 years). We found that happy faces capture attention more quickly than angry faces during the visual search experiment and found delayed disengagement from both angry and happy faces over neutral faces during the spatial cueing experiment. We also show that anxiety has a distinct impact on both attentional capture and disengagement of emotional faces. Together, our findings highlight the role of positively valenced stimuli in attracting and holding attention and suggest that anxiety is a critical factor in modulating spatial attention to emotional stimuli. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Helena P. Bachmann
- Computational Neuroimaging and Perception Group, Laboratory
of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD,
USA
| | - Shruti Japee
- Section on Learning and Plasticity, Laboratory of Brain and
Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Elisha P. Merriam
- Computational Neuroimaging and Perception Group, Laboratory
of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD,
USA
| | - Tina T. Liu
- Computational Neuroimaging and Perception Group, Laboratory
of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD,
USA
| |
Collapse
|
7
|
Bo K, Kraynak TE, Kwon M, Sun M, Gianaros PJ, Wager TD. A systems identification approach using Bayes factors to deconstruct the brain bases of emotion regulation. Nat Neurosci 2024; 27:975-987. [PMID: 38519748 DOI: 10.1038/s41593-024-01605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/15/2024] [Indexed: 03/25/2024]
Abstract
Cognitive reappraisal is fundamental to cognitive therapies and everyday emotion regulation. Analyses using Bayes factors and an axiomatic systems identification approach identified four reappraisal-related components encompassing distributed neural activity patterns across two independent functional magnetic resonance imaging (fMRI) studies (n = 182 and n = 176): (1) an anterior prefrontal system selectively involved in cognitive reappraisal; (2) a fronto-parietal-insular system engaged by both reappraisal and emotion generation, demonstrating a general role in appraisal; (3) a largely subcortical system activated during negative emotion generation but unaffected by reappraisal, including amygdala, hypothalamus and periaqueductal gray; and (4) a posterior cortical system of negative emotion-related regions downregulated by reappraisal. These systems covaried with individual differences in reappraisal success and were differentially related to neurotransmitter binding maps, implicating cannabinoid and serotonin systems in reappraisal. These findings challenge 'limbic'-centric models of reappraisal and provide new systems-level targets for assessing and enhancing emotion regulation.
Collapse
Affiliation(s)
- Ke Bo
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Thomas E Kraynak
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mijin Kwon
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Michael Sun
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
8
|
Dresbach S, Huber LR, Gulban OF, Goebel R. Layer-fMRI VASO with short stimuli and event-related designs at 7 T. Neuroimage 2023; 279:120293. [PMID: 37562717 DOI: 10.1016/j.neuroimage.2023.120293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023] Open
Abstract
Layers and columns are the dominant processing units in the human (neo)cortex at the mesoscopic scale. While the blood oxygenation dependent (BOLD) signal has a high detection sensitivity, it is biased towards unwanted signals from large draining veins at the cortical surface. The additional fMRI contrast of vascular space occupancy (VASO) has the potential to augment the neuroscientific interpretability of layer-fMRI results by means of capturing complementary information of locally specific changes in cerebral blood volume (CBV). Specifically, VASO is not subject to unwanted sensitivity amplifications of large draining veins. Because of constrained sampling efficiency, it has been mainly applied in combination with efficient block task designs and long trial durations. However, to study cognitive processes in neuroscientific contexts, or probe vascular reactivity, short stimulation periods are often necessary. Here, we developed a VASO acquisition procedure with a short acquisition period and sub-millimeter resolution. During visual event-related stimulation, we show reliable responses in visual cortices within a reasonable number of trials (∼20). Furthermore, the short TR and high spatial specificity of our VASO implementation enabled us to show differences in laminar reactivity and onset times. Finally, we explore the generalizability to a different stimulus modality (somatosensation). With this, we showed that CBV-sensitive VASO provides the means to capture layer-specific haemodynamic responses with high spatio-temporal resolution and is able to be used with event-related paradigms.
Collapse
Affiliation(s)
- Sebastian Dresbach
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Laurentius Renzo Huber
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; National Institute of Health, Bethesda, DC, USA
| | - Omer Faruk Gulban
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Brain Innovation, Maastricht, Netherlands
| | - Rainer Goebel
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Brain Innovation, Maastricht, Netherlands
| |
Collapse
|
9
|
Babenko VV, Yavna DV, Ermakov PN, Anokhina PV. Nonlocal contrast calculated by the second order visual mechanisms and its significance in identifying facial emotions. F1000Res 2023; 10:274. [PMID: 37767361 PMCID: PMC10521119 DOI: 10.12688/f1000research.28396.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Previously obtained results indicate that faces are / preattentively/ detected in the visual scene very fast, and information on facial expression is rapidly extracted at the lower levels of the visual system. At the same time different facial attributes make different contributions in facial expression recognition. However, it is known, among the preattentive mechanisms there are none that would be selective for certain facial features, such as eyes or mouth. The aim of our study was to identify a candidate for the role of such a mechanism. Our assumption was that the most informative areas of the image are those characterized by spatial heterogeneity, particularly with nonlocal contrast changes. These areas may be identified / in the human visual system/ by the second-order visual / mechanisms/ filters selective to contrast modulations of brightness gradients. Methods: We developed a software program imitating the operation of these / mechanisms/ filters and finding areas of contrast heterogeneity in the image. Using this program, we extracted areas with maximum, minimum and medium contrast modulation amplitudes from the initial face images, then we used these to make three variants of one and the same face. The faces were demonstrated to the observers along with other objects synthesized the same way. The participants had to identify faces and define facial emotional expressions. Results: It was found that the greater is the contrast modulation amplitude of the areas shaping the face, the more precisely the emotion is identified. Conclusions: The results suggest that areas with a greater increase in nonlocal contrast are more informative in facial images, and the second-order visual / mechanisms/ filters can claim the role of /filters/ elements that detect areas of interest, attract visual attention and are windows through which subsequent levels of visual processing receive valuable information.
Collapse
Affiliation(s)
- Vitaly V. Babenko
- Department of Psychophysiology and Clinical Psychology, Academy of Psychology and Education Sciences, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Denis V. Yavna
- Department of Psychophysiology and Clinical Psychology, Academy of Psychology and Education Sciences, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Pavel N. Ermakov
- Department of Psychophysiology and Clinical Psychology, Academy of Psychology and Education Sciences, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Polina V. Anokhina
- Department of Psychophysiology and Clinical Psychology, Academy of Psychology and Education Sciences, Southern Federal University, Rostov-on-Don, Russian Federation
| |
Collapse
|