1
|
Scanlan RL, Pease L, O'Keefe H, Martinez-Guimera A, Rasmussen L, Wordsworth J, Shanley D. Systematic transcriptomic analysis and temporal modelling of human fibroblast senescence. FRONTIERS IN AGING 2024; 5:1448543. [PMID: 39267611 PMCID: PMC11390594 DOI: 10.3389/fragi.2024.1448543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Cellular senescence is a diverse phenotype characterised by permanent cell cycle arrest and an associated secretory phenotype (SASP) which includes inflammatory cytokines. Typically, senescent cells are removed by the immune system, but this process becomes dysregulated with age causing senescent cells to accumulate and induce chronic inflammatory signalling. Identifying senescent cells is challenging due to senescence phenotype heterogeneity, and senotherapy often requires a combinatorial approach. Here we systematically collected 119 transcriptomic datasets related to human fibroblasts, forming an online database describing the relevant variables for each study allowing users to filter for variables and genes of interest. Our own analysis of the database identified 28 genes significantly up- or downregulated across four senescence types (DNA damage induced senescence (DDIS), oncogene induced senescence (OIS), replicative senescence, and bystander induced senescence) compared to proliferating controls. We also found gene expression patterns of conventional senescence markers were highly specific and reliable for different senescence inducers, cell lines, and timepoints. Our comprehensive data supported several observations made in existing studies using single datasets, including stronger p53 signalling in DDIS compared to OIS. However, contrary to some early observations, both p16 and p21 mRNA levels rise quickly, depending on senescence type, and persist for at least 8-11 days. Additionally, little evidence was found to support an initial TGFβ-centric SASP. To support our transcriptomic analysis, we computationally modelled temporal protein changes of select core senescence proteins during DDIS and OIS, as well as perform knockdown interventions. We conclude that while universal biomarkers of senescence are difficult to identify, conventional senescence markers follow predictable profiles and construction of a framework for studying senescence could lead to more reproducible data and understanding of senescence heterogeneity.
Collapse
Affiliation(s)
- R-L Scanlan
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - L Pease
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - H O'Keefe
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - A Martinez-Guimera
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - L Rasmussen
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - J Wordsworth
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - D Shanley
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
2
|
Hu R, Fan W, Li S, Zhang G, Zang L, Qin L, Li R, Chen R, Zhang L, Gu W, Zhang Y, Rajagopalan S, Sun Q, Liu C. PM 2.5-induced cellular senescence drives brown adipose tissue impairment in middle-aged mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116423. [PMID: 38705039 DOI: 10.1016/j.ecoenv.2024.116423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Airborne fine particulate matter (PM2.5) exposure is closely associated with metabolic disturbance, in which brown adipose tissue (BAT) is one of the main contributing organs. However, knowledge of the phenotype and mechanism of PM2.5 exposure-impaired BAT is quite limited. In the study, male C57BL/6 mice at three different life phases (young, adult, and middle-aged) were simultaneously exposed to concentrated ambient PM2.5 or filtered air for 8 weeks using a whole-body inhalational exposure system. H&E staining and high-resolution respirometry were used to assess the size of adipocytes and mitochondrial function. Transcriptomics was performed to determine the differentially expressed genes in BAT. Quantitative RT-PCR, immunohistochemistry staining, and immunoblots were performed to verify the transcriptomics and explore the mechanism for BAT mitochondrial dysfunction. Firstly, PM2.5 exposure caused altered BAT morphology and mitochondrial dysfunction in middle-aged but not young or adult mice. Furthermore, PM2.5 exposure increased cellular senescence in BAT of middle-aged mice, accompanied by cell cycle arrest, impaired DNA replication, and inhibited AKT signaling pathway. Moreover, PM2.5 exposure disrupted apoptosis and autophagy homeostasis in BAT of middle-aged mice. Therefore, BAT in middle-aged mice was more vulnerable to PM2.5 exposure, and the cellular senescence-initiated apoptosis, autophagy, and mitochondrial dysfunction may be the mechanism of PM2.5 exposure-induced BAT impairment.
Collapse
Affiliation(s)
- Renjie Hu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Wenjun Fan
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sanduo Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guoqing Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Lu Zang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Li Qin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Yunhui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200433, China
| | - Sanjay Rajagopalan
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China.
| |
Collapse
|
3
|
Deinhardt-Emmer S, Deshpande S, Kitazawa K, Herman AB, Bons J, Rose JP, Kumar PA, Anerillas C, Neri F, Ciotlos S, Perez K, Köse-Vogel N, Häder A, Abdelmohsen K, Löffler B, Gorospe M, Desprez PY, Melov S, Furman D, Schilling B, Campisi J. Role of the Senescence-Associated Factor Dipeptidyl Peptidase 4 in the Pathogenesis of SARS-CoV-2 Infection. Aging Dis 2024; 15:1398-1415. [PMID: 37728586 PMCID: PMC11081172 DOI: 10.14336/ad.2023.0812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/12/2023] [Indexed: 09/21/2023] Open
Abstract
During cellular senescence, persistent growth arrest and changes in protein expression programs are accompanied by a senescence-associated secretory phenotype (SASP). In this study, we detected the upregulation of the SASP-related protein dipeptidyl peptidase 4 (DDP4) in human primary lung cells rendered senescent by exposure to ionizing radiation. DPP4 is an exopeptidase that plays a crucial role in the cleavage of various proteins, resulting in the loss of N-terminal dipeptides and proinflammatory effects. Interestingly, our data revealed an association between severe coronavirus disease 2019 (COVID-19) and DDP4, namely that DPP4 levels increased in the plasma of patients with COVID-19 and were correlated with age and disease progression. Although we could not determine the direct effect of DDP4 on viral replication, mechanistic studies in cell culture revealed a negative impact on the expression of the tight junction protein zonula occludens-1 (ZO-1), which contributes to epithelial barrier function. Mass spectrometry analysis indicated that DPP4 overexpressing cells exhibited a decrease in ZO-1 and increased expression of pro-inflammatory cytokines and chemokines. By investigating the effect of DPP4 on the barrier function of human primary cells, we detected an increase in ZO-1 using DPP4 inhibitors. These results provide an important contribution to our understanding of DPP4 in the context of senescence, suggesting that DPP4 plays a major role as part of the SASP. Our results provide evidence that cellular senescence, a hallmark of aging, has an important impact on respiratory infections.
Collapse
Affiliation(s)
- Stefanie Deinhardt-Emmer
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
- Institute of Medical Microbiology, Jena University Hospital, Germany.
| | | | - Koji Kitazawa
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - Allison B. Herman
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - Jacob P. Rose
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | | | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Francesco Neri
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - Serban Ciotlos
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - Kevin Perez
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - Nilay Köse-Vogel
- Institute of Medical Microbiology, Jena University Hospital, Germany.
| | - Antje Häder
- Institute of Medical Microbiology, Jena University Hospital, Germany.
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Germany.
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - David Furman
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA 94305, USA.
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | | | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
4
|
Anerillas C, Perramon-Güell A, Altés G, Cuesta S, Vaquero M, Olomí A, Rodríguez-Barrueco R, Llobet-Navàs D, Egea J, Dolcet X, Yeramian A, Encinas M. Sprouty1 is a broad mediator of cellular senescence. Cell Death Dis 2024; 15:296. [PMID: 38670941 PMCID: PMC11053034 DOI: 10.1038/s41419-024-06689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Genes of the Sprouty family (Spry1-4) restrain signaling by certain receptor tyrosine kinases. Consequently, these genes participate in several developmental processes and function as tumor suppressors in adult life. Despite these important roles, the biology of this family of genes still remains obscure. Here we show that Sprouty proteins are general mediators of cellular senescence. Induction of cellular senescence by several triggers in vitro correlates with upregulation of Sprouty protein levels. More importantly, overexpression of Sprouty genes is sufficient to cause premature cellular senescence, via a conserved N-terminal tyrosine (Tyrosine 53 of Sprouty1). Accordingly, fibroblasts from knockin animals lacking that tyrosine escape replicative senescence. In vivo, heterozygous knockin mice display delayed induction of cellular senescence during cutaneous wound healing and upon chemotherapy-induced cellular senescence. Unlike other functions of this family of genes, induction of cellular senescence appears to be independent of activation of the ERK1/2 pathway. Instead, we show that Sprouty proteins induce cellular senescence upstream of the p38 pathway in these in vitro and in vivo paradigms.
Collapse
Affiliation(s)
- Carlos Anerillas
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain.
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, USA.
- Homeostasis de tejidos y órganos program, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Autónoma de Madrid, Madrid, Spain.
| | - Aida Perramon-Güell
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Gisela Altés
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Sara Cuesta
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
- Fundación de Investigación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Novena Planta, Investigación, Av Ana de Viya, 21, Cádiz, Spain
| | - Marta Vaquero
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
- Hospital Universitari Arnau de Vilanova, Rovira Roure, 80, Lleida, Spain
| | - Anna Olomí
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Ruth Rodríguez-Barrueco
- Laboratory of Precision Medicine, Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l'Hospitalet, Barcelona, Spain
| | - David Llobet-Navàs
- Laboratory of Precision Medicine, Oncobell Program. Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l'Hospitalet, Barcelona, Spain
| | - Joaquim Egea
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Xavi Dolcet
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Andrée Yeramian
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain
| | - Mario Encinas
- Developmental and Oncogenic Signaling Group, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Rovira Roure, 80, Lleida, Spain.
| |
Collapse
|
5
|
Cheng PP, Yu F, Chen SJ, Feng X, Jia ZH, Hu SH, Cui XL, Zhou YY, Niu Q, Liang LM, Wang M, Song LJ, He XL, Xiong L, Xiang F, Wang X, Ma WL, Ye H. PM2.5 exposure-induced senescence-associated secretory phenotype in airway smooth muscle cells contributes to airway remodeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123674. [PMID: 38458517 DOI: 10.1016/j.envpol.2024.123674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Fine particulate matter (PM2.5) has been linked to increased severity and incidence of airway diseases, especially chronic obstructive pulmonary disease (COPD) and asthma. Airway remodeling is an important event in both COPD and asthma, and airway smooth muscle cells (ASMCs) are key cells which directly involved in airway remodeling. However, it was unclear how PM2.5 affected ASMCs. This study investigates the effects of PM2.5 on airway smooth muscle and its mechanism. We first showed that inhaled particulate matter was distributed in the airway smooth muscle bundle, combined with increased airway smooth muscle bundle and collagen deposition in vivo. Then, we demonstrated that PM2.5 induced up-regulation of collagen-I and alpha-smooth muscle actin (α-SMA) expression in rat and human ASMCs in vitro. Next, we found PM2.5 led to rat and human ASMCs senescence and exhibited senescence-associated secretory phenotype (SASP) by autophagy-induced GATA4/TRAF6/NF-κB signaling, which contributed to collagen-I and α-SMA synthesis as well as airway smooth muscle remodeling. Together, our results provided evidence that SASP induced by PM2.5 in airway smooth muscle cells prompted airway remodeling.
Collapse
Affiliation(s)
- Pei-Pei Cheng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan Yu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Shuai-Jun Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Feng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zi-Heng Jia
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shi-He Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Lin Cui
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ya-Ya Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian Niu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li-Mei Liang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meng Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin-Jie Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Xin-Liang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Liang Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Fei Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Xiaorong Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China.
| |
Collapse
|
6
|
Nolt GL, Keeble AR, Wen Y, Strong AC, Thomas NT, Valentino TR, Brightwell CR, Murach KA, Patrizia S, Weinstabl H, Gollner A, McCarthy JJ, Fry CS, Franti M, Filareto A, Peterson CA, Dungan CM. Inhibition of p53-MDM2 binding reduces senescent cell abundance and improves the adaptive responses of skeletal muscle from aged mice. GeroScience 2024; 46:2153-2176. [PMID: 37872294 PMCID: PMC10828311 DOI: 10.1007/s11357-023-00976-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Skeletal muscle adaptation to external stimuli, such as regeneration following injury and hypertrophy in response to resistance exercise, are blunted with advanced age. The accumulation of senescent cells, along with defects in myogenic progenitor cell (MPC) proliferation, have been strongly linked as contributing factors to age-associated impairment in muscle adaptation. p53 plays an integral role in all these processes, as upregulation of p53 causes apoptosis in senescent cells and prevents mitotic catastrophe in MPCs from old mice. The goal of this study was to determine if a novel pharmaceutical agent (BI01), which functions by upregulating p53 through inhibition of binding to MDM2, the primary p53 regulatory protein, improves muscle regeneration and hypertrophy in old mice. BI01 effectively reduced the number of senescent cells in vitro but had no effect on MPC survival or proliferation at a comparable dose. Following repeated oral gavage with 2 mg/kg of BI01 (OS) or vehicle (OV), old mice (24 months) underwent unilateral BaCl2 injury in the tibialis anterior (TA) muscle, with PBS injections serving as controls. After 7 days, satellite cell number was higher in the TA of OS compared to OV mice, as was the expression of genes involved in ATP production. By 35 days, old mice treated with BI01 displayed reduced senescent cell burden, enhanced regeneration (higher muscle mass and fiber cross-sectional area) and restoration of muscle function relative to OV mice. To examine the impact of 2 mg/kg BI01 on muscle hypertrophy, the plantaris muscle was subjected to 28 days of mechanical overload (MOV) in OS and OV mice. In response to MOV, OS mice had larger plantaris muscles and muscle fibers than OV mice, particularly type 2b + x fibers, associated with reduced senescent cells. Together our data show that BI01 is an effective senolytic agent that may also augment muscle metabolism to enhance muscle regeneration and hypertrophy in old mice.
Collapse
Affiliation(s)
- Georgia L Nolt
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Alexander R Keeble
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Yuan Wen
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Aubrey C Strong
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Nicholas T Thomas
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Taylor R Valentino
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Camille R Brightwell
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Sini Patrizia
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Harald Weinstabl
- Boehringer Ingelheim RCV, Boehringer Ingelheim Pharmaceuticals Inc., Vienna, Austria
| | - Andreas Gollner
- Boehringer Ingelheim RCV, Boehringer Ingelheim Pharmaceuticals Inc., Vienna, Austria
| | - John J McCarthy
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Michael Franti
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Antonio Filareto
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA.
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Cory M Dungan
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA.
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, Waco, TX, 76706, USA.
| |
Collapse
|
7
|
de Luzy IR, Lee MK, Mobley WC, Studer L. Lessons from inducible pluripotent stem cell models on neuronal senescence in aging and neurodegeneration. NATURE AGING 2024; 4:309-318. [PMID: 38429379 DOI: 10.1038/s43587-024-00586-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
Age remains the central risk factor for many neurodegenerative diseases including Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. Although the mechanisms of aging are complex, the age-related accumulation of senescent cells in neurodegeneration is well documented and their clearance can alleviate disease-related features in preclinical models. Senescence-like characteristics are observed in both neuronal and glial lineages, but their relative contribution to aging and neurodegeneration remains unclear. Human pluripotent stem cell-derived neurons provide an experimental model system to induce neuronal senescence. However, the extensive heterogeneity in the profile of senescent neurons and the methods to assess senescence remain major challenges. Here, we review the evidence of cellular senescence in neuronal aging and disease, discuss human pluripotent stem cell-based model systems used to investigate neuronal senescence and propose a panel of cellular and molecular hallmarks to characterize senescent neurons. Understanding the role of neuronal senescence may yield novel therapeutic opportunities in neurodegenerative disease.
Collapse
Affiliation(s)
- Isabelle R de Luzy
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Michael K Lee
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - William C Mobley
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
8
|
Rad AN, Grillari J. Current senolytics: Mode of action, efficacy and limitations, and their future. Mech Ageing Dev 2024; 217:111888. [PMID: 38040344 DOI: 10.1016/j.mad.2023.111888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Senescence is a cellular state characterized by its near-permanent halted cell cycle and distinct secretory phenotype. Although senescent cells have a variety of beneficial physiological functions, progressive accumulation of these cells due to aging or other conditions has been widely shown to provoke deleterious effects on the normal functioning of the same or higher-level biological organizations. Recently, erasing senescent cells in vivo, using senolytics, could ameliorate diseases identified with an elevated number of senescent cells. Since then, researchers have struggled to develop new senolytics each with different selectivity and potency. In this review, we have gathered and classified the proposed senolytics and discussed their mechanisms of action. Moreover, we highlight the heterogeneity of senolytics regarding their effect sizes, and cell type specificity as well as comment on the exploited strategies to improve these features. Finally, we suggest some prospective routes for the novel methods for ablation of senescent cells.
Collapse
Affiliation(s)
- Amirhossein Nayeri Rad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran.
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
9
|
Anerillas C, Mazan-Mamczarz K, Herman AB, Munk R, Lam KWG, Calvo-Rubio M, Garrido A, Tsitsipatis D, Martindale JL, Altés G, Rossi M, Piao Y, Fan J, Cui CY, De S, Abdelmohsen K, de Cabo R, Gorospe M. The YAP-TEAD complex promotes senescent cell survival by lowering endoplasmic reticulum stress. NATURE AGING 2023; 3:1237-1250. [PMID: 37667102 PMCID: PMC11369890 DOI: 10.1038/s43587-023-00480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/03/2023] [Indexed: 09/06/2023]
Abstract
Sublethal cell damage can trigger senescence, a complex adaptive program characterized by growth arrest, resistance to apoptosis and a senescence-associated secretory phenotype (SASP). Here, a whole-genome CRISPR knockout screen revealed that proteins in the YAP-TEAD pathway influenced senescent cell viability. Accordingly, treating senescent cells with a drug that inhibited this pathway, verteporfin (VPF), selectively triggered apoptotic cell death largely by derepressing DDIT4, which in turn inhibited mTOR. Reducing mTOR function in senescent cells diminished endoplasmic reticulum (ER) biogenesis, triggering ER stress and apoptosis due to high demands on ER function by the SASP. Importantly, VPF treatment decreased the numbers of senescent cells in the organs of old mice and mice exhibiting doxorubicin-induced senescence. Moreover, VPF treatment reduced immune cell infiltration and pro-fibrotic transforming growth factor-β signaling in aging mouse lungs, improving tissue homeostasis. We present an alternative senolytic strategy that eliminates senescent cells by hindering ER activity required for SASP production.
Collapse
Affiliation(s)
- Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Allison B Herman
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kwan-Wood Gabriel Lam
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miguel Calvo-Rubio
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Amanda Garrido
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Gisela Altés
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
10
|
Gureghian V, Herbst H, Kozar I, Mihajlovic K, Malod-Dognin N, Ceddia G, Angeli C, Margue C, Randic T, Philippidou D, Nomigni MT, Hemedan A, Tranchevent LC, Longworth J, Bauer M, Badkas A, Gaigneaux A, Muller A, Ostaszewski M, Tolle F, Pržulj N, Kreis S. A multi-omics integrative approach unravels novel genes and pathways associated with senescence escape after targeted therapy in NRAS mutant melanoma. Cancer Gene Ther 2023; 30:1330-1345. [PMID: 37420093 PMCID: PMC10581906 DOI: 10.1038/s41417-023-00640-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Therapy Induced Senescence (TIS) leads to sustained growth arrest of cancer cells. The associated cytostasis has been shown to be reversible and cells escaping senescence further enhance the aggressiveness of cancers. Chemicals specifically targeting senescent cells, so-called senolytics, constitute a promising avenue for improved cancer treatment in combination with targeted therapies. Understanding how cancer cells evade senescence is needed to optimise the clinical benefits of this therapeutic approach. Here we characterised the response of three different NRAS mutant melanoma cell lines to a combination of CDK4/6 and MEK inhibitors over 33 days. Transcriptomic data show that all cell lines trigger a senescence programme coupled with strong induction of interferons. Kinome profiling revealed the activation of Receptor Tyrosine Kinases (RTKs) and enriched downstream signaling of neurotrophin, ErbB and insulin pathways. Characterisation of the miRNA interactome associates miR-211-5p with resistant phenotypes. Finally, iCell-based integration of bulk and single-cell RNA-seq data identifies biological processes perturbed during senescence and predicts 90 new genes involved in its escape. Overall, our data associate insulin signaling with persistence of a senescent phenotype and suggest a new role for interferon gamma in senescence escape through the induction of EMT and the activation of ERK5 signaling.
Collapse
Affiliation(s)
- Vincent Gureghian
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Hailee Herbst
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Ines Kozar
- Laboratoire National de Santé, Dudelange, Luxembourg
| | | | | | - Gaia Ceddia
- Barcelona Supercomputing Center, 08034, Barcelona, Spain
| | - Cristian Angeli
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Christiane Margue
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Tijana Randic
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Demetra Philippidou
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Milène Tetsi Nomigni
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Ahmed Hemedan
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Leon-Charles Tranchevent
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Mark Bauer
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Apurva Badkas
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Anthoula Gaigneaux
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Arnaud Muller
- LuxGen, TMOH and Bioinformatics platform, Data Integration and Analysis unit, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Fabrice Tolle
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Nataša Pržulj
- Barcelona Supercomputing Center, 08034, Barcelona, Spain
- Department of Computer Science, University College London, London, WC1E 6BT, UK
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg.
| |
Collapse
|
11
|
Wechter N, Rossi M, Anerillas C, Tsitsipatis D, Piao Y, Fan J, Martindale JL, De S, Mazan-Mamczarz K, Gorospe M. Single-cell transcriptomic analysis uncovers diverse and dynamic senescent cell populations. Aging (Albany NY) 2023; 15:2824-2851. [PMID: 37086265 DOI: 10.18632/aging.204666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Senescence is a state of enduring growth arrest triggered by sublethal cell damage. Given that senescent cells actively secrete proinflammatory and matrix-remodeling proteins, their accumulation in tissues of older persons has been linked to many diseases of aging. Despite intense interest in identifying robust markers of senescence, the highly heterogeneous and dynamic nature of the senescent phenotype has made this task difficult. Here, we set out to comprehensively analyze the senescent transcriptome of human diploid fibroblasts at the individual-cell scale by performing single-cell RNA-sequencing analysis through two approaches. First, we characterized the different cell states in cultures undergoing senescence triggered by different stresses, and found distinct cell subpopulations that expressed mRNAs encoding proteins with roles in growth arrest, survival, and the secretory phenotype. Second, we characterized the dynamic changes in the transcriptomes of cells as they developed etoposide-induced senescence; by tracking cell transitions across this process, we found two different senescence programs that developed divergently, one in which cells expressed traditional senescence markers such as p16 (CDKN2A) mRNA, and another in which cells expressed long noncoding RNAs and splicing was dysregulated. Finally, we obtained evidence that the proliferation status at the time of senescence initiation affected the path of senescence, as determined based on the expressed RNAs. We propose that a deeper understanding of the transcriptomes during the progression of different senescent cell phenotypes will help develop more effective interventions directed at this detrimental cell population.
Collapse
Affiliation(s)
- Noah Wechter
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| |
Collapse
|
12
|
Anerillas C, Altés G, Gorospe M. MAPKs in the early steps of senescence implemEMTation. Front Cell Dev Biol 2023; 11:1083401. [PMID: 37009481 PMCID: PMC10060890 DOI: 10.3389/fcell.2023.1083401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Evidence is accumulating that the earliest stages of the DNA damage response can direct cells toward senescence instead of other cell fates. In particular, tightly regulated signaling through Mitogen-Activated Protein Kinases (MAPKs) in early senescence can lead to a sustained pro-survival program and suppress a pro-apoptotic program. Importantly, an epithelial-to-mesenchymal Transition (EMT)-like program appears essential for preventing apoptosis and favoring senescence following DNA damage. In this review, we discuss how MAPKs might influence EMT features to promote a senescent phenotype that increases cell survival at the detriment of tissue function.
Collapse
|
13
|
Cellular Senescence in Hepatocellular Carcinoma: The Passenger or the Driver? Cells 2022; 12:cells12010132. [PMID: 36611926 PMCID: PMC9818733 DOI: 10.3390/cells12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
With the high morbidity and mortality, hepatocellular carcinoma (HCC) represents a major yet growing burden for our global community. The relapse-prone nature and drug resistance of HCC are regarded as the consequence of varying intracellular processes and extracellular interplay, which actively participate in tumor microenvironment remodeling. Amongst them, cellular senescence is regarded as a fail-safe program, leading to double-sword effects of both cell growth inhibition and tissue repair promotion. Particularly, cellular senescence serves a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to carcinogenesis. Given the current challenges in improving the clinical management and outcome of HCC, senescence may exert striking potential in affecting anti-cancer strategies. In recent years, an increasing number of studies have emerged to investigate senescence-associated hepatocarcinogenesis and its derived therapies. In this review, we intend to provide an up-to-date understanding of liver cell senescence and its impacts on treatment modalities of HCC.
Collapse
|