1
|
Pelissier A, Laragione T, Harris C, Rodríguez Martínez M, Gulko PS. BACH1 as a key driver in rheumatoid arthritis fibroblast-like synoviocytes identified through gene network analysis. Life Sci Alliance 2025; 8:e202402808. [PMID: 39467637 PMCID: PMC11519322 DOI: 10.26508/lsa.202402808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
RNA-sequencing and differential gene expression studies have significantly advanced our understanding of pathogenic pathways underlying rheumatoid arthritis (RA). Yet, little is known about cell-specific regulatory networks and their contributions to disease. In this study, we focused on fibroblast-like synoviocytes (FLS), a cell type central to disease pathogenesis and joint damage in RA. We used a strategy that computed sample-specific gene regulatory networks to compare network properties between RA and osteoarthritis FLS. We identified 28 transcription factors (TFs) as key regulators central to the signatures of RA FLS. Six of these TFs are new and have not been previously implicated in RA through ex vivo or in vivo studies, and included BACH1, HLX, and TGIF1. Several of these TFs were found to be co-regulated, and BACH1 emerged as the most significant TF and regulator. The main BACH1 targets included those implicated in fatty acid metabolism and ferroptosis. The discovery of BACH1 was validated in experiments with RA FLS. Knockdown of BACH1 in RA FLS significantly affected the gene expression signatures, reduced cell adhesion and mobility, interfered with the formation of thick actin fibers, and prevented the polarized formation of lamellipodia, all required for the RA destructive behavior of FLS. This study establishes BACH1 as a central regulator of RA FLS phenotypes and suggests its potential as a therapeutic target to selectively modulate RA FLS.
Collapse
Affiliation(s)
- Aurelien Pelissier
- IBM Research Europe, Eschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Teresina Laragione
- https://ror.org/04a9tmd77 Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn Harris
- https://ror.org/04a9tmd77 Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Percio S Gulko
- https://ror.org/04a9tmd77 Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Zhao N, Zhang X, Wang X, Liu Z, Zheng G, Zhang X, Schiöth HB, Sun C, Wang H, Zhang Y. Hidden liver-joint axis: HBV infection causes rheumatoid arthritis via TRAFD1 with imbalance of HBV X protein and trans-ferulic acid. Virulence 2024; 15:2422540. [PMID: 39484999 PMCID: PMC11542605 DOI: 10.1080/21505594.2024.2422540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024] Open
Abstract
Liver metabolites are involved in the progression of rheumatoid arthritis (RA), indicating a connection between the liver and joints. However, the impact and mechanism of Hepatitis B virus (HBV), a hepatotropic virus, on RA are still unclear. We investigated the correlation between HBV and RA using Mendelian randomization analysis. Single-cell transcriptome analysis was conducted to investigate changes in cell subtypes in synovial tissue of HBV-RA patients. Fibroblast-like synoviocytes (FLS) were used to create a cell model, and the transcriptome was examined to identify the key downstream molecules of FMT regulated by HBx. CIA model was constructed using HBV transgenic, HBx transgenic, and TRADF1 knockout mice to investigate the impact and mechanism of HBV on CIA. The results of our study revealed a significant positive correlation between HBV and RA. The functional studies identified a crucial role of fibroblast-myofibroblast transition (FMT) in the progression of RA. The results suggest that HBV-encoded HBx may promote FMT in RA by upregulating TRAFD1. Furthermore, trans-ferulic acid (TFA) was identified by screening for common metabolites in the liver, joints, and peripheral blood using the metabolome and WGCNA. Interestingly, we found that TFA ameliorated HBx-induced RA by suppressing TRAFD1 expression. Our study demonstrates that hidden liver-joint axis, an imbalance between TFA and HBx, plays a critical role in HBV-induced RA, which could be a potential strategy for preventing RA development.
Collapse
Affiliation(s)
- Na Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Xiaoyu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xilong Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Zhipu Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Chengxi Sun
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Hongxing Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
- Shandong Key Laboratory of Medicine and Prevention Integration in Rheumatism and Immunity Disease, Jinan, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
- Shandong Key Laboratory of Medicine and Prevention Integration in Rheumatism and Immunity Disease, Jinan, China
| |
Collapse
|
3
|
Zhang Y, He X, Yin D, Zhang Y. Redefinition of Synovial Fibroblasts in Rheumatoid Arthritis. Aging Dis 2024:AD.2024.0514. [PMID: 39122458 DOI: 10.14336/ad.2024.0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
The breakdown of immune tolerance and the rise in autoimmunity contribute to the onset of rheumatoid arthritis (RA), driven by significant changes in immune components. Recent advances in single-cell and spatial transcriptome profiling have revealed shifts in cell distribution and composition, expanding our understanding beyond molecular-level changes in inflammatory cytokines, autoantibodies, and autoantigens in RA. Surprisingly, synovial fibroblasts (SFs) play an active immunopathogenic role rather than remaining passive bystanders in RA, with notable alterations in their subpopulation distribution and composition. This study examines these changes in SF heterogeneity, assesses their impact on RA progression, and elucidates the immune characteristics and functions of SF subsets in the RA autoimmunity, encompassing both intrinsic and adaptive immunity. Additionally, this review discusses therapeutic strategies targeting immune SF subsets, highlighting the potential of future interventions in SF phenotypic reprogramming. Overall, this review redefines the role of SFs in RA and suggests targeting SF phenotypic reprogramming and its upstream molecules as a promising therapeutic approach to restore immune balance and modulate immune tolerance in RA.
Collapse
Affiliation(s)
- Yinci Zhang
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Xiong He
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Dongdong Yin
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Yihao Zhang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Damerau A, Rosenow E, Alkhoury D, Buttgereit F, Gaber T. Fibrotic pathways and fibroblast-like synoviocyte phenotypes in osteoarthritis. Front Immunol 2024; 15:1385006. [PMID: 38895122 PMCID: PMC11183113 DOI: 10.3389/fimmu.2024.1385006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis, characterized by osteophyte formation, cartilage degradation, and structural and cellular alterations of the synovial membrane. Activated fibroblast-like synoviocytes (FLS) of the synovial membrane have been identified as key drivers, secreting humoral mediators that maintain inflammatory processes, proteases that cause cartilage and bone destruction, and factors that drive fibrotic processes. In normal tissue repair, fibrotic processes are terminated after the damage has been repaired. In fibrosis, tissue remodeling and wound healing are exaggerated and prolonged. Various stressors, including aging, joint instability, and inflammation, lead to structural damage of the joint and micro lesions within the synovial tissue. One result is the reduced production of synovial fluid (lubricants), which reduces the lubricity of the cartilage areas, leading to cartilage damage. In the synovial tissue, a wound-healing cascade is initiated by activating macrophages, Th2 cells, and FLS. The latter can be divided into two major populations. The destructive thymocyte differentiation antigen (THY)1─ phenotype is restricted to the synovial lining layer. In contrast, the THY1+ phenotype of the sublining layer is classified as an invasive one with immune effector function driving synovitis. The exact mechanisms involved in the transition of fibroblasts into a myofibroblast-like phenotype that drives fibrosis remain unclear. The review provides an overview of the phenotypes and spatial distribution of FLS in the synovial membrane of OA, describes the mechanisms of fibroblast into myofibroblast activation, and the metabolic alterations of myofibroblast-like cells.
Collapse
Affiliation(s)
- Alexandra Damerau
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin, a Leibniz Institute, Glucocorticoids - Bioenergetics - 3R Research Lab, Berlin, Germany
| | - Emely Rosenow
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Dana Alkhoury
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin, a Leibniz Institute, Glucocorticoids - Bioenergetics - 3R Research Lab, Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin, a Leibniz Institute, Glucocorticoids - Bioenergetics - 3R Research Lab, Berlin, Germany
| |
Collapse
|
5
|
Lee H, Machado CRL, Hammaker D, Choi E, Prideaux EB, Wang W, Boyle DL, Firestein GS. Joint-specific regulation of homeobox D10 expression in rheumatoid arthritis fibroblast-like synoviocytes. PLoS One 2024; 19:e0304530. [PMID: 38829908 PMCID: PMC11146700 DOI: 10.1371/journal.pone.0304530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune-mediated disease characterized by joint inflammation and destruction. The disease typically affects small joints in the hands and feet, later progressing to involve larger joints such as the knees, shoulders, and hips. While the reasons for these joint-specific differences are unclear, distinct epigenetic patterns associated with joint location have been reported. In this study, we evaluated the unique epigenetic landscapes of fibroblast-like synoviocytes (FLS) from hip and knee synovium in RA patients, focusing on the expression and regulation of Homeobox (HOX) transcription factors. These highly conserved genes play a critical role in embryonic development and are known to maintain distinct expression patterns in various adult tissues. We found that several HOX genes, especially HOXD10, were differentially expressed in knee FLS compared with hip FLS. Epigenetic differences in chromatin accessibility and histone marks were observed in HOXD10 promoter between knee and hip FLS. Histone modification, particularly histone acetylation, was identified as an important regulator of HOXD10 expression. To understand the mechanism of differential HOXD10 expression, we inhibited histone deacetylases (HDACs) with small molecules and siRNA. We found that HDAC1 blockade or deficiency normalized the joint-specific HOXD10 expression patterns. These observations suggest that epigenetic differences, specifically histone acetylation related to increased HDAC1 expression, play a crucial role in joint-specific HOXD10 expression. Understanding these mechanisms could provide insights into the regional aspects of RA and potentially lead to therapeutic strategies targeting specific patterns of joint involvement during the course of disease.
Collapse
Affiliation(s)
- Hyeonjeong Lee
- Division of Rheumatology, Allergy and Immunology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Camilla R. L. Machado
- Division of Rheumatology, Allergy and Immunology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Deepa Hammaker
- Division of Rheumatology, Allergy and Immunology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Eunice Choi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Edward B. Prideaux
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - David L. Boyle
- Division of Rheumatology, Allergy and Immunology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Gary S. Firestein
- Division of Rheumatology, Allergy and Immunology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
6
|
Choi E, Machado CR, Okano T, Boyle D, Wang W, Firestein GS. Joint-specific rheumatoid arthritis fibroblast-like synoviocyte regulation identified by integration of chromatin access and transcriptional activity. JCI Insight 2024; 9:e179392. [PMID: 38781031 PMCID: PMC11383168 DOI: 10.1172/jci.insight.179392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
The mechanisms responsible for the distribution and severity of joint involvement in rheumatoid arthritis (RA) are not known. To explore whether site-specific fibroblast-like synoviocyte (FLS) biology might be associated with location-specific synovitis and explain the predilection for hand (wrist/metacarpal phalangeal joints) involvement in RA, we generated transcriptomic and chromatin accessibility data from FLS to identify the transcription factors and pathways. Networks were constructed by integration of chromatin accessibility and gene expression data. Analysis revealed joint-specific patterns of FLS phenotype, with proliferative, migratory, proinflammatory, and matrix-degrading characteristics observed in resting FLS derived from the hand joints compared with hip or knee. TNF stimulation amplified these differences, with greater enrichment of proinflammatory and proliferative genes in hand FLS compared with hip and knee FLS. Hand FLS also had the greatest expression of markers associated with an "activated" state relative to the "resting" state, with the greatest cytokine and MMP expression in TNF-stimulated hand FLS. Predicted differences in proliferation and migration were biologically validated with hand FLS exhibiting greater migration and cell growth than hip or knee FLS. Distinctive joint-specific FLS biology associated with a more aggressive inflammatory response might contribute to the distribution and severity of joint involvement in RA.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wang
- Department of Chemistry and Biochemistry
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, California, USA
| | | |
Collapse
|
7
|
Choi E, Machado CRL, Okano T, Boyle D, Wang W, Firestein GS. Joint-specific rheumatoid arthritis fibroblast-like synoviocyte regulation identified by integration of chromatin access and transcriptional activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575379. [PMID: 38293079 PMCID: PMC10827126 DOI: 10.1101/2024.01.12.575379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The mechanisms responsible for the distribution and severity of joint involvement in rheumatoid arthritis (RA) are not known. To explore whether site-specific FLS biology might be associated with location-specific synovitis and explain the predilection for hand (wrist/metacarpal phalangeal joints) involvement in RA, we generated transcriptomic and chromatin accessibility data from FLS to identify the transcription factors (TFs) and pathways. Networks were constructed by integration of chromatin accessibility and gene expression data. Analysis revealed joint-specific patterns of FLS phenotype, with proliferative, migratory, proinflammatory, and matrix-degrading characteristics observed in resting FLS derived from the hand joints compared with hip or knee. TNF-stimulation amplified these differences, with greater enrichment of proinflammatory and proliferative genes in hand FLS compared with hip and knee FLS. Hand FLS also had the greatest expression of markers associated with an 'activated' state relative to the 'resting' state, with the greatest cytokine and MMP expression in TNF-stimulated hand FLS. Predicted differences in proliferation and migration were biologically validated with hand FLS exhibiting greater migration and cell growth than hip or knee FLS. Distinctive joint-specific FLS biology associated with a more aggressive inflammatory response might contribute to the distribution and severity of joint involvement in RA.
Collapse
|
8
|
Neumann E, Heck C, Müller-Ladner U. Recent developments in the synovial fibroblast pathobiology field in rheumatoid arthritis. Curr Opin Rheumatol 2024; 36:69-75. [PMID: 37720975 DOI: 10.1097/bor.0000000000000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
PURPOSE OF REVIEW Synovial fibroblasts are the central cells of connective tissue homeostasis. In rheumatoid arthritis (RA) tissue, synovial fibroblasts are activated because of the proinflammatory environment very early in the disease. Epigenetic alterations in RASF result in a permanently activated stage, and activated RASF are involved in many processes of RA pathophysiology. Therefore, several recent findings of the last 18 months with focus on RASF activation and function are summarized. RECENT FINDINGS RASF activation because of a profoundly altered epigenome leads to an invasive phenotype with increased migration, adhesion and invasion into cartilage, which was further characterized in several studies. RASF subtypes and subtype dynamics were evaluated using high-resolution techniques to better understand RASF pathophysiology. Many studies addressing interactions with immune or stromal cell types have been published showing that RASF interact with many different cell types contributing not only to their own activation and pro-inflammatory response but also to the activation of the other cells. SUMMARY Highly interesting findings revealing mechanisms of RASF activation and altered functions have been published, RASF subsets further characterized, and interactions with cell types elucidated, which all contribute to a better understanding of the role of RASF in RA development and progression.
Collapse
Affiliation(s)
- Elena Neumann
- Department of Rheumatology and Clinical Immunology, Justus Liebig University Giessen, Campus Kerckhoff, Bad Nauheim, Germany
| | | | | |
Collapse
|
9
|
Comertpay B, Gov E. Immune cell-specific and common molecular signatures in rheumatoid arthritis through molecular network approaches. Biosystems 2023; 234:105063. [PMID: 37852410 DOI: 10.1016/j.biosystems.2023.105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder and common symptom of RA is chronic synovial inflammation. The pathogenesis of RA is not fully understood. Therefore, we aimed to identify underlying common and distinct molecular signatures and pathways among ten types of tissue and cells obtained from patients with RA. In this study, transcriptomic data including synovial tissues, macrophages, blood, T cells, CD4+T cells, CD8+T cells, natural killer T (NKT), cells natural killer (NK) cells, neutrophils, and monocyte cells were analyzed with an integrative and comparative network biology perspective. Each dataset yielded a list of differentially expressed genes as well as a reconstruction of the tissue-specific protein-protein interaction (PPI) network. Molecular signatures were identified by a statistical test using the hypergeometric probability density function by employing the interactions of transcriptional regulators and PPI. Reporter metabolites of each dataset were determined by using genome-scale metabolic networks. It was defined as the common hub proteins, novel molecular signatures, and metabolites in two or more tissue types while immune cell-specific molecular signatures were identified, too. Importantly, miR-155-5p is found as a common miRNA in all tissues. Moreover, NCOA3, PRKDC and miR-3160 might be novel molecular signatures for RA. Our results establish a novel approach for identifying immune cell-specific molecular signatures of RA and provide insights into the role of common tissue-specific genes, miRNAs, TFs, receptors, and reporter metabolites. Experimental research should be used to validate the corresponding genes, miRNAs, and metabolites.
Collapse
Affiliation(s)
- Betul Comertpay
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye
| | - Esra Gov
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye.
| |
Collapse
|
10
|
Liu L, Zhang Y, Sun L. Medimatrix: innovative pre-training of grayscale images for rheumatoid arthritis diagnosis revolutionises medical image classification. Health Inf Sci Syst 2023; 11:44. [PMID: 37771395 PMCID: PMC10522544 DOI: 10.1007/s13755-023-00246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
Efficient and accurate medical image classification (MIC) methods face two major challenges: (1) high similarity between images of different disease classes; and (2) generating large medical image datasets for training deep neural networks is challenging due to privacy restrictions and the need for expert ground truth annotations. In this paper, we introduce a novel deep learning method called pre-training grayscale images with supervised learning for MIC (MediMatrix). Instead of pre-training on color ImageNet, our approach uses MediMatrix on grayscale ImageNet. To improve the performance of the network, we introduce ShuffleAttention (SA), a self-attention mechanism. By combining SA with the multiple residual structure (ResSA block) and replacing short-cut connections with dense residual connections between corresponding layers (densepath), our network can dynamically adjust channel attention weights and receive image inputs of different sizes, resulting in improved feature representation and better discrimination of similarities between different categories. MediMatrix effectively classifies X-ray images of rheumatoid arthritis (RA), enabling efficient screening without the need for expert analysis or invasive testing. Through extensive experiments, we demonstrate the superiority of MediMatrix over state-of-the-art methods and that color is not critical for rich natural image classification. Our results highlight the potential of computer-aided diagnosis combined with MediMatrix as a valuable screening tool for early detection and intervention in RA.
Collapse
Affiliation(s)
- Linchen Liu
- Department of Rheumatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009 China
| | - Yiyang Zhang
- Department of Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Le Sun
- Department of Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing, 210044 China
| |
Collapse
|
11
|
Wang S, Liu Y, Sun Q, Zeng B, Liu C, Gong L, Wu H, Chen L, Jin M, Guo J, Gao Z, Huang W. Triple Cross-linked Dynamic Responsive Hydrogel Loaded with Selenium Nanoparticles for Modulating the Inflammatory Microenvironment via PI3K/Akt/NF-κB and MAPK Signaling Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303167. [PMID: 37740428 PMCID: PMC10625091 DOI: 10.1002/advs.202303167] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/27/2023] [Indexed: 09/24/2023]
Abstract
Modulating the inflammatory microenvironment can inhibit the process of inflammatory diseases (IDs). A tri-cross-linked inflammatory microenvironment-responsive hydrogel with ideal mechanical properties achieves triggerable and sustained drug delivery and regulates the inflammatory microenvironment. Here, this study develops an inflammatory microenvironment-responsive hydrogel (OD-PP@SeNPs) composed of phenylboronic acid grafted polylysine (PP), oxidized dextran (OD), and selenium nanoparticles (SeNPs). The introduction of SeNPs as initiators and nano-fillers into the hydrogel results in extra cross-linking of the polymer network through hydrogen bonding. Based on Schiff base bonds, Phenylboronate ester bonds, and hydrogen bonds, a reactive oxygen species (ROS)/pH dual responsive hydrogel with a triple-network is achieved. The hydrogel has injectable, self-healing, adhesion, outstanding flexibility, suitable swelling capacity, optimal biodegradability, excellent stimuli-responsive active substance release performance, and prominent biocompatibility. Most importantly, the hydrogel with ROS scavenging and pH-regulating ability protects cells from oxidative stress and induces macrophages into M2 polarization to reduce inflammatory cytokines through PI3K/AKT/NF-κB and MAPK pathways, exerting anti-inflammatory effects and reshaping the inflammatory microenvironment, thereby effectively treating typical IDs, including S. aureus infected wound and rheumatoid arthritis in rats. In conclusion, this dynamically responsive injectable hydrogel with a triple-network structure provides an effective strategy to treat IDs, holding great promise in clinical application.
Collapse
Affiliation(s)
- Shuangqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Key Laboratory of Natural Medicines of the Changbai MountainMinistry of EducationCollege of PharmacyYanbian UniversityYanjiJilin Province133002China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Bowen Zeng
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Hao Wu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Key Laboratory of Natural Medicines of the Changbai MountainMinistry of EducationCollege of PharmacyYanbian UniversityYanjiJilin Province133002China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Jianpeng Guo
- Key Laboratory of Natural Medicines of the Changbai MountainMinistry of EducationCollege of PharmacyYanbian UniversityYanjiJilin Province133002China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Key Laboratory of Natural Medicines of the Changbai MountainMinistry of EducationCollege of PharmacyYanbian UniversityYanjiJilin Province133002China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| |
Collapse
|
12
|
Affiliation(s)
| | - Gary S Firestein
- Department of Medicine, UC San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
13
|
Ramirez-Perez S, Vekariya R, Gautam S, Reyes-Perez IV, Drissi H, Bhattaram P. MyD88 dimerization inhibitor ST2825 targets the aggressiveness of synovial fibroblasts in rheumatoid arthritis patients. Arthritis Res Ther 2023; 25:180. [PMID: 37749630 PMCID: PMC10519089 DOI: 10.1186/s13075-023-03145-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Dimerization of the myeloid differentiation primary response 88 protein (MyD88) plays a pivotal role in the exacerbated response to innate immunity-dependent signaling in rheumatoid arthritis (RA). ST2825 is a highly specific inhibitor of MyD88 dimerization, previously shown to inhibit the pro-inflammatory gene expression in peripheral blood mononuclear cells from RA patients (RA PBMC). In this study, we elucidated the effect of disrupting MyD88 dimerization by ST2825 on the pathological properties of synovial fibroblasts from RA patients (RA SFs). METHODS RA SFs were treated with varying concentrations of ST2825 in the presence or absence of bacterial lipopolysaccharides (LPS) to activate innate immunity-dependent TLR signaling. The DNA content of the RA SFs was quantified by imaging cytometry to investigate the effect of ST2825 on different phases of the cell cycle and apoptosis. RNA-seq was used to assess the global response of the RA SF toward ST2825. The invasiveness of RA SFs in Matrigel matrices was measured in organoid cultures. SFs from osteoarthritis (OA SFs) patients and healthy dermal fibroblasts were used as controls. RESULTS ST2825 reduced the proliferation of SFs by arresting the cells in the G0/G1 phase of the cell cycle. In support of this finding, transcriptomic analysis by RNA-seq showed that ST2825 may have induced cell cycle arrest by primarily inhibiting the expression of critical cell cycle regulators Cyclin E2 and members of the E2F family transcription factors. Concurrently, ST2825 also downregulated the genes encoding for pain, inflammation, and joint catabolism mediators while upregulating the genes required for the translocation of nuclear proteins into the mitochondria and members of the mitochondrial respiratory complex 1. Finally, we demonstrated that ST2825 inhibited the invasiveness of RA SFs, by showing decreased migration of LPS-treated RA SFs in spheroid cultures. CONCLUSIONS The pathological properties of the RA SFs, in terms of their aberrant proliferation, increased invasiveness, upregulation of pain and inflammation mediators, and disruption of mitochondrial homeostasis, were attenuated by ST2825 treatment. Taken together with the previously reported anti-inflammatory effects of ST2825 in RA PBMC, this study strongly suggests that targeting MyD88 dimerization could mitigate both systemic and synovial pathologies in a variety of inflammatory arthritic diseases.
Collapse
Affiliation(s)
- Sergio Ramirez-Perez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA.
| | - Rushi Vekariya
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA
| | - Surabhi Gautam
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA
| | - Itzel Viridiana Reyes-Perez
- Department of Molecular Biology and Genomics, University Center for Health Science, University of Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA
- Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Pallavi Bhattaram
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, 30329, USA.
| |
Collapse
|
14
|
Ahalya RK, Almutairi FM, Snekhalatha U, Dhanraj V, Aslam SM. RANet: a custom CNN model and quanvolutional neural network for the automated detection of rheumatoid arthritis in hand thermal images. Sci Rep 2023; 13:15638. [PMID: 37730717 PMCID: PMC10511741 DOI: 10.1038/s41598-023-42111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Rheumatoid arthritis is an autoimmune disease which affects the small joints. Early prediction of RA is necessary for the treatment and management of the disease. The current work presents a deep learning and quantum computing-based automated diagnostic approach for RA in hand thermal imaging. The study's goals are (i) to develop a custom RANet model and compare its performance with the pretrained models and quanvolutional neural network (QNN) to distinguish between the healthy subjects and RA patients, (ii) To validate the performance of the custom model using feature selection method and classification using machine learning (ML) classifiers. The present study developed a custom RANet model and employed pre-trained models such as ResNet101V2, InceptionResNetV2, and DenseNet201 to classify the RA patients and normal subjects. The deep features extracted from the RA Net model are fed into the ML classifiers after the feature selection process. The RANet model, RA Net+ SVM, and QNN model produced an accuracy of 95%, 97% and 93.33% respectively in the classification of healthy groups and RA patients. The developed RANet and QNN models based on thermal imaging could be employed as an accurate automated diagnostic tool to differentiate between the RA and control groups.
Collapse
Affiliation(s)
- R K Ahalya
- Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
- Department of Biomedical Engineering, Easwari Engineering college, Ramapuram, Chennai, Tamil Nadu, India
| | - Fadiyah M Almutairi
- Department of Information Systems, College of Computer and Information Sciences, Majmaah University, 11952, Al Majmaah, Saudi Arabia
| | - U Snekhalatha
- Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| | - Varun Dhanraj
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
| | - Shabnam M Aslam
- Department of Information Technology, College of Computer and Information Sciences, Majmaah University, 11952, Al Majmaah, Saudi Arabia
| |
Collapse
|
15
|
Jiang S, Sun HF, Li S, Zhang N, Chen JS, Liu JX. SPARC: a potential target for functional nanomaterials and drugs. Front Mol Biosci 2023; 10:1235428. [PMID: 37577749 PMCID: PMC10419254 DOI: 10.3389/fmolb.2023.1235428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), also termed osteonectin or BM-40, is a matricellular protein which regulates cell adhesion, extracellular matrix production, growth factor activity, and cell cycle. Although SPARC does not perform a structural function, it, however, modulates interactions between cells and the surrounding extracellular matrix due to its anti-proliferative and anti-adhesion properties. The overexpression of SPARC at sites, including injury, regeneration, obesity, cancer, and inflammation, reveals its application as a prospective target and therapeutic indicator in the treatment and assessment of disease. This article comprehensively summarizes the mechanism of SPARC overexpression in inflammation and tumors as well as the latest research progress of functional nanomaterials in the therapy of rheumatoid arthritis and tumors by manipulating SPARC as a new target. This article provides ideas for using functional nanomaterials to treat inflammatory diseases through the SPARC target. The purpose of this article is to provide a reference for ongoing disease research based on SPARC-targeted therapy.
Collapse
Affiliation(s)
- Shan Jiang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Hui-Feng Sun
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shuang Li
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Ji-Song Chen
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, China
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
16
|
Affiliation(s)
- Ellen M Gravallese
- From the Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston (E.M.G.); and the Division of Rheumatology, Allergy, and Immunology, University of California at San Diego School of Medicine, La Jolla (G.S.F.)
| | - Gary S Firestein
- From the Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston (E.M.G.); and the Division of Rheumatology, Allergy, and Immunology, University of California at San Diego School of Medicine, La Jolla (G.S.F.)
| |
Collapse
|
17
|
Alivernini S, Firestein GS, McInnes IB. The pathogenesis of rheumatoid arthritis. Immunity 2022; 55:2255-2270. [PMID: 36516818 DOI: 10.1016/j.immuni.2022.11.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/20/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022]
Abstract
Significant recent progress in understanding rheumatoid arthritis (RA) pathogenesis has led to improved treatment and quality of life. The introduction of targeted-biologic and -synthetic disease modifying anti-rheumatic drugs (DMARDs) has also transformed clinical outcomes. Despite this, RA remains a life-long disease without a cure. Unmet needs include partial response and non-response to treatment in many patients, failure to achieve immune homeostasis or drug free remission, and inability to repair damaged tissues. RA is now recognized as the end of a multi-year prodromal phase in which systemic immune dysregulation, likely beginning in mucosal surfaces, is followed by a symptomatic clinical phase. Inflammation and immune reactivity are primarily localized to the synovium leading to pain and articular damage, but is also associated with a broader series of comorbidities. Here, we review recently described immunologic mechanisms that drive breach of tolerance, chronic synovitis, and remission.
Collapse
Affiliation(s)
- Stefano Alivernini
- Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Rheumatology - Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gary S Firestein
- Division of Rheumatology, Allergy, and Immunology, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | | |
Collapse
|