1
|
Wang Y, Liu Y, Zhang J, Liu X, Jiang P, Xiao J, Zhang L, Yang H, Peng LY, Liu Y, Gong Q, Wu C. High-Order Harmonic Generation in Photoexcited Three-Dimensional Dirac Semimetals. J Phys Chem Lett 2024:8101-8107. [PMID: 39087866 DOI: 10.1021/acs.jpclett.4c01522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
High-order harmonic generation (HHG) in condensed matter is highly important for potential applications in various fields, such as materials characterization, all-optical switches, and coherent light source generation. Linking HHG to the properties or dynamic processes of materials is essential for realizing these applications. Here, a bridge has been built between HHG and the transient properties of materials through the engineering of interband polarization in a photoexcited three-dimensional Dirac semimetal (3D-DSM). It has been found that HHG can be efficiently manipulated by the electronic relaxation dynamics of 3D-DSM on an ultrafast time scale of several hundred femtoseconds. Furthermore, time-resolved HHG (tr-HHG) has been demonstrated to be a powerful spectroscopy method for tracking electron relaxation dynamics, enabling the identification of electron thermalization and electron-phonon coupling processes and the quantitative extraction of electron-phonon coupling strength. This demonstration provides insights into the active control of HHG and measurements of the electron dynamics.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Yu Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Jianing Zhang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Xiulan Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Pengzuo Jiang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Jingying Xiao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Linfeng Zhang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Hong Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Liang-You Peng
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Chengyin Wu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
2
|
Hirori H, Sato SA, Kanemitsu Y. High-Order Harmonic Generation in Solids: The Role of Intraband Transitions in Extreme Nonlinear Optics. J Phys Chem Lett 2024; 15:2184-2192. [PMID: 38373145 DOI: 10.1021/acs.jpclett.3c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
High-order harmonic generation (HHG) in gases is frequently used nowadays to produce attosecond pulses and coherent radiation in the visible-to-soft X-ray spectral range. HHG in solids is a natural extension of the idea of HHG in gases, and its first observation about ten years ago opened the door to investigations on attosecond electron dynamics in solids and the development of solid-state attosecond light sources. The common process in both types of HHG is nonlinear photocarrier generation, and thus, transitions between different bands (interband transitions) are always important for HHG. As well, in the case of solids, the transitions within a band (intraband transitions) also need to be considered, because efficient carrier acceleration is possible due to them. This Perspective focuses on experimental findings that show how intraband transitions can be controlled because such an understanding will be essential in the development of unique optoelectronics that can operate at petahertz frequencies.
Collapse
Affiliation(s)
- Hideki Hirori
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shunsuke A Sato
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Yoshihiko Kanemitsu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
3
|
Kim Y, Kim MJ, Cha S, Choi S, Kim CJ, Kim BJ, Jo MH, Kim J, Lee J. Dephasing Dynamics Accessed by High Harmonic Generation: Determination of Electron-Hole Decoherence of Dirac Fermions. NANO LETTERS 2024; 24:1277-1283. [PMID: 38232182 DOI: 10.1021/acs.nanolett.3c04278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
We reveal the critical effect of ultrashort dephasing on the polarization of high harmonic generation in Dirac fermions. As the elliptically polarized laser pulse falls in or slightly beyond the multiphoton regime, the elliptically polarized high harmonic generation is produced and exhibits a characteristic polarimetry of the polarization ellipse, which is found to depend on the decoherence time T2. T2 could then be determined to be a few femtoseconds directly from the experimentally observed polarimetry of high harmonics. This shows a sharp contrast with the semimetal regime of higher pump intensity, where the polarimetry is irrelevant to T2. An access to the dephasing dynamics would extend the prospect of high harmonic generation into the metrology of a femtosecond dynamic process in the coherent quantum control.
Collapse
Affiliation(s)
- Youngjae Kim
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
- School of Physics, KIAS, Seoul 02455, Republic of Korea
| | - Min Jeong Kim
- Department of Materials Science and Engineering, POSTECH, Pohang 37673, Republic of Korea
- Center for Epitaxial van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Soonyoung Cha
- Center for Epitaxial van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Shinyoung Choi
- Center for Epitaxial van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, POSTECH, Pohang 37673, Republic of Korea
| | - Cheol-Joo Kim
- Center for Epitaxial van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, POSTECH, Pohang 37673, Republic of Korea
| | - B J Kim
- Department of Physics, POSTECH, Pohang 37673, Republic of Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Moon-Ho Jo
- Department of Materials Science and Engineering, POSTECH, Pohang 37673, Republic of Korea
- Center for Epitaxial van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Jonghwan Kim
- Department of Materials Science and Engineering, POSTECH, Pohang 37673, Republic of Korea
- Center for Epitaxial van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - JaeDong Lee
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|