1
|
Panagopoulou M, Panou T, Gkountakos A, Tarapatzi G, Karaglani M, Tsamardinos I, Chatzaki E. BRCA1 & BRCA2 methylation as a prognostic and predictive biomarker in cancer: Implementation in liquid biopsy in the era of precision medicine. Clin Epigenetics 2024; 16:178. [PMID: 39643918 PMCID: PMC11622545 DOI: 10.1186/s13148-024-01787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND BReast CAncer gene 1 (BRCA1) and BReast CAncer gene 2 (BRCA2) encode for tumor suppressor proteins which are critical regulators of the Homologous Recombination (HR) pathway, the most precise and important DNA damage response mechanism. Dysfunctional HR proteins cannot repair double-stranded DNA breaks in mammalian cells, a situation called HR deficiency. Since their identification, pathogenic variants and other alterations of BRCA1 and BRCA2 genes have been associated with an increased risk of developing mainly breast and ovarian cancer. Interestingly, HR deficiency is also detected in tumors not carrying BRCA1/2 mutations, a condition termed "BRCAness". MAIN TEXT One of the main mechanisms causing the BRCAness phenotype is the methylation of the BRCA1/2 promoters, and this epigenetic modification is associated with carcinogenesis and poor prognosis mainly among patients with breast and ovarian cancer. BRCA1 promoter methylation has been suggested as an emerging biomarker of great predictive significance, especially concerning Poly (ADP-ribose) Polymerase inhibitors (PARP inhibitor-PARPi) responsiveness, along with or beyond BRCA1/2 mutations. However, as its clinical exploitation is still insufficient, the impact of BRCA1/2 promoter methylation status needs to be further evaluated. The current review aims to gather the latest findings about the mechanisms that underline BRCA1/2 function as well as the molecular characteristics of tumors associated with BRCA1/2 defects, by focusing on DNA methylation. Furthermore, we critically analyze their translational meaning and the validity of BRCA methylation biomarkers in predicting treatment response. CONCLUSIONS We believe that BRCA1/2 methylation alone or combined with other biomarkers in a clinical setting is expected to change the scenery in prognosis and predicting treatment response in multiple cancer types and is worthy of further attention. The quantitative BRCA1 promoter methylation assessment might predict treatment response in PARPi and analysis of BRCA1/2 methylation in liquid biopsy might define patient subgroups at different time points that may benefit from PARPi. Finally, we suggest a pipeline that could be implemented in liquid biopsy to aid precision pharmacotherapy in BRCA-associated tumors.
Collapse
Grants
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
Collapse
Affiliation(s)
- Maria Panagopoulou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
- Institute of Agri-Food and Life Sciences, University Research and Innovation Centre, Hellenic Mediterranean University, 71003, Heraklion, Greece.
| | - Theodoros Panou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Anastasios Gkountakos
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Gesthimani Tarapatzi
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Makrina Karaglani
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, University Research and Innovation Centre, Hellenic Mediterranean University, 71003, Heraklion, Greece
| | - Ioannis Tsamardinos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013, Heraklion, Greece
- Department of Computer Science, University of Crete, Voutes Campus, 70013, Heraklion, Greece
- Institute of Applied and Computational Mathematics, 70013, Heraklion, Greece
- JADBio Gnosis Data Analysis (DA) S.A., Science and Technology Park of Crete (STEPC), 70013, Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013, Heraklion, Greece
| |
Collapse
|
2
|
Falick Michaeli T, Granit Mizrahi A, Azria B, Maymon O, Rosenberg S, Monin J, Braitbart Cohen E, Maoz M, Kadiuri L, Nechushtan H, Meyrowitz A, Peretz T. Tumor analysis of BRCA carriers reveals genomic similarities although separated by time. Discov Oncol 2024; 15:698. [PMID: 39579167 PMCID: PMC11585525 DOI: 10.1007/s12672-024-01577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
Among the dominant pathogenic genes (PG) in breast cancer are BRCA1/2. Knowing whether a patient carry one of these alterations is meaningful as it affects management. A substantial question is to what extent are the genomic profile of a tumor and its characteristics affected by the germline profile of BRCA1/2 and what is the possible contribution of other environmental factors. Here, we compared the molecular characteristics of two subsequent primary breast cancers in three women (6 primary breast cancers) BRCA PG carriers, and in two of them also a primary lung cancer. Comparing two different tumors in the same patient neutralizes the contribution of other germline changes, and may demonstrate possible effects of other external insults occurring between the first and second tumor. Nonetheless, epigenetic changes resulting from early life events will be present in all tumors that the patient has developed. Our analysis suggests that tumors arising from the same tissue in the same patient share similar molecular characteristics, albeit occurring in different times, as the patient is exposed to a variety of external stimuli.
Collapse
Affiliation(s)
- Tal Falick Michaeli
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, 91120, Jerusalem, Israel.
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Ein Karem, 91120, Jerusalem, Israel.
| | - Avital Granit Mizrahi
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Ein Karem, 91120, Jerusalem, Israel
| | - Batia Azria
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, 91120, Jerusalem, Israel
| | - Ofra Maymon
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Ein Karem, 91120, Jerusalem, Israel
| | - Shai Rosenberg
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Ein Karem, 91120, Jerusalem, Israel
| | - Jonathan Monin
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, 91120, Jerusalem, Israel
| | - Esther Braitbart Cohen
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Ein Karem, 91120, Jerusalem, Israel
| | - Myriam Maoz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Ein Karem, 91120, Jerusalem, Israel
| | - Luna Kadiuri
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Ein Karem, 91120, Jerusalem, Israel
| | - Hovav Nechushtan
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, 91120, Jerusalem, Israel
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Ein Karem, 91120, Jerusalem, Israel
| | - Amichay Meyrowitz
- Soroka Medical Center, 84101, Be'er Sheva, Israel
- Ben Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Tamar Peretz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, 91120, Jerusalem, Israel
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Ein Karem, 91120, Jerusalem, Israel
| |
Collapse
|
3
|
Qian C, Xing Y, Cheng W. Causal effect between breast cancer and ovarian cancer: a two-sample mendelian randomization study. BMC Cancer 2024; 24:1433. [PMID: 39573997 PMCID: PMC11580648 DOI: 10.1186/s12885-024-13033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/07/2024] [Indexed: 11/25/2024] Open
Abstract
OBJECTIVES Improved breast cancer (BC) outcomes highlight the importance of secondary primary cancers (SPCs) on survivor prognosis. The objective of this study was to investigate the potential genetic association between primary BC and ovarian cancer (OC), laying the groundwork for the development of preventive strategies for SPC-OC following BC surgery. METHODS This study aimed to assess the connection between BC and OC using a two sample Mendelian randomization (MR) approach, exclusively employing aggregate level data from publicly available genome wide association studies (GWASs). Finally, the Genetic Risk Scores (GRS) method was used for secondary analysis to verify the results robustness further. RESULTS The IVW method revealed a genetic correlation between Overall BC and ER + BC with Serous borderline tumors, while ER-BC exhibited genetic correlation with Mucinous borderline tumors and high-grade serous ovarian cancer. The findings from the GRS method aligned with those of the primary analysis, reinforcing the study's robustness. CONCLUSION Our MR Study identifies an association between BC and OC, highlighting the importance of increased vigilance in clinical practice for individuals with a history of BC. Timely intervention and treatment measures should be taken when necessary.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Yan Xing
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
4
|
Li Y, Ou Y, Fan K, Liu G. Salivary diagnostics: opportunities and challenges. Theranostics 2024; 14:6969-6990. [PMID: 39629130 PMCID: PMC11610148 DOI: 10.7150/thno.100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/29/2024] [Indexed: 12/06/2024] Open
Abstract
Saliva contains a diverse array of biomarkers indicative of various diseases. Saliva testing has been a major advancement towards non-invasive point-of-care diagnosis with clinical significance. However, there are challenges associated with salivary diagnosis from sample treatment and standardization. This review highlights the biomarkers in saliva and their role in identifying relevant diseases. It provides an overview and discussion about the current practice of saliva collection and processing, and advancements in saliva detection systems from in vitro methods to wearable oral devices. The review also addresses challenges in saliva diagnostics and proposes solutions, aiming to offer a comprehensive understanding and practical guidance for improving saliva-based detection in clinical diagnosis. Saliva diagnosis provides a rapid, effective, and safe alternative to traditional blood and urine tests for screening large populations and enhancing infectious disease diagnosis and surveillance. It meets the needs of various fields such as disease management, drug screening, and personalized healthcare with advances in saliva detection systems offering high sensitivity, fast response times, portability, and automation. Standardization of saliva collection, treatment, biomarker discovery, and detection between different laboratories needs to be implemented to obtain reliable salivary diagnosis in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Guozhen Liu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
5
|
Kristjansson D, Lee Y, Page CM, Gjessing H, Magnus MC, Jugessur A, Lyle R, Håberg SE. Sex differences in DNA methylation variations according to ART conception-evidence from the Norwegian mother, father, and child cohort study. Sci Rep 2024; 14:22904. [PMID: 39358554 PMCID: PMC11447267 DOI: 10.1038/s41598-024-73845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Previous studies have shown cord-blood DNA methylation differences in newborns conceived using assisted reproductive technologies (ART) compared to those conceived naturally. However, whether these ART-related DNA methylation differences vary with children's sex is unknown. We hypothesize that the DNA methylation differences in cord blood between ART-conceived and naturally conceived newborns also varies by the sex of the child, with distinct patterns of differential methylation present in males and females. We investigated sex differences in cord-blood DNA methylation variation according to conception by ART using the Illumina MethylationEPIC platform, comparing 456 ART-conceived versus 507 naturally-conceived girls, and 503 ART-conceived and 473 naturally-conceived boys. We identified 37 differentially methylated CpGs according to ART-conception among girls, and 70 differentially methylated CpGs according to ART-conception among boys, when we used a 1% false discovery rate to account for multiple testing. Ten CpGs were differentially methylated according to conception by ART in both sexes. Among the genes that were associated with these CpGs, we found the BRCA1; NBR2 gene (two CpGs) was hypermethylated in girls while the APC2 (two CpGs) and NECAB3;ACTL10, (four CpGs) related to cellular signaling were hypomethylated in boys. These findings confirm the presence of sex-specific epigenetic differences, illustrating the nuanced impact of ART on the fetal epigenome. There is a need for further explorations into the implications for sex-specific developmental trajectories and health outcomes in ART-conceived children.
Collapse
Affiliation(s)
- Dana Kristjansson
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway.
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.
| | - Yunsung Lee
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
| | - Christian M Page
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Physical Health and Ageing, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Håkon Gjessing
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Maria C Magnus
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
| | - Astanand Jugessur
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Robert Lyle
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Siri E Håberg
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Mays JC, Mei S, Kogenaru M, Quysbertf HM, Bosco N, Zhao X, Bianchi JJ, Goldberg A, Kidiyoor GR, Holt LJ, Fenyö D, Davoli T. KaryoTap Enables Aneuploidy Detection in Thousands of Single Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.08.555746. [PMID: 39386620 PMCID: PMC11463636 DOI: 10.1101/2023.09.08.555746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Investigating chromosomal instability and aneuploidy within tumors is essential for understanding tumorigenesis and developing diagnostic and therapeutic strategies. Single-cell DNA sequencing technologies have enabled such analyses, revealing aneuploidies specific to individual cells within the same tumor. However, it has been difficult to scale the throughput of these methods to detect rare aneuploidies while maintaining high sensitivity. To overcome this deficit, we developed KaryoTap, a method combining custom targeted DNA sequencing panels for the Tapestri platform with a computational framework to enable detection of chromosome- and chromosome arm-scale aneuploidy (gains or losses) and copy number neutral loss of heterozygosity in all human chromosomes across thousands of single cells simultaneously. KaryoTap allows detecting gains and losses with an average accuracy of 83% for arm events and 91% for chromosome events. Importantly, together with chromosomal copy number, our system allows us to detect barcodes and gRNAs integrated into the cells' genome, thus enabling pooled CRISPR- or ORF-based functional screens in single cells. As a proof of principle, we performed a small screen to expand the chromosomes that can be targeted by our recently described CRISPR-based KaryoCreate system for engineering aneuploidy in human cells. KaryoTap will prove a powerful and flexible approach for the study of aneuploidy and chromosomal instability in both tumors and normal tissues.
Collapse
Affiliation(s)
- Joseph C Mays
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sally Mei
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Manjunatha Kogenaru
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Helberth M Quysbertf
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Nazario Bosco
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA. Current Address: Volastra Therapeutics, New York, NY 10027, USA
| | - Xin Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Joy J Bianchi
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Aleah Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gururaj Rao Kidiyoor
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Liam J Holt
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Teresa Davoli
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
7
|
Jia J, Liu Z, Wang F, Bai G. Consensus Clustering Analysis Based on Enhanced-CT Radiomic Features: Esophageal Squamous Cell Carcinoma patients' 3-Year Progression-Free Survival. Acad Radiol 2024; 31:2807-2817. [PMID: 38199900 DOI: 10.1016/j.acra.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
RATIONALE AND OBJECTIVES To assess the efficacy of consensus cluster analysis based on CT radiomics in stratifying risk and predicting postoperative progression-free survival (PFS) in patients diagnosed with esophageal squamous cell carcinoma (ESC). MATERIALS AND METHODS We conducted a retrospective study involving 546 patients diagnosed with ESC between January 2016 and March 2021. All patients underwent preoperative enhanced CT examinations. From the enhanced CT images, radiomics features were extracted, and a consensus clustering algorithm was applied to group the patients based on these features. Statistical analysis was performed to examine the relationship between the clustering results and gene protein expression, histopathological features, and patients' 3-year PFS. We applied the Kruskal-Wallis test for continuous data, chi-square or Fisher's exact tests for categorical data, and the log-rank test for PFS. RESULTS This study identified four groups: Cluster 1 (n = 100, 18.3%), Cluster 2 (n = 197, 36.1%), Cluster 3 (n = 205, 37.5%), and Cluster 4 (n = 44, 8.1%). The cancer gene Breast Cancer Susceptibility Gene 1 (BRCA1) was most highly expressed in Cluster 4 (75%), showing significant differences between the four subtypes with a P-value of 0.035. The expression of programmed death-1 (PD-1) was highest in Cluster 1 (51%), with a P-value of 0.022. Vascular invasion occurred most frequently in Cluster 2 (28.9%), with a P-value of 0.022. The majority of patients with stage T3-4 were in Cluster 2 (67%), with a P-value of 0.003. Kaplan-Meier survival analysis revealed significant differences in PFS between the four groups (P = 0.013). Among them, patients in Cluster 1 had the best prognosis, while those in Cluster 2 had the worst. CONCLUSION This study highlights the effectiveness of consensus clustering analysis based on enhanced CT radiomics features in identifying associations between radiomics features, histopathological characteristics, and prognosis in different clusters. These findings provide valuable insights for clinicians in accurately and effectively evaluating the prognosis of esophageal cancer.
Collapse
Affiliation(s)
- Jianye Jia
- The Department of Medical Imaging Center, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 West Huanghe Road, Huaian, 223300, Jiangsu, PR China
| | - Ziyan Liu
- The Department of Medical Imaging Center, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 West Huanghe Road, Huaian, 223300, Jiangsu, PR China
| | - Fen Wang
- The Department of Medical Imaging Center, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 West Huanghe Road, Huaian, 223300, Jiangsu, PR China
| | - Genji Bai
- The Department of Medical Imaging Center, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 West Huanghe Road, Huaian, 223300, Jiangsu, PR China.
| |
Collapse
|
8
|
Zattarin E, Taglialatela I, Lobefaro R, Leporati R, Fucà G, Ligorio F, Sposetti C, Provenzano L, Azzollini J, Vingiani A, Ferraris C, Martelli G, Manoukian S, Pruneri G, de Braud F, Vernieri C. Breast cancers arising in subjects with germline BRCA1 or BRCA2 mutations: Different biological and clinical entities with potentially diverse therapeutic opportunities. Crit Rev Oncol Hematol 2023; 190:104109. [PMID: 37643668 DOI: 10.1016/j.critrevonc.2023.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
Breast cancers (BCs) arising in carriers of germline BRCA1 and BRCA2 pathogenic variants (PVs) have long been considered as indistinguishable biological and clinical entities. However, the loss of function of BRCA1 or BRCA2 proteins has different consequences in terms of tumor cell reliance on estrogen receptor signaling and tumor microenvironment composition. Here, we review accumulating preclinical and clinical data indicating that BRCA1 or BRCA2 inactivation may differentially affect BC sensitivity to standard systemic therapies. Based on a different crosstalk between BRCA1 or BRCA2 and the ER pathway, BRCA2-mutated Hormone Receptor-positive, HER2-negative advanced BC may be less sensitive to endocrine therapy (ET) plus CDK 4/6 inhibitors (CDK 4/6i), whereas BRCA2-mutated triple-negative breast cancer (TNBC) may be especially sensitive to immune checkpoint inhibitors. If validated in future prospective studies, these data may have relevant clinical implications, thus establishing different treatment paths in patients with BRCA1 or BRCA2 PVs.
Collapse
Affiliation(s)
- Emma Zattarin
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ida Taglialatela
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Lobefaro
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rita Leporati
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Fucà
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Ligorio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Caterina Sposetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Leonardo Provenzano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Vingiani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Pathology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cristina Ferraris
- Breast Unit, Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabriele Martelli
- Breast Unit, Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giancarlo Pruneri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Pathology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Claudio Vernieri
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
9
|
Sokolenko A, Preobrazhenskaya E, Marchetti C, Piermattei A, Zagrebin F, Kuligina E, Gorodnova T, Pavone M, Ivantsov A, Bizin I, Scambia G, Berlev I, Fagotti A, Imyanitov E. Origin of Residual Tumor Masses in BRCA1/2-Driven Ovarian Carcinomas Treated by Neoadjuvant Chemotherapy: Selection of Preexisting BRCA1/2-Proficient Tumor Cells but Not the Gain of Second ORF-Restoring Mutation. Pathobiology 2023; 91:108-113. [PMID: 37579727 DOI: 10.1159/000533591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
INTRODUCTION Tubo-ovarian carcinomas (OCs) are highly sensitive to platinum-based neoadjuvant chemotherapy (NACT) but almost never demonstrate complete pathologic response. METHODS We analyzed paired primary and residual tumor tissues from 30 patients with hereditary BRCA1/2-driven OCs (BRCA1: 17; BRCA2: 13), who were treated by carboplatin/paclitaxel NACT (median number of cycles: 3, range: 3-6). BRCA1/2 and TP53 genes were analyzed by the next-generation sequencing. The ratio between TP53 mutation-specific versus wild-type reads was considered to monitor the proportion of tumor and non-tumor cells in the tissue sample, and the ratio between BRCA1/2-mutated and wild-type reads was used to estimate the presence of cells with the loss or retention of heterozygosity (LOH or ROH, respectively). RESULTS All 30 OCs had BRCA1/2 LOH in primary tumor and carried somatic TP53 mutation. Twenty-eight OCs had sufficient tumor cell cellularity in the post-NACT tissue to evaluate the ratio between mutated and wild-type BRCA1/2 alleles. Five (18%) out of 28 informative tumor pairs showed transition from LOH to ROH during NACT presumably affecting all or the vast majority of residual tumor cells. There were no signals of the emergence of a second open reading frame-restoring BRCA1/2 mutation. CONCLUSION Chemonaive BRCA1/2-driven carcinomas may contain a fraction of tumor cells with preserved BRCA1/2 heterozygosity. NACT can cause a selection of pre-existing BRCA1/2-proficient tumor cells, without gaining secondary reversal BRCA1/2 mutations.
Collapse
Affiliation(s)
- Anna Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russian Federation
- Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg, Russian Federation
| | - Elena Preobrazhenskaya
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russian Federation
| | - Claudia Marchetti
- Dipartimento Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alessia Piermattei
- Dipartimento Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Fedor Zagrebin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russian Federation
| | - Ekatherina Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russian Federation
| | - Tatiana Gorodnova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russian Federation
| | - Matteo Pavone
- Dipartimento Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alexandr Ivantsov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russian Federation
| | - Ilya Bizin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russian Federation
| | - Giovanni Scambia
- Dipartimento Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Igor Berlev
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russian Federation
| | - Anna Fagotti
- Dipartimento Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Evgeny Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russian Federation
- Department of Medical Genetics, St. Petersburg Pediatric Medical University, St. Petersburg, Russian Federation
| |
Collapse
|
10
|
Wineland D, Le AN, Hausler R, Kelly G, Barrett E, Desai H, Wubbenhorst B, Pluta J, Bastian P, Symecko H, D'Andrea K, Doucette A, Gabriel P, Reiss KA, Nayak A, Feldman M, Domchek SM, Nathanson KL, Maxwell KN. Biallelic BRCA Loss and Homologous Recombination Deficiency in Nonbreast/Ovarian Tumors in Germline BRCA1/2 Carriers. JCO Precis Oncol 2023; 7:e2300036. [PMID: 37535879 PMCID: PMC10581613 DOI: 10.1200/po.23.00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/02/2023] [Accepted: 06/02/2023] [Indexed: 08/05/2023] Open
Abstract
PURPOSE Breast and ovarian tumors in germline BRCA1/2 carriers undergo allele-specific loss of heterozygosity, resulting in homologous recombination deficiency (HRD) and sensitivity to poly-ADP-ribose polymerase (PARP) inhibitors. This study investigated whether biallelic loss and HRD also occur in primary nonbreast/ovarian tumors that arise in germline BRCA1/2 carriers. METHODS A clinically ascertained cohort of BRCA1/2 carriers with a primary nonbreast/ovarian cancer was identified, including canonical (prostate and pancreatic cancers) and noncanonical (all other) tumor types. Whole-exome sequencing or clinical sequencing results (n = 45) were analyzed. A pan-cancer analysis of nonbreast/ovarian primary tumors from germline BRCA1/2 carriers from The Cancer Genome Atlas (TCGA, n = 73) was used as a validation cohort. RESULTS Ages of nonbreast/ovarian cancer diagnosis in germline BRCA1/2 carriers were similar to controls for the majority of cancer types. Nine of 45 (20%) primary nonbreast/ovarian tumors from germline BRCA1/2 carriers had biallelic loss of BRCA1/2 in the clinical cohort, and 23 of 73 (32%) in the TCGA cohort. In the combined cohort, 35% and 27% of primary canonical and noncanonical BRCA tumor types, respectively, had biallelic loss. High HRD scores (HRDex > 42) were detected in 81% of tumors with biallelic BRCA loss compared with 22% (P < .001) of tumors without biallelic BRCA loss. No differences in genomic profile, including mutational signatures, mutation spectrum, tumor mutational burden, or microsatellite instability, were found in primary nonbreast/ovarian tumors with or without biallelic BRCA1/2 loss. CONCLUSION A proportion of noncanonical primary tumors have biallelic loss and evidence of HRD. Our data suggest that assessment of biallelic loss and HRD could supplement identification of germline BRCA1/2 mutations in selection of patients for platinum or PARP inhibitor therapy.
Collapse
Affiliation(s)
- Dylane Wineland
- Arcadia University and Chester County Hospital, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anh N. Le
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ryan Hausler
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gregory Kelly
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emanuel Barrett
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Heena Desai
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bradley Wubbenhorst
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Pluta
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Paul Bastian
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Heather Symecko
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kurt D'Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Abigail Doucette
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Peter Gabriel
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kim A. Reiss
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Susan M. Domchek
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Katherine L. Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kara N. Maxwell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Xu Q, Kowalski J. NBBC: a non-B DNA burden explorer in cancer. Nucleic Acids Res 2023:7177884. [PMID: 37224529 DOI: 10.1093/nar/gkad379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/16/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Alternate (non-B) DNA-forming structures, such as Z-DNA, G-quadruplex, triplex have demonstrated a potential role in cancer etiology. It has been found that non-B DNA-forming sequences can stimulate genetic instability in human cancer genomes, implicating them in the development of cancer and other genetic diseases. While there exist several non-B prediction tools and databases, they lack the ability to both analyze and visualize non-B data within a cancer context. Herein, we introduce NBBC, a non-B DNA burden explorer in cancer, that offers analyses and visualizations for non-B DNA forming motifs. To do so, we introduce 'non-B burden' as a metric to summarize the prevalence of non-B DNA motifs at the gene-, signature- and genomic site-levels. Using our non-B burden metric, we developed two analyses modules within a cancer context to assist in exploring both gene- and motif-level non-B type heterogeneity among gene signatures. NBBC is designed to serve as a new analysis and visualization platform for the exploration of non-B DNA, guided by non-B burden as a novel marker.
Collapse
Affiliation(s)
- Qi Xu
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeanne Kowalski
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
12
|
Geoffroy V, Lamouche JB, Guignard T, Nicaise S, Kress A, Scheidecker S, Le Béchec A, Muller J. The AnnotSV webserver in 2023: updated visualization and ranking. Nucleic Acids Res 2023:7175348. [PMID: 37216590 DOI: 10.1093/nar/gkad426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/20/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Much of the human genetics variant repertoire is composed of single nucleotide variants (SNV) and small insertion/deletions (indel) but structural variants (SV) remain a major part of our modified DNA. SV detection has often been a complex question to answer either because of the necessity to use different technologies (array CGH, SNP array, Karyotype, Optical Genome Mapping…) to detect each category of SV or to get an appropriate resolution (Whole Genome Sequencing). Thanks to the deluge of pangenomic analysis, Human geneticists are accumulating SV and their interpretation remains time consuming and challenging. The AnnotSV webserver (https://www.lbgi.fr/AnnotSV/) aims at being an efficient tool to (i) annotate and interpret SV potential pathogenicity in the context of human diseases, (ii) recognize potential false positive variants from all the SV identified and (iii) visualize the patient variants repertoire. The most recent developments in the AnnotSV webserver are: (i) updated annotations sources and ranking, (ii) three novel output formats to allow diverse utilization (analysis, pipelines), as well as (iii) two novel user interfaces including an interactive circos view.
Collapse
Affiliation(s)
- Véronique Geoffroy
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
- Laboratoire de Génétique Médicale, UMR 1112, INSERM, IGMA, Université de Strasbourg, Strasbourg, France
| | - Jean-Baptiste Lamouche
- Laboratoire de Génétique Médicale, UMR 1112, INSERM, IGMA, Université de Strasbourg, Strasbourg, France
- Unité Fonctionnelle de Bioinformatique Médicale appliquée au diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | - Samuel Nicaise
- Unité Fonctionnelle de Bioinformatique Médicale appliquée au diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Arnaud Kress
- Complex Systems and Translational Bioinformatics, ICube, UMR 7357, University of Strasbourg, CNRS, FMTS, Strasbourg, France
| | - Sophie Scheidecker
- Laboratoire de Génétique Médicale, UMR 1112, INSERM, IGMA, Université de Strasbourg, Strasbourg, France
- Laboratoires de Diagnostic Génétique, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Antony Le Béchec
- Unité Fonctionnelle de Bioinformatique Médicale appliquée au diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean Muller
- Laboratoire de Génétique Médicale, UMR 1112, INSERM, IGMA, Université de Strasbourg, Strasbourg, France
- Unité Fonctionnelle de Bioinformatique Médicale appliquée au diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratoires de Diagnostic Génétique, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
13
|
Morganti S, Bychkovsky BL, Poorvu PD, Garrido-Castro AC, Weiss A, Block CC, Partridge AH, Curigliano G, Tung NM, Lin NU, Garber JE, Tolaney SM, Lynce F. Adjuvant Olaparib for Germline BRCA Carriers With HER2-Negative Early Breast Cancer: Evidence and Controversies. Oncologist 2023:7175048. [PMID: 37210568 DOI: 10.1093/oncolo/oyad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/06/2023] [Indexed: 05/22/2023] Open
Abstract
In the OlympiA study, 1 year of adjuvant olaparib significantly extended invasive disease-free survival and overall survival. The benefit was consistent across subgroups, and this regimen is now recommended after chemotherapy for germline BRCA1/2 mutation (gBRCA1/2m) carriers with high-risk, HER2-negative early breast cancer. However, the integration of olaparib in the landscape of agents currently available in the post(neo)adjuvant setting-ie, pembrolizumab, abemaciclib, and capecitabine-is challenging, as there are no data suggesting how to select, sequence, and/or combine these therapeutic approaches. Furthermore, it is unclear how to best identify additional patients who could benefit from adjuvant olaparib beyond the original OlympiA criteria. Since it is unlikely that new clinical trials will answer these questions, recommendations for clinical practice can be made through indirect evidence. In this article, we review available data that could help guide treatment decisions for gBRCA1/2m carriers with high-risk, early-stage breast cancer.
Collapse
Affiliation(s)
- Stefania Morganti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Brittany L Bychkovsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Genetics and Prevention Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Philip D Poorvu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ana C Garrido-Castro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Anna Weiss
- Department of Surgery, Division of Surgical Oncology, University of Rochester, Rochester, NY, USA
| | - Caroline C Block
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ann H Partridge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nadine M Tung
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Genetics and Prevention Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Filipa Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Raspaglio G, Buttarelli M, Cappoli N, Ciucci A, Fagotti A, Scambia G, Gallo D. Exploring the Control of PARP1 Levels in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2023; 15:cancers15082361. [PMID: 37190289 DOI: 10.3390/cancers15082361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is a leading cause of mortality from gynecologic malignancies worldwide. Although a transformative improvement has been shown with the introduction of PARP (poly(ADP-ribose) polymerase) inhibitors, the emergence of resistance to these drugs represents a therapeutic challenge. Hence, expanding our understanding of mechanisms behind the control of PARP1 expression can provide strategic guidance for the translation of novel therapeutic strategies. The Signal Transducer and Activator of Transcription (STAT) family of proteins consists of transcription factors critically involved in the regulation of important cellular functions. Notably, we recently demonstrated that, in cervical cancer cells, STAT1 controls PARP1 levels through multiple mechanisms, possibly involving also STAT3. Here, we tested the hypothesis that a similar mechanism might be operative in HGSOC. To this end, the impact of STAT1/STAT3 modulation on PARP1 expression was assessed in established and primary HGSOC cells, and molecular biology studies proved that STAT1 might act at both transcriptional and post-transcriptional levels to modulate the PARP1 level. Notably, bioinformatics analysis of TCGA databases demonstrated that increased STAT1 mRNA expression levels are associated with a favorable prognosis and with response to chemotherapy in HGSOC patients. Our findings suggest an alternative strategy for targeting HGSOC cells based on their dependency on PARP1.
Collapse
Affiliation(s)
- Giuseppina Raspaglio
- Unità di Medicina Traslazionale per la Salute della Donna e del Bambino, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Marianna Buttarelli
- Unità di Medicina Traslazionale per la Salute della Donna e del Bambino, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Natalia Cappoli
- Unità di Medicina Traslazionale per la Salute della Donna e del Bambino, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Alessandra Ciucci
- Unità di Medicina Traslazionale per la Salute della Donna e del Bambino, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Anna Fagotti
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
| | - Giovanni Scambia
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
| | - Daniela Gallo
- Unità di Medicina Traslazionale per la Salute della Donna e del Bambino, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|