1
|
Liu W, Wang X, Chen Y. Fully Recycled Polyolefin Elastomer-Based Vitrimers with Ultra-High, Universal, Stable, and Switchable Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403934. [PMID: 38982940 DOI: 10.1002/smll.202403934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Indexed: 07/11/2024]
Abstract
Achieving both robust adhesion to arbitrary surfaces and thermal-switchable/recyclable properties has proven challenging, particularly for commodity polyolefins. Herein, a simple and effective route is reported to transform polyolefins elastomer (POE) into a fully recycled epoxy-functionalized POE vitrimers (E-POE vit) with ultra-high, universal, stable, and switchable adhesion via facile free radical grafting and dynamic cross-linking. The resultant E-POE vit exhibits increase in adhesion strength on glass exceeding three to ten times compared to those commonly used polymers, due to the synergy of dense hydrogen (H)-bonds and strong interfacial affinity. In addition, E-POE vit also displays strong adhesion on diverse surfaces ranging from inorganic to organic while maintaining good stability in various harsh environments. More importantly, temperature-sensitive H-bonds allow E-POE vit to switch between attachment-detachment at alternating temperatures, resulting in reversible adhesion without adhesion loss, even after 10 cycles. Moreover, E-POE vit is able to be fully recycled and reused more than ten times via thermo-activated transesterification reactions with negligible change in structure and performance. This work may unlock strategies to fabricate high-performance commercial polymer-based adhesives with adhesion and recyclable features for intelligent and sustainable applications.
Collapse
Affiliation(s)
- Wei Liu
- Lab of Advanced Elastomer, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Xinghuo Wang
- Lab of Advanced Elastomer, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Yukun Chen
- Lab of Advanced Elastomer, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
- Zhongshan Institute of Modern Industrial Technology, South China University of Technology, Zhongshan, 528437, China
| |
Collapse
|
2
|
Wang S, Ou R, Li J, Jin K, Yu L, Murto P, Wang Z, Xu X. Deformation-Resistant Underwater Adhesion in a Wide Salinity Range. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403350. [PMID: 38988140 DOI: 10.1002/smll.202403350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Conventional adhesives experience reduced adhesion when exposed to aqueous environments. The development of underwater adhesives capable of forming strong and durable bonds across various wet substrates is crucial in biomedical and engineering domains. Nonetheless, limited emphasis placed on retaining high adhesion strengths in different saline environments, addressing challenges such as elevated osmotic pressure and spontaneous dimensional alterations. Herein, a series of ionogel-based underwater adhesives are developed using a copolymerization approach that incorporates "dynamic complementary cross-linking" networks. Synergistic engineering of building blocks, cross-linking networks, pendant groups and counterions within ionogels ensures their adhesion and cohesion in brine spanning a wide salinity range. A high adhesion strength of ≈3.6 MPa is attained in freshwater. Gratifyingly, steady adhesion strengths exceeding 3.3 MPa are retained in hypersaline solutions with salinity ranging from 50 to 200 g kg-1, delivering one of the best-performing underwater adhesives suitable for diverse saline solutions. A combination of outstanding durability, reliability, deformation resistance, salt tolerance, and self-healing properties showcases the "self-contained" underwater adhesion. This study shines light on the facile fabrication of catechol-free ionogel-based adhesives, not merely boosting adhesion strengths in freshwater, but also broadening their applicability across various saline environments.
Collapse
Affiliation(s)
- Shuxue Wang
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Richang Ou
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jingjing Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Kai Jin
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Petri Murto
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Zhihang Wang
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Xiaofeng Xu
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
3
|
Li X, Wu B, Sun S, Wu P. Making Sticky-Slippery Switchable Fluorogels Through Self-Adaptive Bicontinuous Phase Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411273. [PMID: 39400936 DOI: 10.1002/adma.202411273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Developing gel materials with tunable frictional properties is crucial for applications in soft robotics, anti-fouling, and joint protection. However, achieving reversible switching between extreme sticky and slippery states remains a formidable challenge due to the opposing requirements for energy dissipation on gel surfaces. Herein, a self-adaptive bicontinuous fluorogel is introduced that decouples lubrication and adhesion at varying temperatures. The phase-separated fluorogel comprises a soft fluorinated lubricating phase and a stiff yet thermal-responsive load-bearing phase. At ambient temperature, the fluorogel exhibits a highly slippery surface owing to a low-energy-dissipating lubricating layer, demonstrating an ultralow friction coefficient of 0.004. Upon heating, the fluorogel transitions into a highly dissipating state via hydrogen bond dissociation, concurrently releasing adhesive dangling chains to make the surface highly sticky with an adhesion strength of ≈362 kPa. This approach provides a promising foundation for creating advanced adaptive materials with on-demand self-adhesive and self-lubricating capabilities.
Collapse
Affiliation(s)
- Xiaoxia Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| |
Collapse
|
4
|
Tan YL, Wong YJ, Ong NWX, Leow Y, Wong JHM, Boo YJ, Goh R, Loh XJ. Adhesion Evolution: Designing Smart Polymeric Adhesive Systems with On-Demand Reversible Switchability. ACS NANO 2024; 18:24682-24704. [PMID: 39185924 DOI: 10.1021/acsnano.4c05598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Smart polymeric switchable adhesives represent a rapidly emerging class of advanced materials, exhibiting the ability to undergo on-demand transitioning between "On" and "Off" adhesion states. By selectively tuning external stimuli triggers (including temperature, light, electricity, magnetism, and chemical agents), we can engineer these materials to undergo reversible changes in their bonding capabilities. The strategic design selection of stimuli is a pivotal factor in the design of switchable adhesive systems. This review outlines recent advancements in the field of smart switchable polymeric adhesives over the past decade with a focus on the selection of stimulus triggers. These systems are further categorized into one of four adhesion switching mechanisms upon initiation by a specific stimuli-trigger: (i) interfacial adhesion, (ii) stiffness, (iii) contact area, or (iv) suction-based switching. Evaluation of adhesion switching performance across systems is primarily made based on three key metrics: (i) maximum adhesion strength, (ii) switch ratio, and (iii) switch time. Different stimuli and mechanisms offer distinct advantages and limitations, influencing the performance characteristics and applicability of these materials across domains such as detachable biomedical devices, robotic grippers, and climbing robots. This review thus offers a perspective on the present advancements and challenges in this emerging field, along with insights into future directions.
Collapse
Affiliation(s)
- Yee Lin Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Yi Jing Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Nicholas Wei Xun Ong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Yihao Leow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Rubayn Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| |
Collapse
|
5
|
Li M, Mao A, Guan Q, Saiz E. Nature-inspired adhesive systems. Chem Soc Rev 2024; 53:8240-8305. [PMID: 38982929 DOI: 10.1039/d3cs00764b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Many organisms in nature thrive in intricate habitats through their unique bio-adhesive surfaces, facilitating tasks such as capturing prey and reproduction. It's important to note that the remarkable adhesion properties found in these natural biological surfaces primarily arise from their distinct micro- and nanostructures and/or chemical compositions. To create artificial surfaces with superior adhesion capabilities, researchers delve deeper into the underlying mechanisms of these captivating adhesion phenomena to draw inspiration. This article provides a systematic overview of various biological surfaces with different adhesion mechanisms, focusing on surface micro- and nanostructures and/or chemistry, offering design principles for their artificial counterparts. Here, the basic interactions and adhesion models of natural biological surfaces are introduced first. This will be followed by an exploration of research advancements in natural and artificial adhesive surfaces including both dry adhesive surfaces and wet/underwater adhesive surfaces, along with relevant adhesion characterization techniques. Special attention is paid to stimulus-responsive smart artificial adhesive surfaces with tunable adhesive properties. The goal is to spotlight recent advancements, identify common themes, and explore fundamental distinctions to pinpoint the present challenges and prospects in this field.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Anran Mao
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
6
|
Xu H, Li H, Zhang Y, Guan Y, Zhang Y. Strong and Thermo-Switchable Gel Adhesion Based on UCST-Type Phase Transition in Deep Eutectic Solvent. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400938. [PMID: 38885493 PMCID: PMC11336952 DOI: 10.1002/advs.202400938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/04/2024] [Indexed: 06/20/2024]
Abstract
It remains a great challenge to achieve strong and reversible hydrogel adhesion. Hydrogel adhesives also suffer from poor environmental stability due to dehydration. To overcome these problems, here reversible adhesive gels are designed using a new switching mechanism and new solvent. For the first time, the study observes UCST (upper critical solution temperature)-type thermosensitive behaviors of poly(benzyl acrylate) (PBnA) polymer and gel in menthol:thymol deep eutectic solvents (DESs). The temperature-induced phase transition allows adjusting cohesive force, and hence adhesion strength of PBnA gels by temperature. To further improve the mechanical and adhesion properties, a peptide crosslinker is used to allow energy dissipation when deforming. The resulting eutectogel exhibits thermal reversible adhesion with a high switching ratio of 14.0. The adhesion strength at attachment state reaches 0.627 MPa, which is much higher than most reversible adhesive hydrogels reported before. The low vapor pressure of DES endows the gel excellent environmental stability. More importantly, the gel can be repeatedly switched between attachment and detachment states. The strong and reversible gel adhesive is successfully used to design soft gripper for the transport of heavy cargos and climbing robot capable of moving on vertical and inverted surface in a manner similar to gecko.
Collapse
Affiliation(s)
- Huiyao Xu
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical BiologyInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjin300071China
| | - Haocheng Li
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical BiologyInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjin300071China
| | - Yan Zhang
- School of Pharmaceutical SciencesTiangong UniversityTianjin300387China
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical BiologyInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjin300071China
| | - Yongjun Zhang
- School of Pharmaceutical SciencesTiangong UniversityTianjin300387China
- Cangzhou Institute of Tiangong UniversityCangzhou061000China
| |
Collapse
|
7
|
Zhang Q, Zhang C, Li Y, Zhang X, Tian D, Jiang L. Self-Repairing Humidity-Adjustable Anisotropic Adhesion Switch for Smart Manipulation. ACS NANO 2024; 18:19324-19331. [PMID: 38976871 DOI: 10.1021/acsnano.4c05747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Stimuli-responsive surface adhesion regulation is widely used in automated assembly systems, intelligent pick-up and placement systems, and soft crawling robots. However, in the actual separation process, it tends to produce separation residue or excessive adhesion. Therefore, how to regulate surface adhesion on demand is a significant challenge. Herein, inspired by the anisotropic adhesion behavior of butterflies and the controlled adhesion behavior of octopuses, based on molecular conformational rearrangement and anisotropic structures, a humidity-responsive PES-PI/PDMS composite surface is achieved to meet the needs of controllable adhesion orientation and strength, which could be used for an intelligent transfer system (grasping and releasing and anisotropic transporting). Humidity can effectively tune the hydrogen bonding and the interaction between polymers, resulting in excellent self-healing and durability properties of the composite surface. Moreover, humidity could adjust the surface transmittance as well, making it possible to be used in humidity sensing and in a detection and encryption/decryption system to enhance environmental monitoring and information protection capabilities. This work not only establishes a method for the fabrication of innovative "high-flexibility" adhesive materials but also provides approaches for the design and development of intelligent response devices.
Collapse
Affiliation(s)
- Qiuya Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P.R. China
- Paris Curie Engineer School, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Chunyu Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Yan Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Xiaofang Zhang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Dongliang Tian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P.R. China
- Beijing Advanced Innovation Center for Biomedical Engineering,Beihang University, Beijing 100191, P.R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P.R. China
- Beijing Advanced Innovation Center for Biomedical Engineering,Beihang University, Beijing 100191, P.R. China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100191, P.R. China
| |
Collapse
|
8
|
Yu Z, Huang W, Wang F, Nie X, Chen G, Zhang L, Shen AZ, Zhang Z, Wang CH, You YZ. An adhesion-switchable hydrogel dressing for painless dressing removal without secondary damage. J Mater Chem B 2024; 12:5628-5644. [PMID: 38747238 DOI: 10.1039/d4tb00621f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Hydrogels with strong adhesion to wet tissues are considered promising for wound dressings. However, the clinical application of adhesive hydrogel dressing remains a challenge due to the issues of secondary damage during dressing changes. Herein, we fabricated an adhesion-switchable hydrogel formed with poly(acrylamide)-co-poly(N-isopropyl acrylamide), quaternary ammonium chitosan and tannic acid. This hydrogel forms instant and robust adhesion to the skin at body temperature. However, as the temperature rises above the lower critical solution temperature (LCST), the hydrogel loses its adhesion towards the wound area due to the temperature-dependent volume phase transition of the copolymer, occurring around 45 °C. Consequently, the designed hydrogel can be easily detached from adhered tissues upon demand, providing a facile and effective method for painless dressing changes without secondary damage. This hydrogel holds great promise for long-term application in wound dressings.
Collapse
Affiliation(s)
- Zhiling Yu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Weiqiang Huang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fei Wang
- Department of Neurosurgical, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xuan Nie
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guang Chen
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Ai-Zong Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Ze Zhang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chang-Hui Wang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P. R. China
| | - Ye-Zi You
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
9
|
Zhang J, Zhou X, Hu Q, Zhou K, Zhang Y, Dong S, Zhao G, Zhang S. Concentration-induced spontaneous polymerization of protic ionic liquids for efficient in situ adhesion. Nat Commun 2024; 15:4265. [PMID: 38769305 PMCID: PMC11106314 DOI: 10.1038/s41467-024-48561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
The advancement of contemporary adhesives is often limited by the balancing act between cohesion and interfacial adhesion strength. This study explores an approach to overcome this trade-off by utilizing the spontaneous polymerization of a protic ionic liquid-based monomer obtained through the neutralization of 2-acrylamide-2-methyl propane sulfonic acid and hydroxylamine. The initiator-free polymerization process is carried out through a gradual increase in monomer concentration in aqueous solutions caused by solvent evaporation upon heating, which results in the in-situ formation of a tough and thin adhesive layer with a highly entangled polymeric network and an intimate interface contact between the adhesive and substrate. The abundance of internal and external non-covalent interactions also contributes to both cohesion and interfacial adhesion. Consequently, the produced protic poly(ionic liquid)s exhibit considerable adhesion strength on a variety of substrates. This method also allows for the creation of advanced adhesive composites with electrical conductivity or visualized sensing functionality by incorporating commercially available fillers into the ionic liquid adhesive. This study provides a strategy for creating high-performance ionic liquid-based adhesives and highlights the importance of in-situ polymerization for constructing adhesive composites.
Collapse
Affiliation(s)
- Jun Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Xuan Zhou
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Qinyu Hu
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Kaijian Zhou
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Yan Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Gai Zhao
- State Key Laboratory of Mechanics and Control of Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China.
| |
Collapse
|
10
|
Kong Y, Ma S, Zhou F. Bioinspired Interfacial Friction Control: From Chemistry to Structures to Mechanics. Biomimetics (Basel) 2024; 9:200. [PMID: 38667211 PMCID: PMC11048105 DOI: 10.3390/biomimetics9040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Organisms in nature have evolved a variety of surfaces with different tribological properties to adapt to the environment. By studying, understanding, and summarizing the friction and lubrication regulation phenomena of typical surfaces in nature, researchers have proposed various biomimetic friction regulation theories and methods to guide the development of new lubrication materials and lubrication systems. The design strategies for biomimetic friction/lubrication materials and systems mainly include the chemistry, surface structure, and mechanics. With the deepening understanding of the mechanism of biomimetic lubrication and the increasing application requirements, the design strategy of multi-strategy coupling has gradually become the center of attention for researchers. This paper focuses on the interfacial chemistry, surface structure, and surface mechanics of a single regulatory strategy and multi-strategy coupling approach. Based on the common biological friction regulation mechanism in nature, this paper reviews the research progress on biomimetic friction/lubrication materials in recent years, discusses and analyzes the single and coupled design strategies as well as their advantages and disadvantages, and describes the design concepts, working mechanisms, application prospects, and current problems of such materials. Finally, the development direction of biomimetic friction lubrication materials is prospected.
Collapse
Affiliation(s)
- Yunsong Kong
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Y.K.); (F.Z.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Y.K.); (F.Z.)
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Y.K.); (F.Z.)
| |
Collapse
|
11
|
Yu W, Yang Y, Wang Y, Hu L, Hao J, Xu L, Liu W. Versatile MXene Gels Assisted by Brief and Low-Strength Centrifugation. NANO-MICRO LETTERS 2024; 16:94. [PMID: 38252190 PMCID: PMC10803715 DOI: 10.1007/s40820-023-01302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/25/2023] [Indexed: 01/23/2024]
Abstract
Due to the mutual repulsion between their hydrophilic surface terminations and the high surface energy facilitating their random restacking, 2D MXene nanosheets usually cannot self-assemble into 3D macroscopic gels with various applications in the absence of proper linking agents. In this work, a rapid spontaneous gelation of Ti3C2Tx MXene with a very low dispersion concentration of 0.5 mg mL-1 into multifunctional architectures under moderate centrifugation is illustrated. The as-prepared MXene gels exhibit reconfigurable internal structures and tunable rheological, tribological, electrochemical, infrared-emissive and photothermal-conversion properties based on the pH-induced changes in the surface chemistry of Ti3C2Tx nanosheets. By adopting a gel with optimized pH value, high lubrication, exceptional specific capacitances (~ 635 and ~ 408 F g-1 at 5 and 100 mV s-1, respectively), long-term capacitance retention (~ 96.7% after 10,000 cycles) and high-precision screen- or extrusion-printing into different high-resolution anticounterfeiting patterns can be achieved, thus displaying extensive potential applications in the fields of semi-solid lubrication, controllable devices, supercapacitors, information encryption and infrared camouflaging.
Collapse
Affiliation(s)
- Weiyan Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China
| | - Yi Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China
| | - Yunjing Wang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China
| | - Lulin Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China
| | - Jingcheng Hao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China.
- Key Laboratory of Colloid and Interface Chemistry and Key Laboratory of Special Aggregated Materials, Shandong University, Jinan, 250100, People's Republic of China.
| | - Lu Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China.
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China
| |
Collapse
|
12
|
Wang S, Ren K, Zhang M, Shen L, Zhou G, Ding Y, Xin Q, Luo J, Xie J, Li J. Self-Adhesive, Strong Antifouling, and Mechanically Reinforced Methacrylate Hyaluronic Acid Cross-Linked Carboxybetaine Zwitterionic Hydrogels. Biomacromolecules 2024; 25:474-485. [PMID: 38114427 DOI: 10.1021/acs.biomac.3c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Hyaluronic acid and zwitterionic hydrogels are soft materials with poor mechanical properties. The unique structures and physiological properties make them attractive candidates for ideal hydrogel dressings, but the crux of lacking satisfying mechanical strengths and adhesive properties is still pendent. In this study, the physical cross-linking of dipole-dipole interactions of zwitterionic pairs was utilized to enhance the mechanical properties of hydrogels. The hydrogels have been prepared by copolymerizing methacrylate hyaluronic (HAGMA) with carboxybetaine methacrylamide (CBMAA) (the mass ratio of [HAGMA]/[CBMAA] is 2:5, 1:5, 1:10, or 1:20), obtaining HA-CB2.5, HA-CB5.0, HA-CB10.0, or HA-CB20.0 hydrogel. Therein, the HA-CB20.0 hydrogel with a high CBMAA content can generate a strong dipole-dipole interaction to form internal physical cross-links, exhibit stretchability and low elastic modulus, and withstand 99% compressive deformation and cyclic compression under strain at 90%. Moreover, the HA-CB20.0 hydrogel is adhesive to diverse substrates, including skin, glass, stainless steel, and plastic. The synergistic effect of HAGMA and CBMAA shows strong anti-biofouling, high water absorption, biodegradability under hyaluronidase, and biocompatibility.
Collapse
Affiliation(s)
- Shuaibing Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Kai Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Miao Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Luxuan Shen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Guangwu Zhou
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, P. R. China
| | - Yuan Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
13
|
Zhang L, Wang S, Wang Z, Huang Z, Sun P, Dong F, Liu H, Wang D, Xu X. A sweat-pH-enabled strongly adhesive hydrogel for self-powered e-skin applications. MATERIALS HORIZONS 2023; 10:2271-2280. [PMID: 37022102 DOI: 10.1039/d3mh00174a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
On-skin hydrogel electrodes are poorly conformable in sweaty scenarios due to low electrode-skin adhesion resulting from the sweat film formed on the skin surface, which seriously hinders practical applications. In this study, we fabricated a tough adhesive cellulose-nanofibril/poly(acrylic acid) (CNF/PAA) hydrogel with tight hydrogen-bond (H-bond) networks based on a common monomer and a biomass resource. Furthermore, inherent H-bonded network structures can be disrupted through judicious engineering using excess hydronium ions produced through sweating, which facilitate the transition to protonation and modulate the release of active groups (i.e., hydroxyl and carboxyl groups) accompanied by a pH drop. The lower pH enhances adhesive performance, especially on skin, with a 9.7-fold higher interfacial toughness (453.47 vs. 46.74 J m-2), an 8.6-fold higher shear strength (600.14 vs. 69.71 kPa), and a 10.4-fold higher tensile strength (556.44 vs. 53.67 kPa) observed at pH 4.5 compared to the corresponding values at pH 7.5. Our prepared hydrogel electrode remains conformable on sweaty skin when assembled as a self-powered electronic skin (e-skin) and enables electrophysiological signals to be reliably collected with high signal-to-noise ratios when exercising. The strategy presented here promotes the design of high-performance adhesive hydrogels that may serve to record continuous electrophysiological signals under real-life conditions (beyond sweating) for various intelligent monitoring systems.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Chinese Academy of Forestry, Nanjing 210042, China.
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Siheng Wang
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Chinese Academy of Forestry, Nanjing 210042, China.
| | - Zhuomin Wang
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Chinese Academy of Forestry, Nanjing 210042, China.
| | - Zhen Huang
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Penghao Sun
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Fuhao Dong
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Chinese Academy of Forestry, Nanjing 210042, China.
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Chinese Academy of Forestry, Nanjing 210042, China.
| | - Dan Wang
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Chinese Academy of Forestry, Nanjing 210042, China.
| | - Xu Xu
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
14
|
Lu Y, Xu X, Li J. Recent advances in adhesive materials used in the biomedical field: adhesive properties, mechanism, and applications. J Mater Chem B 2023; 11:3338-3355. [PMID: 36987937 DOI: 10.1039/d3tb00251a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Adhesive materials are natural or synthetic polymers with the ability to adhere to the surface of luminal mucus or epithelial cells. They are widely used in the biomedical field due to their unique adhesion, biocompatibility, and excellent surface properties. When used in the human body, they can adhere to an accessible target and remain at the focal site for a longer period, improving the therapeutic effect on local disease. An adhesive material with bacteriostatic properties can play an antibacterial role at the focal site and the adhesive properties of the material can prevent the focal site from being infected by bacteria for a period. In addition, some adhesive materials can promote cell growth and tissue repair. In this review, the properties and mechanism of natural adhesive materials, organic adhesive materials, composite adhesive materials, and underwater adhesive materials have been introduced systematically. The applications of these adhesive materials in drug delivery, antibacterials, tissue repair, and other applications are described in detail. Finally, we have discussed the prospects and challenges of using adhesive materials in the field of biomedicine.
Collapse
Affiliation(s)
- Yongping Lu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer, Sichuan University, Chengdu 610041, P. R. China.
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer, Sichuan University, Chengdu 610041, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer, Sichuan University, Chengdu 610041, P. R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|