1
|
King MR, Ruff KM, Pappu RV. Emergent microenvironments of nucleoli. Nucleus 2024; 15:2319957. [PMID: 38443761 PMCID: PMC10936679 DOI: 10.1080/19491034.2024.2319957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
In higher eukaryotes, the nucleolus harbors at least three sub-phases that facilitate multiple functionalities including ribosome biogenesis. The three prominent coexisting sub-phases are the fibrillar center (FC), the dense fibrillar component (DFC), and the granular component (GC). Here, we review recent efforts in profiling sub-phase compositions that shed light on the types of physicochemical properties that emerge from compositional biases and territorial organization of specific types of macromolecules. We highlight roles played by molecular grammars which refers to protein sequence features including the substrate binding domains, the sequence features of intrinsically disordered regions, and the multivalence of these distinct types of domains / regions. We introduce the concept of a barcode of emergent physicochemical properties of nucleoli. Although our knowledge of the full barcode remains incomplete, we hope that the concept prompts investigations into undiscovered emergent properties and engenders an appreciation for how and why unique microenvironments control biochemical reactions.
Collapse
Affiliation(s)
- Matthew R. King
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| | - Kiersten M. Ruff
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| |
Collapse
|
2
|
Wang F, Chen Z, Zhou Q, Sun Q, Zheng N, Chen Z, Lin J, Li B, Li L. Implications of liquid-liquid phase separation and ferroptosis in Alzheimer's disease. Neuropharmacology 2024; 259:110083. [PMID: 39043267 DOI: 10.1016/j.neuropharm.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Neuronal cell demise represents a prevalent occurrence throughout the advancement of Alzheimer's disease (AD). However, the mechanism of triggering the death of neuronal cells remains unclear. Its potential mechanisms include aggregation of soluble amyloid-beta (Aβ) to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFTs), neuroinflammation, ferroptosis, oxidative stress, liquid-liquid phase separation (LLPS) and metal ion disorders. Among them, ferroptosis is an iron-dependent lipid peroxidation-driven cell death and emerging evidences have demonstrated the involvement of ferroptosis in the pathological process of AD. The sensitivity to ferroptosis is tightly linked to numerous biological processes. Moreover, emerging evidences indicate that LLPS has great impacts on regulating human health and diseases, especially AD. Soluble Aβ can undergo LLPS to form liquid-like droplets, which can lead to the formation of insoluble amyloid plaques. Meanwhile, tau has a high propensity to condensate via the mechanism of LLPS, which can lead to the formation of NFTs. In this review, we summarize the most recent advancements pertaining to LLPS and ferroptosis in AD. Our primary focus is on expounding the influence of Aβ, tau protein, iron ions, and lipid oxidation on the intricate mechanisms underlying ferroptosis and LLPS within the domain of AD pathology. Additionally, we delve into the intricate cross-interactions that occur between LLPS and ferroptosis in the context of AD. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for AD.
Collapse
Affiliation(s)
- Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiong Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jiantao Lin
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
3
|
Yong H. Reentrant Condensation of Polyelectrolytes Induced by Diluted Multivalent Salts: The Role of Electrostatic Gluonic Effects. Biomacromolecules 2024; 25:7361-7376. [PMID: 39432752 DOI: 10.1021/acs.biomac.4c01037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
We explore the reentrant condensation of polyelectrolytes triggered by multivalent salts, whose phase-transition mechanism remains under debate. We propose a theory to study the reentrant condensation, which separates the electrostatic effect into two parts: a short-range electrostatic gluonic effect because of sharing of multivalent ions by ionic monomers and a long-range electrostatic correlation effect from all ions. The theory suggests that the electrostatic gluonic effect governs reentrant condensation, requiring a minimum coupling energy to initiate the phase transition. This explains why diluted salts with selective multivalency trigger a polyelectrolyte phase transition. The theory also uncovers that strong adsorption of multivalent ions onto ionic monomers causes low-salt concentrations to induce both collapse and reentry transitions. Additionally, we highlight how the incompatibility of uncharged polyelectrolyte moieties with water affects the polyelectrolyte phase behaviors. The obtained results will contribute to the understanding of biological phase separations if multivalent ions bound to biopolyelectrolytes play an essential role.
Collapse
Affiliation(s)
- Huaisong Yong
- Department of Molecules & Materials, MESA+ Institute, University of Twente, AE 7500 Enschede, the Netherlands
- Institute Theory of Polymers, Leibniz-Institut für Polymerforschung Dresden e.V., D-01069 Dresden, Germany
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
4
|
Farias JG, Herrera-Belén L, Jimenez L, Beltrán JF. PROTA: A Robust Tool for Protamine Prediction Using a Hybrid Approach of Machine Learning and Deep Learning. Int J Mol Sci 2024; 25:10267. [PMID: 39408595 PMCID: PMC11476296 DOI: 10.3390/ijms251910267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Protamines play a critical role in DNA compaction and stabilization in sperm cells, significantly influencing male fertility and various biotechnological applications. Traditionally, identifying these proteins is a challenging and time-consuming process due to their species-specific variability and complexity. Leveraging advancements in computational biology, we present PROTA, a novel tool that combines machine learning (ML) and deep learning (DL) techniques to predict protamines with high accuracy. For the first time, we integrate Generative Adversarial Networks (GANs) with supervised learning methods to enhance the accuracy and generalizability of protamine prediction. Our methodology evaluated multiple ML models, including Light Gradient-Boosting Machine (LIGHTGBM), Multilayer Perceptron (MLP), Random Forest (RF), eXtreme Gradient Boosting (XGBOOST), k-Nearest Neighbors (KNN), Logistic Regression (LR), Naive Bayes (NB), and Radial Basis Function-Support Vector Machine (RBF-SVM). During ten-fold cross-validation on our training dataset, the MLP model with GAN-augmented data demonstrated superior performance metrics: 0.997 accuracy, 0.997 F1 score, 0.998 precision, 0.997 sensitivity, and 1.0 AUC. In the independent testing phase, this model achieved 0.999 accuracy, 0.999 F1 score, 1.0 precision, 0.999 sensitivity, and 1.0 AUC. These results establish PROTA, accessible via a user-friendly web application. We anticipate that PROTA will be a crucial resource for researchers, enabling the rapid and reliable prediction of protamines, thereby advancing our understanding of their roles in reproductive biology, biotechnology, and medicine.
Collapse
Affiliation(s)
- Jorge G. Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4811230, Chile; (J.G.F.); (L.J.)
| | - Lisandra Herrera-Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Temuco 4780000, Chile;
| | - Luis Jimenez
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4811230, Chile; (J.G.F.); (L.J.)
| | - Jorge F. Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4811230, Chile; (J.G.F.); (L.J.)
| |
Collapse
|
5
|
Diessner EM, Takahashi GR, Butts CT, Martin RW. Comparative analysis of thermal adaptations of extremophilic prolyl oligopeptidases. Biophys J 2024; 123:3143-3162. [PMID: 39014897 PMCID: PMC11427779 DOI: 10.1016/j.bpj.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Prolyl oligopeptidases from psychrophilic, mesophilic, and thermophilic organisms found in a range of natural environments are studied using a combination of protein structure prediction, atomistic molecular dynamics, and trajectory analysis to determine how the S9 protease family adapts to extreme thermal conditions. We compare our results with hypotheses from the literature regarding structural adaptations that allow proteins to maintain structure and function at extreme temperatures, and we find that, in the case of prolyl oligopeptidases, only a subset of proposed adaptations are employed for maintaining stability. The catalytic and propeller domains are highly structured, limiting the range of mutations that can be made to enhance hydrophobicity or form disulfide bonds without disrupting the formation of necessary secondary structure. Rather, we observe a pattern in which overall prevalence of bound interactions (salt bridges and hydrogen bonds) is conserved by using increasing numbers of increasingly short-lived interactions as temperature increases. This suggests a role for an entropic rather than energetic strategy for thermal adaptation in this protein family.
Collapse
Affiliation(s)
| | - Gemma R Takahashi
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California
| | - Carter T Butts
- Departments of Sociology, Statistics, Computer Science, and EECS, University of California, Irvine, Irvine, California.
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, Irvine, California; Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California.
| |
Collapse
|
6
|
Calinsky R, Levy Y. Aromatic Residues in Proteins: Re-Evaluating the Geometry and Energetics of π-π, Cation-π, and CH-π Interactions. J Phys Chem B 2024; 128:8687-8700. [PMID: 39223472 PMCID: PMC11403661 DOI: 10.1021/acs.jpcb.4c04774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aromatic residues can participate in various biomolecular interactions, such as π-π, cation-π, and CH-π interactions, which are essential for protein structure and function. Here, we re-evaluate the geometry and energetics of these interactions using quantum mechanical (QM) calculations, focusing on pairwise interactions involving the aromatic amino acids Phe, Tyr, and Trp and the cationic amino acids Arg and Lys. Our findings reveal that π-π interactions, while energetically favorable, are less abundant in structured proteins than commonly assumed and are often overshadowed by previously underappreciated, yet prevalent, CH-π interactions. Cation-π interactions, particularly those involving Arg, show strong binding energies and a specific geometric preference toward stacked conformations, despite the global QM minimum, suggesting that a rather perpendicular T-shape conformation should be more favorable. Our results support a more nuanced understanding of protein stabilization via interactions involving aromatic residues. On the one hand, our results challenge the traditional emphasis on π-π interactions in structured proteins by showing that CH-π and cation-π interactions contribute significantly to their structure. On the other hand, π-π interactions appear to be key stabilizers in solvated regions and thus may be particularly important to the stabilization of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Rivka Calinsky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
7
|
Le NTK, Park E, Kim H, Park J, Kang K. Viscosity Regulation of Chemically Simple Condensates. Biomacromolecules 2024; 25:5959-5967. [PMID: 39166772 DOI: 10.1021/acs.biomac.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study investigates the viscosity and liquid-solid transition behavior of biomolecular condensates formed by polyarginine chains (Rx) of varying lengths and citric acid (CA) derivatives. By condensing Rx chains of various lengths with CA derivatives, we showed that the shorter Rx chains attenuate the high aggregation tendency of the longer chains when condensed with CA. A mixture of different Rx lengths exhibited uniform intracondensate distribution, while its mobility largely depended on the ratio of the longer Rx chain. Our findings demonstrate a simple method to modulate condensate properties by adjusting the composition of scaffold molecules, shedding light on the role of molecular composition in controlling condensate viscosity and transition dynamics. This research contributes to a deeper understanding of biomolecular condensation processes and offers insights into potential strategies for manipulating condensate properties for various applications, including in the fields of synthetic biology and disease therapeutics in the future.
Collapse
Affiliation(s)
- Nghia T K Le
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| | - Eunbin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| |
Collapse
|
8
|
Chen Y, Xiang H, Li X, Chen Y, Zhang J. Near-Infrared Laser-Switching DNA Phase Separation Nanoinducer for Glioma Therapy. ACS NANO 2024; 18:24426-24440. [PMID: 39171897 DOI: 10.1021/acsnano.4c07514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
DNA phase separation participates in chromatin packing for the modulation of gene transcription, but the induction of DNA phase separation in living cells for disease treatment faces huge challenges. Herein, we construct a Ru(II)-polypyridyl-loaded upconversion nanoplatform (denoted as UCSNs-R) to achieve the manipulation of DNA phase separation and production of abundant singlet oxygen (1O2) for efficient treatment of gliomas. The utilization of the UCSN not only facilitates high loading of Ru(II)-polypyridyl complexes (RuC) but also promotes the conversion of near-infrared (NIR) laser to ultraviolet light for efficient 1O2 generation. The released RuC exhibit DNA "light-switch" behavior and high DNA binding affinity that induce phase separation of DNA in living cells, thus resulting in DNA damage and suppressing tumor-cell growth. In vivo investigation demonstrates the high capability of UCSNs-R in inhibiting tumor proliferation under NIR laser illumination. This work represents a paradigm for designing a DNA phase separation nanoinducer through integration of the UCSN with Ru(II)-polypyridyl-based complexes for efficient therapy of gliomas.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P. R. China
| | - Huijing Xiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaodan Li
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- Shanghai Institute of Materdicine, Shanghai 200051, P. R. China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P. R. China
- National Center for Neurological Disorders, Shanghai 200040, P. R. China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, P. R. China
| |
Collapse
|
9
|
Huang SH, Parandhaman M, Jyothi Ravi M, Janda DC, Amemiya S. Nanoscale interactions of arginine-containing dipeptide repeats with nuclear pore complexes as measured by transient scanning electrochemical microscopy. Chem Sci 2024; 15:d4sc05063k. [PMID: 39246336 PMCID: PMC11375788 DOI: 10.1039/d4sc05063k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
The nuclear pore complex (NPC) plays imperative biological and biomedical roles as the sole gateway for molecular transport between the cytoplasm and nucleus of eukaryotic cells. The proteinous nanopore, however, can be blocked by arginine-containing polydipeptide repeats (DPRs) of proteins resulting from the disordered C9orf72 gene as a potential cause of serious neurological diseases. Herein, we report the new application of transient scanning electrochemical microscopy (SECM) to quantitatively characterize DPR-NPC interactions for the first time. Twenty repeats of neurotoxic glycine-arginine and proline-arginine in the NPC are quantified to match the number of phenylalanine-glycine (FG) units in hydrophobic transport barriers of the nanopore. The 1 : 1 stoichiometry supports the hypothesis that the guanidinium residue of a DPR molecule engages in cation-π interactions with the aromatic residue of an FG unit. Cation-π interactions, however, are too weak to account for the measured free energy of DPR transfer from water into the NPC. The DPR transfer is thermodynamically as favorable as the transfer of nuclear transport receptors, which is attributed to hydrophobic interactions as hypothesized generally for NPC-mediated macromolecular transport. Kinetically, the DPRs are trapped by FG units for much longer than the physiological receptors, thereby blocking the nanopore. Significantly, the novel mechanism of toxicity implies that the efficient and safe nuclear import of genetic therapeutics requires strong association with and fast dissociation from the NPC. Moreover, this work demonstrates the unexplored power of transient SECM to determine the thermodynamics and kinetics of biological membrane-molecule interactions.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Moghitha Parandhaman
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Manu Jyothi Ravi
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Donald C Janda
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
10
|
Hong Y, Yoo S, Han J, Kim J, Lee Y, Jho Y, Kim YS, Hwang DS. Influence of the backbone chemistry and ionic functional groups of five pairs of oppositely charged polyelectrolytes on complex coacervation. Commun Chem 2024; 7:182. [PMID: 39147800 PMCID: PMC11327326 DOI: 10.1038/s42004-024-01271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
Complex coacervation plays an important role in various fields. Here, the influences of the backbone chemistry and ionic functional groups of five pairs of oppositely charged polyelectrolytes on complex coacervation were investigated. These pairs include synthetic polymers with aliphatic hydrocarbon backbones, peptides with amide bonds, and carbohydrates with glycosidic linkages. Despite sharing identical charged groups, specific pairs displayed distinct liquid/liquid and liquid/solid phase separations depending on the polyelectrolyte mixing ratio, buffer, and ionic strength. The coacervate phase boundary broadened in the orders: glycosidic linkages > amide backbone > aliphatic hydrocarbon backbone, and Tris-phosphate > Tris-acetate > Tris-chloride buffers. Coacervates prepared from polyelectrolytes with lower solubilities in water resisted disassembly at high salt concentrations, and their merge rate was slow. These observations suggest that the hydrophobic segments in polyelectrolytes interfere with the formation of complex coacervates; however, following coacervate formation, the hydrophobic segments render the coacervates stable and elastic.
Collapse
Affiliation(s)
- Yuri Hong
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Surim Yoo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jihoon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Junseong Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of Physics and and Research Institute of Molecular Alchemy, Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Yongjin Lee
- Department of Chemical Engineering, Seoul National University (SNU), Seoul, Republic of Korea
| | - YongSeok Jho
- Department of Physics and and Research Institute of Molecular Alchemy, Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Youn Soo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| |
Collapse
|
11
|
Yu Y, Liu Q, Zeng J, Tan Y, Tang Y, Wei G. Multiscale simulations reveal the driving forces of p53C phase separation accelerated by oncogenic mutations. Chem Sci 2024; 15:12806-12818. [PMID: 39148776 PMCID: PMC11323318 DOI: 10.1039/d4sc03645j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024] Open
Abstract
Liquid-Liquid phase separation (LLPS) of p53 to form liquid condensates has been implicated in cellular functions and dysfunctions. The p53 condensates may serve as amyloid fibril precursors to initiate p53 aggregation, which is associated with oncogenic gain-of-function and various human cancers. M237I and R249S mutations located in p53 core domain (p53C) have been detected respectively in glioblastomas and hepatocellular carcinoma. Interestingly, these p53C mutants can also undergo LLPS and liquid-to-solid phase transition, which are faster than wild type p53C. However, the underlying molecular basis governing the accelerated LLPS and liquid-to-solid transition of p53C remain poorly understood. Herein, we explore the M237I/R249S mutation-induced structural alterations and phase separation behavior of p53C by employing multiscale molecular dynamics simulations. All-atom simulations revealed conformational disruptions in the zinc-binding domain of the M237I mutant and in both loop3 and zinc-binding domain of the R249S mutant. The two mutations enhance hydrophobic exposure of those regions and attenuate intramolecular interactions, which may hasten the LLPS and aggregation of p53C. Martini 3 coarse-grained simulations demonstrated spontaneous phase separation of p53C and accelerated effects of M237I/R249S mutations on the phase separation of p53C. Importantly, we find that the regions with enhanced intermolecular interactions observed in coarse-grained simulations coincide with the disrupted regions with weakened intramolecular interactions observed in all-atom simulations, indicating that M237I/R249S mutation-induced local structural disruptions expedite the LLPS of p53C. This study unveils the molecular mechanisms underlying the two cancer-associated mutation-accelerated LLPS and aggregation of p53C, providing avenues for anticancer therapy by targeting the phase separation process.
Collapse
Affiliation(s)
- Yawei Yu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Qian Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Jiyuan Zeng
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Yuan Tan
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| |
Collapse
|
12
|
Castelletto V, Seitsonen J, Pollitt A, Hamley IW. Minimal Peptide Sequences That Undergo Liquid-Liquid Phase Separation via Self-Coacervation or Complex Coacervation with ATP. Biomacromolecules 2024; 25:5321-5331. [PMID: 39066731 PMCID: PMC11323023 DOI: 10.1021/acs.biomac.4c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The simple (self-)coacervation of the minimal tryptophan/arginine peptide sequences W2R2 and W3R3 was observed in salt-free aqueous solution. The phase diagrams were mapped using turbidimetry and optical microscopy, and the coacervate droplets were imaged using confocal microscopy complemented by cryo-TEM to image smaller droplets. The droplet size distribution and stability were probed using dynamic light scattering, and the droplet surface potential was obtained from zeta potential measurements. SAXS was used to elucidate the structure within the coacervate droplets, and circular dichroism spectroscopy was used to probe the conformation of the peptides, a characteristic signature for cation-π interactions being present under conditions of coacervation. These observations were rationalized using a simple model for the Rayleigh stability of charged coacervate droplets, along with atomistic molecular dynamics simulations which provide insight into stabilizing π-π stacking interactions of tryptophan as well as arginine-tryptophan cation-π interactions (which modulate the charge of the tryptophan π-electron system). Remarkably, the dipeptide WR did not show simple coacervation under the conditions examined, but complex coacervation was observed in mixtures with ATP (adenosine triphosphate). The electrostatically stabilized coacervation in this case provides a minimal model for peptide/nucleotide membraneless organelle formation. These are among the simplest model peptide systems observed to date able to undergo either simple or complex coacervation and are of future interest as protocell systems.
Collapse
Affiliation(s)
- Valeria Castelletto
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, Espoo 02150, Finland
| | - Alice Pollitt
- Institute
for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6AS, U.K.
| | - Ian W. Hamley
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
13
|
Galvanetto N, Ivanović MT, Del Grosso SA, Chowdhury A, Sottini A, Nettels D, Best RB, Schuler B. Mesoscale properties of biomolecular condensates emerging from protein chain dynamics. ARXIV 2024:arXiv:2407.19202v1. [PMID: 39398199 PMCID: PMC11468658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Biomolecular condensates form by phase separation of biological polymers. The cellular functions of the resulting membraneless organelles are closely linked to their physical properties over a wide range of length- and timescales: From the nanosecond dynamics of individual molecules and their interactions, to the microsecond translational diffusion of molecules in the condensates, to their viscoelastic properties at the mesoscopic scale. However, it has remained unclear how to quantitatively link these properties across scales. Here we address this question by combining single-molecule fluorescence, correlation spectroscopy, microrheology, and large-scale molecular dynamics simulations on different condensates that are formed by complex coacervation and span about two orders of magnitude in viscosity and their dynamics at the molecular scale. Remarkably, we find that the absolute timescale of protein chain dynamics in the dense phases can be quantitatively and accurately related to translational diffusion and condensate viscosities by Rouse theory of polymer solutions including entanglement. The simulations indicate that the observed wide range of dynamics arises from different contact lifetimes between amino acid residues, which in the mean-field description of the polymer model cause differences in the friction acting on the chains. These results suggest that remarkably simple physical principles can relate the mesoscale properties of biomolecular condensates to their dynamics at the nanoscale.
Collapse
Affiliation(s)
- Nicola Galvanetto
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Department of Physics, University of Zurich, Zurich, Switzerland
| | - Miloš T. Ivanović
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Aritra Chowdhury
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Andrea Sottini
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Department of Physics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Ramachandran V, Potoyan DA. Atomistic insights into the reentrant phase-transitions in polyuracil and polylysine mixtures. J Chem Phys 2024; 161:015101. [PMID: 38949285 PMCID: PMC11378353 DOI: 10.1063/5.0206190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
The phase separation of protein and RNA mixtures underpins the assembly and regulation of numerous membraneless organelles in cells. The ubiquity of protein-RNA condensates in cellular regulatory processes is in part due to their sensitivity to RNA concentration, which affects their physical properties and stability. Recent experiments with poly-cationic peptide-RNA mixtures have revealed closed-loop phase diagrams featuring lower and upper critical solution temperatures. These diagrams indicate reentrant phase transitions shaped by biomolecular interactions and entropic forces such as solvent and ion reorganization. We employed atomistic simulations to study mixtures with various RNA-polylysine stoichiometries and temperatures to elucidate the microscopic driving forces behind reentrant phase transitions in protein-RNA mixtures. Our findings reveal an intricate interplay between hydration, ion condensation, and specific RNA-polylysine hydrogen bonding, resulting in distinct stoichiometry-dependent phase equilibria governing stabilities and structures of the condensate phase. Our simulations show that reentrant transitions are accompanied by desolvation around the phosphate groups of RNA, with increased contacts between phosphate and lysine side chains. In RNA-rich systems at lower temperatures, RNA molecules can form an extensive pi-stacking and hydrogen bond network, leading to percolation. In protein-rich systems, no such percolation-induced transitions are observed. Furthermore, we assessed the performance of three prominent water force fields-Optimal Point Charge (OPC), TIP4P-2005, and TIP4P-D-in capturing reentrant phase transitions. OPC provided a superior balance of interactions, enabling effective capture of reentrant transitions and accurate characterization of changes in solvent reorganization. This study offers atomistic insights into the nature of reentrant phase transitions using simple model peptide and nucleotide mixtures. We believe that our results are broadly applicable to larger classes of peptide-RNA mixtures exhibiting reentrant phase transitions.
Collapse
Affiliation(s)
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
15
|
Chew PY, Joseph JA, Collepardo-Guevara R, Reinhardt A. Aromatic and arginine content drives multiphasic condensation of protein-RNA mixtures. Biophys J 2024; 123:1342-1355. [PMID: 37408305 PMCID: PMC11163273 DOI: 10.1016/j.bpj.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
Multiphasic architectures are found ubiquitously in biomolecular condensates and are thought to have important implications for the organization of multiple chemical reactions within the same compartment. Many of these multiphasic condensates contain RNA in addition to proteins. Here, we investigate the importance of different interactions in multiphasic condensates comprising two different proteins and RNA using computer simulations with a residue-resolution coarse-grained model of proteins and RNA. We find that in multilayered condensates containing RNA in both phases, protein-RNA interactions dominate, with aromatic residues and arginine forming the key stabilizing interactions. The total aromatic and arginine content of the two proteins must be appreciably different for distinct phases to form, and we show that this difference increases as the system is driven toward greater multiphasicity. Using the trends observed in the different interaction energies of this system, we demonstrate that we can also construct multilayered condensates with RNA preferentially concentrated in one phase. The "rules" identified can thus enable the design of synthetic multiphasic condensates to facilitate further study of their organization and function.
Collapse
Affiliation(s)
- Pin Yu Chew
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jerelle A Joseph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Physics, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom.
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
16
|
Shadman H, Ziebarth JD, Gallops CE, Luo R, Li Z, Chen HF, Wang Y. Map conformational landscapes of intrinsically disordered proteins with polymer physics quantities. Biophys J 2024; 123:1253-1263. [PMID: 38615193 PMCID: PMC11140466 DOI: 10.1016/j.bpj.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/20/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
Disordered proteins are conformationally flexible proteins that are biologically important and have been implicated in devastating diseases such as Alzheimer's disease and cancer. Unlike stably folded structured proteins, disordered proteins sample a range of different conformations that needs to be accounted for. Here, we treat disordered proteins as polymer chains, and compute a dimensionless quantity called instantaneous shape ratio (Rs), as Rs = Ree2/Rg2, where Ree is end-to-end distance and Rg is radius of gyration. Extended protein conformations tend to have high Ree compared with Rg, and thus have high Rs values, whereas compact conformations have smaller Rs values. We use a scatter plot of Rs (representing shape) against Rg (representing size) as a simple map of conformational landscapes. We first examine the conformational landscape of simple polymer models such as Random Walk, Self-Avoiding Walk, and Gaussian Walk (GW), and we notice that all protein/polymer maps lie within the boundaries of the GW map. We thus use the GW map as a reference and, to assess conformational diversity, we compute the fraction of the GW conformations (fC) covered by each protein/polymer. Disordered proteins all have high fC scores, consistent with their disordered nature. Each disordered protein accesses a different region of the reference map, revealing differences in their conformational ensembles. We additionally examine the conformational maps of the nonviral gene delivery vector polyethyleneimine at various protonation states, and find that they resemble disordered proteins, with coverage of the reference map decreasing with increasing protonation state, indicating decreasing conformational diversity. We propose that our method of combining Rs and Rg in a scatter plot generates a simple, meaningful map of the conformational landscape of a disordered protein, which in turn can be used to assess conformational diversity of disordered proteins.
Collapse
Affiliation(s)
- Hossain Shadman
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Jesse D Ziebarth
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Caleb E Gallops
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Ray Luo
- Chemical and Materials Physics Graduate Program, Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California
| | - Zhengxin Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, Tennessee.
| |
Collapse
|
17
|
Jordan J, Gibb CL, Tran T, Yao W, Rose A, Mague JT, Easson MW, Gibb BC. Anion Binding to Ammonium and Guanidinium Hosts: Implications for the Reverse Hofmeister Effects Induced by Lysine and Arginine Residues. J Org Chem 2024; 89:6877-6891. [PMID: 38662908 PMCID: PMC11110012 DOI: 10.1021/acs.joc.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Anions have a profound effect on the properties of soluble proteins. Such Hofmeister effects have implications in biologics stability, protein aggregation, amyloidogenesis, and crystallization. However, the interplay between the important noncovalent interactions (NCIs) responsible for Hofmeister effects is poorly understood. To contribute to improving this state of affairs, we report on the NCIs between anions and ammonium and guanidinium hosts 1 and 2, and the consequences of these. Specifically, we investigate the properties of cavitands designed to mimic two prime residues for anion-protein NCIs─lysines and arginines─and the solubility consequences of complex formation. Thus, we report NMR and ITC affinity studies, X-ray analysis, MD simulations, and anion-induced critical precipitation concentrations. Our findings emphasize the multitude of NCIs that guanidiniums can form and how this repertoire qualitatively surpasses that of ammoniums. Additionally, our studies demonstrate the ease by which anions can dispense with a fraction of their hydration-shell waters, rearrange those that remain, and form direct NCIs with the hosts. This raises many questions concerning how solvent shell plasticity varies as a function of anion, how the energetics of this impact the different NCIs between anions and ammoniums/guanidiniums, and how this affects the aggregation of solutes at high anion concentrations.
Collapse
Affiliation(s)
- Jacobs
H. Jordan
- The
Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Allen Toussaint Blvd., New Orleans, Louisiana 70124, United States
| | - Corinne L.D. Gibb
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Thien Tran
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Wei Yao
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Austin Rose
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Joel T. Mague
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Michael W. Easson
- The
Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Allen Toussaint Blvd., New Orleans, Louisiana 70124, United States
| | - Bruce C. Gibb
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
18
|
Dinic J, Tirrell MV. Effects of Charge Sequence Pattern and Lysine-to-Arginine Substitution on the Structural Stability of Bioinspired Polyampholytes. Biomacromolecules 2024; 25:2838-2851. [PMID: 38567844 PMCID: PMC11094733 DOI: 10.1021/acs.biomac.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 05/14/2024]
Abstract
A comprehensive study focusing on the combined influence of the charge sequence pattern and the type of positively charged amino acids on the formation of secondary structures in sequence-specific polyampholytes is presented. The sequences of interest consisting exclusively of ionizable amino acids (lysine, K; arginine, R; and glutamic acid, E) are (EKEK)5, (EKKE)5, (ERER)5, (ERRE)5, and (EKER)5. The stability of the secondary structure was examined at three pH values in the presence of urea and NaCl. The results presented here underscore the combined prominent effects of the charge sequence pattern and the type of positively charged monomers on secondary structure formation. Additionally, (ERRE)5 readily aggregated across a wide range of pH. In contrast, sequences with the same charge pattern, (EKKE)5, as well as the sequences with the equivalent amino acid content, (ERER)5, exhibited no aggregate formation under equivalent pH and concentration conditions.
Collapse
Affiliation(s)
- Jelena Dinic
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Center
for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Center
for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
19
|
Miller MA, Medina S. Life at the interface: Engineering bio-nanomaterials through interfacial molecular self-assembly. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1966. [PMID: 38725255 PMCID: PMC11090466 DOI: 10.1002/wnan.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/15/2024]
Abstract
Interfacial self-assembly describes the directed organization of molecules and colloids at phase boundaries. Believed to be fundamental to the inception of primordial life, interfacial assembly is exploited by a myriad of eukaryotic and prokaryotic organisms to execute physiologic activities and maintain homeostasis. Inspired by these natural systems, chemists, engineers, and materials scientists have sought to harness the thermodynamic equilibria at phase boundaries to create multi-dimensional, highly ordered, and functional nanomaterials. Recent advances in our understanding of the biophysical principles guiding molecular assembly at gas-solid, gas-liquid, solid-liquid, and liquid-liquid interphases have enhanced the rational design of functional bio-nanomaterials, particularly in the fields of biosensing, bioimaging and biotherapy. Continued development of non-canonical building blocks, paired with deeper mechanistic insights into interphase self-assembly, holds promise to yield next generation interfacial bio-nanomaterials with unique, and perhaps yet unrealized, properties. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Michael A Miller
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
20
|
Jaufer AM, Bouhadana A, Fanucci GE. Hydrophobic Clusters Regulate Surface Hydration Dynamics of Bacillus subtilis Lipase A. J Phys Chem B 2024; 128:3919-3928. [PMID: 38628066 DOI: 10.1021/acs.jpcb.4c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The surface hydration diffusivity of Bacillus subtilis Lipase A (BSLA) has been characterized by low-field Overhauser dynamic nuclear polarization (ODNP) relaxometry using a series of spin-labeled constructs. Sites for spin-label incorporation were previously designed via an atomistic computational approach that screened for surface exposure, reflective of the surface hydration comparable to other proteins studied by this method, as well as minimal impact on protein function, dynamics, and structure of BSLA by excluding any surface site that participated in greater than 30% occupancy of a hydrogen bonding network within BSLA. Experimental ODNP relaxometry coupling factor results verify the overall surface hydration behavior for these BSLA spin-labeled sites similar to other globular proteins. Here, by plotting the ODNP parameters of relative diffusive water versus the relative bound water, we introduce an effective "phase-space" analysis, which provides a facile visual comparison of the ODNP parameters of various biomolecular systems studied to date. We find notable differences when comparing BSLA to other systems, as well as when comparing different clusters on the surface of BSLA. Specifically, we find a grouping of sites that correspond to the spin-label surface location within the two main hydrophobic core clusters of the branched aliphatic amino acids isoleucine, leucine, and valine cores observed in the BSLA crystal structure. The results imply that hydrophobic clustering may dictate local surface hydration properties, perhaps through modulation of protein conformations and samplings of the unfolded states, providing insights into how the dynamics of the hydration shell is coupled to protein motion and fluctuations.
Collapse
Affiliation(s)
- Afnan M Jaufer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | - Adam Bouhadana
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
21
|
Gupta MN, Uversky VN. Reexamining the diverse functions of arginine in biochemistry. Biochem Biophys Res Commun 2024; 705:149731. [PMID: 38432110 DOI: 10.1016/j.bbrc.2024.149731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Arginine in a free-state and as part of peptides and proteins shows distinct tendency to form clusters. In free-form, it has been found useful in cryoprotection, as a drug excipient for both solid and liquid formulations, as an aggregation suppressor, and an eluent in protein chromatography. In many cases, the mechanisms by which arginine acts in all these applications is either debatable or at least continues to attract interest. It is quite possible that arginine clusters may be involved in many such applications. Furthermore, it is possible that such clusters are likely to behave as intrinsically disordered polypeptides. These considerations may help in understanding the roles of arginine in diverse applications and may even lead to better strategies for using arginine in different situations.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya Str., 7, Pushchino, Moscow Region, 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
22
|
Alfano C, Fichou Y, Huber K, Weiss M, Spruijt E, Ebbinghaus S, De Luca G, Morando MA, Vetri V, Temussi PA, Pastore A. Molecular Crowding: The History and Development of a Scientific Paradigm. Chem Rev 2024; 124:3186-3219. [PMID: 38466779 PMCID: PMC10979406 DOI: 10.1021/acs.chemrev.3c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
It is now generally accepted that macromolecules do not act in isolation but "live" in a crowded environment, that is, an environment populated by numerous different molecules. The field of molecular crowding has its origins in the far 80s but became accepted only by the end of the 90s. In the present issue, we discuss various aspects that are influenced by crowding and need to consider its effects. This Review is meant as an introduction to the theme and an analysis of the evolution of the crowding concept through time from colloidal and polymer physics to a more biological perspective. We introduce themes that will be more thoroughly treated in other Reviews of the present issue. In our intentions, each Review may stand by itself, but the complete collection has the aspiration to provide different but complementary perspectives to propose a more holistic view of molecular crowding.
Collapse
Affiliation(s)
- Caterina Alfano
- Structural
Biology and Biophysics Unit, Fondazione
Ri.MED, 90100 Palermo, Italy
| | - Yann Fichou
- CNRS,
Bordeaux INP, CBMN UMR 5248, IECB, University
of Bordeaux, F-33600 Pessac, France
| | - Klaus Huber
- Department
of Chemistry, University of Paderborn, 33098 Paderborn, Germany
| | - Matthias Weiss
- Experimental
Physics I, Physics of Living Matter, University
of Bayreuth, 95440 Bayreuth, Germany
| | - Evan Spruijt
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Simon Ebbinghaus
- Lehrstuhl
für Biophysikalische Chemie and Research Center Chemical Sciences
and Sustainability, Research Alliance Ruhr, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Giuseppe De Luca
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Valeria Vetri
- Dipartimento
di Fisica e Chimica − Emilio Segrè, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Annalisa Pastore
- King’s
College London, Denmark
Hill Campus, SE5 9RT London, United Kingdom
| |
Collapse
|
23
|
Hirano A, Wada M, Sato TK, Kameda T. N-acetyl amino acid amide solubility in aqueous 1,6-hexanediol solutions: Insights into the protein droplet deformation mechanism. Int J Biol Macromol 2024; 261:129724. [PMID: 38272403 DOI: 10.1016/j.ijbiomac.2024.129724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Proteinaceous liquid droplets, generated by liquid-liquid phase separation, function as membraneless compartments that are essential for diverse biological functions. Studies addressing droplet generation have used 1,6-hexanediol (1,6-HD) as a droplet-discerning agent owing to its capacity to induce droplet deformation. Despite the empirical utility of 1,6-HD, the mechanism underlying 1,6-HD-induced droplet deformation remains unknown. In this study, the solubilities of N-acetyl amino acid amides, which correspond to proteinogenic amino acid residues, were examined in the presence of 1,6-HD at 25 °C. Other solvents included ethanol, 1-propanol, and amides. Remarkably, 1,6-HD effectively solubilized hydrophobic species (particularly aromatic species) and exhibited reduced efficacy in solubilizing hydrophilic species and peptide bond moieties. These solubilizing effects are reflected in changes in protein solubility and structure. Specifically, 1,6-HD primarily targets the hydrophobic regions of a protein, increasing protein solubility without causing substantial structural changes. This solubilization mechanism is essential for elucidating the role of 1,6-HD as a droplet-discerning agent and recognizing its potential limitations.
Collapse
Affiliation(s)
- Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Momoyo Wada
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Takehiro K Sato
- Spiber, Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo 135-0064, Japan
| |
Collapse
|
24
|
Jaiswal M, Tran TT, Guo J, Zhou M, Kundu S, Guo Z, Fanucci GE. Spin-labeling Insights into How Chemical Fixation Impacts Glycan Organization on Cells. APPLIED MAGNETIC RESONANCE 2024; 55:317-333. [PMID: 38469359 PMCID: PMC10927023 DOI: 10.1007/s00723-023-01624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 03/13/2024]
Abstract
As new methods to interrogate glycan organization on cells develop, it is important to have a molecular level understanding of how chemical fixation can impact results and interpretations. Site-directed spin labeling technologies are well suited to study how the spin label mobility is impacted by local environmental conditions, such as those imposed by cross-linking effects of paraformaldehyde cell fixation methods. Here, we utilize three different azide-containing sugars for metabolic glycan engineering with HeLa cells to incorporate azido glycans that are modified with a DBCO-based nitroxide moiety via click reaction. Continuous wave X-band electron paramagnetic resonance spectroscopy is employed to characterize how the chronological sequence of chemical fixation and spin labeling impacts the local mobility and accessibility of the nitroxide-labeled glycans in the glycocalyx of HeLa cells. Results demonstrate that chemical fixation with paraformaldehyde can alter local glycan mobility and care should be taken in the analysis of data in any study where chemical fixation and cellular labeling occur.
Collapse
Affiliation(s)
- Mohit Jaiswal
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Trang T Tran
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Jiatong Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Mingwei Zhou
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Sayan Kundu
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| |
Collapse
|
25
|
Riopedre-Fernandez M, Biriukov D, Dračínský M, Martinez-Seara H. Hyaluronan-arginine enhanced and dynamic interaction emerges from distinctive molecular signature due to electrostatics and side-chain specificity. Carbohydr Polym 2024; 325:121568. [PMID: 38008475 DOI: 10.1016/j.carbpol.2023.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/28/2023]
Abstract
Hyaluronan is a natural carbohydrate polymer with a negative charge that fosters gel-like conditions crucial for its cellular functions and industrial applications. As a recognized ligand for proteins, understanding their mutual interactions provides solid ground to tune hyaluronan's gel properties using biocompatible peptides. This work employs NMR and molecular dynamics simulations to identify molecular motifs relevant to hyaluronan-peptide interactions using arginine, lysine, and glycine oligopeptides. Arginine-rich peptides exhibit the strongest binding to hyaluronan according to chemical shift perturbation measurements, followed distantly by the similarly charged lysine. This difference highlights the significance of electrostatics and the peculiarities of the guanidinium side chain in arginine, capable of non-polar interactions that further stabilize the binding. Additional nuclear Overhauser effect measurements do not show stable interaction partners, precluding strong and well-defined complexes. Finally, molecular simulations support our findings and show an extended but significant interaction region, especially for arginine, responsible for the observed enhanced binding, which can also promote cross-linking of hyaluronan polymers. Our findings pave the way for optimizing biocompatible peptides to alter hyaluronan gels' properties efficiently and also explain why hyaluronan-protein interaction typically involves positively charged arginine-rich regions also capable of forming hydrogen bonds and non-polar interactions.
Collapse
Affiliation(s)
- Miguel Riopedre-Fernandez
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 16000, Czech Republic
| | - Denys Biriukov
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 16000, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 16000, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 16000, Czech Republic.
| |
Collapse
|
26
|
Gupta MN, Uversky VN. Biological importance of arginine: A comprehensive review of the roles in structure, disorder, and functionality of peptides and proteins. Int J Biol Macromol 2024; 257:128646. [PMID: 38061507 DOI: 10.1016/j.ijbiomac.2023.128646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Arginine shows Jekyll and Hyde behavior in several respects. It participates in protein folding via ionic and H-bonds and cation-pi interactions; the charge and hydrophobicity of its side chain make it a disorder-promoting amino acid. Its methylation in histones; RNA binding proteins; chaperones regulates several cellular processes. The arginine-centric modifications are important in oncogenesis and as biomarkers in several cardiovascular diseases. The cross-links involving arginine in collagen and cornea are involved in pathogenesis of tissues but have also been useful in tissue engineering and wound-dressing materials. Arginine is a part of active site of several enzymes such as GTPases, peroxidases, and sulfotransferases. Its metabolic importance is obvious as it is involved in production of urea, NO, ornithine and citrulline. It can form unusual functional structures such as molecular tweezers in vitro and sprockets which engage DNA chains as part of histones in vivo. It has been used in design of cell-penetrating peptides as drugs. Arginine has been used as an excipient in both solid and injectable drug formulations; its role in suppressing opalescence due to liquid-liquid phase separation is particularly very promising. It has been known as a suppressor of protein aggregation during protein refolding. It has proved its usefulness in protein bioseparation processes like ion-exchange, hydrophobic and affinity chromatographies. Arginine is an amino acid, whose importance in biological sciences and biotechnology continues to grow in diverse ways.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
27
|
Dunleavy KM, Li T, Milshteyn E, Jaufer AM, Walker SA, Fanucci GE. Charge Distribution Patterns of IA 3 Impact Conformational Expansion and Hydration Diffusivity of the Disordered Ensemble. J Phys Chem B 2023; 127:9734-9746. [PMID: 37936402 DOI: 10.1021/acs.jpcb.3c06170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
IA3 is a 68 amino acid natural peptide/protein inhibitor of yeast aspartic proteinase A (YPRA) that is intrinsically disordered in solution with induced N-terminal helicity when in the protein complex with YPRA. Based on the intrinsically disordered protein (IDP) parameters of fractional net charge (FNC), net charge density per residue (NCPR), and charge patterning (κ), the two domains of IA3 are defined to occupy different domains within conformationally based subclasses of IDPs, thus making IA3 a bimodal domain IDP. Site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and low-field Overhauser dynamic nuclear polarization (ODNP) spectroscopy results show that these two domains possess different degrees of compaction and hydration diffusivity behavior. This work suggests that SDSL EPR line shapes, analyzed in terms of their local tumbling volume (VL), provide insights into the compaction of the unstructured IDP ensemble in solution and that protein sequence and net charge distribution patterns within a conformational subclass can impact bound water hydration dynamics, thus possibly offering an alternative thermodynamic property that can encode conformational binding and behavior of IDPs and liquid-liquid phase separations.
Collapse
Affiliation(s)
- Katie M Dunleavy
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Tianyan Li
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Eugene Milshteyn
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Afnan M Jaufer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Shamon A Walker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
28
|
Castelletto V, de Mello L, da Silva ER, Seitsonen J, Hamley IW. Self-Assembly and Cytocompatibility of Amino Acid Conjugates Containing a Novel Water-Soluble Aromatic Protecting Group. Biomacromolecules 2023; 24:5403-5413. [PMID: 37914531 PMCID: PMC10646988 DOI: 10.1021/acs.biomac.3c00860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
There has been considerable interest in peptides in which the Fmoc (9-fluorenylmethoxycarbonyl) protecting group is retained at the N-terminus, since this bulky aromatic group can drive self-assembly, and Fmoc-peptides are biocompatible and have applications in cell culture biomaterials. Recently, analogues of new amino acids with 2,7-disulfo-9-fluorenylmethoxycarbonyl (Smoc) protecting groups have been developed for water-based peptide synthesis. Here, we report on the self-assembly and biocompatibility of Smoc-Ala, Smoc-Phe and Smoc-Arg as examples of Smoc conjugates to aliphatic, aromatic, and charged amino acids, respectively. Self-assembly occurs at concentrations above the critical aggregation concentration (CAC). Cryo-TEM imaging and SAXS reveal the presence of nanosheet, nanoribbon or nanotube structures, and spectroscopic methods (ThT fluorescence circular dichroism and FTIR) show the presence of β-sheet secondary structure, although Smoc-Ala solutions contain significant unaggregated monomer content. Smoc shows self-fluorescence, which was used to determine CAC values of the Smoc-amino acids from fluorescence assays. Smoc fluorescence was also exploited in confocal microscopy imaging with fibroblast cells, which revealed its uptake into the cytoplasm. The biocompatibility of these Smoc-amino acids was found to be excellent with zero cytotoxicity (in fact increased metabolism) to fibroblasts at low concentration.
Collapse
Affiliation(s)
- Valeria Castelletto
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Lucas de Mello
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
- Departamento
de Biofísica, Universidade Federal
de São Paulo, São
Paulo 04023-062, Brazil
| | | | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Ian W Hamley
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| |
Collapse
|
29
|
Hazra M, Levy Y. Cross-Talk of Cation-π Interactions with Electrostatic and Aromatic Interactions: A Salt-Dependent Trade-off in Biomolecular Condensates. J Phys Chem Lett 2023; 14:8460-8469. [PMID: 37721444 PMCID: PMC10544028 DOI: 10.1021/acs.jpclett.3c01642] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Biomolecular condensates are essential for cellular functionality, yet the complex interplay among the diverse molecular interactions that mediate their formation remains poorly understood. Here, using coarse-grained molecular dynamics simulations, we address the contribution of cation-π interactions to the stability of condensates formed via liquid-liquid phase separation. We found greater stabilization of up to 80% via cation-π interactions in condensates formed from peptides with higher aromatic residue content or less charge clustering. The contribution of cation-π interactions to droplet stability increases with increasing ionic strength, suggesting a trade-off between cation-π and electrostatic interactions. Cation-π interactions, therefore, can compensate for reduced electrostatic interactions, such as occurs at higher salt concentrations and in sequences with less charged residue content or clustering. Designing condensates with desired biophysical characteristics therefore requires quantification not only of the individual interactions but also cross-talks involving charge-charge, π-π, and cation-π interactions.
Collapse
Affiliation(s)
- Milan
Kumar Hazra
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot 76100, Israel
| |
Collapse
|
30
|
Lu T, Hu X, van Haren MHI, Spruijt E, Huck WTS. Structure-Property Relationships Governing Membrane-Penetrating Behaviour of Complex Coacervates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303138. [PMID: 37218010 DOI: 10.1002/smll.202303138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Complex coacervates are phase-separated liquid droplets composed of oppositely charged multivalent molecules. The unique material properties of the complex coacervate interior favours the sequestration of biomolecules and facilitates reactions. Recently, it is shown that coacervates can be used for direct cytosolic delivery of sequestered biomolecules in living cells. Here, it is studied that the physical properties required for complex coacervates composed of oligo-arginine and RNA to cross phospholipid bilayers and enter liposomes penetration depends on two main parameters: the difference in ζ-potential between the complex coacervates and the liposomes, and the partitioning coefficient (Kp ) of lipids into the complex coacervates. Following these guidelines, a range of complex coacervates is found that is able to penetrate the membrane of living cells, thus paving the way for further development of coacervates as delivery vehicles of therapeutic agents.
Collapse
Affiliation(s)
- Tiemei Lu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, the Netherlands
| | - Xinyu Hu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, the Netherlands
| | - Merlijn H I van Haren
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, the Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, the Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, the Netherlands
| |
Collapse
|
31
|
Kota D, Prasad R, Zhou HX. ATP Mediates Phase Separation of Disordered Basic Proteins by Bridging Intermolecular Interaction Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554035. [PMID: 37645809 PMCID: PMC10462115 DOI: 10.1101/2023.08.20.554035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
ATP is an abundant molecule with crucial cellular roles as the energy currency and a building block of nucleic acids and for protein phosphorylation. Here we show that ATP mediates the phase separation of basic intrinsically disordered proteins (bIDPs). In the resulting condensates, ATP is highly concentrated (apparent partition coefficients at 200-5000) and serves as bridges between bIDP chains. These liquid-like droplets have some of the lowest interfacial tension (~25 pN/μm) but high zero-shear viscosities (1-15 Pa s) due to the bridged protein networks, and yet their fusion has some of the highest speeds (~1 μm/ms). The rapid fusion manifests extreme shear thinning, where the apparent viscosity is lower than zero-shear viscosity by over 100-fold, made possible by fast reformation of the ATP bridges. At still higher concentrations, ATP does not dissolve bIDP droplets but results in aggregates and fibrils.
Collapse
Affiliation(s)
- Divya Kota
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago IL 60607, USA
| |
Collapse
|
32
|
Sinha NJ, Cunha KC, Murphy R, Hawker CJ, Shea JE, Helgeson ME. Competition between β-Sheet and Coacervate Domains Yields Diverse Morphologies in Mixtures of Oppositely Charged Homochiral Polypeptides. Biomacromolecules 2023; 24:3580-3588. [PMID: 37486022 DOI: 10.1021/acs.biomac.3c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Biomolecular assembly processes involving competition between specific intermolecular interactions and thermodynamic phase instability have been implicated in a number of pathological states and technological applications of biomaterials. As a model for such processes, aqueous mixtures of oppositely charged homochiral polypeptides such as poly-l-lysine and poly-l-glutamic acid have been reported to form either β-sheet-rich solid-like precipitates or liquid-like coacervate droplets depending on competing hydrogen bonding interactions. Herein, we report studies of polypeptide mixtures that reveal unexpectedly diverse morphologies ranging from partially coalescing and aggregated droplets to bulk precipitates, as well as a previously unreported re-entrant liquid-liquid phase separation at high polypeptide concentration and ionic strength. Combining our experimental results with all-atom molecular dynamics simulations of folded polypeptide complexes reveals a concentration dependence of β-sheet-rich secondary structure, whose relative composition correlates with the observed macroscale morphologies of the mixtures. These results elucidate a crucial balance of interactions that are important for controlling morphology during coacervation in these and potentially similar biologically relevant systems.
Collapse
Affiliation(s)
- Nairiti J Sinha
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Keila Cristina Cunha
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Robert Murphy
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Craig J Hawker
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Matthew E Helgeson
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
33
|
Saha D, Jana B. Decoupling of Interactions between Model-Charged Peptides Reveals Key Factors Responsible for Liquid-Liquid Phase Separation. J Phys Chem B 2023; 127:6656-6667. [PMID: 37480340 DOI: 10.1021/acs.jpcb.3c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Liquid-liquid phase separation (LLPS) by disordered proteins has been shown to govern biological processes and cause numerous diseases. Therefore, a deeper understanding of the interactions and their variation with external factors is key to modulating the LLPS behavior of different systems and protecting proteins from pathological aggregation. In this context, we have looked at interactions between similarly charged peptides to understand the molecular features that may drive or prevent condensate formation under various conditions. We have studied dimer formation for model peptides where charged and noncharged amino acids have been placed alternatively. Using arginine and glutamic acid as the charged residues and varying the other residues with glycine, alanine, and proline to alter hydrophobicity, we have obtained the free-energy surface (FES) for the dimer formation for these systems under high salt concentration at two different temperatures using all-atom molecular dynamics simulations and the well-tempered metadynamics method. Our results indicate that a combination of effects such as hydrophobicity, arginine-arginine interactions, or water release from the solvation shell makes dimerization free energy more favorable for the positively charged peptides with lower flexibility. For the negatively charged peptides, the crucial role of water has been found in governing the FES. Systems having charged residues and phenylalanine in the peptide sequence also have been studied at high salt concentrations using unbiased simulations. In this case, only the positively charged peptides were found to aggregate through temperature-dependent hydrophobic and cation-π interactions. Overall, our study indicates that the negatively charged peptides are more likely to remain in the dilute phase under various conditions compared to the positively charged systems. The findings from our study would be helpful in designing and controlling systems to obtain LLPS behavior for therapeutic usage.
Collapse
Affiliation(s)
- Debasis Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
34
|
Polyansky AA, Gallego LD, Efremov RG, Köhler A, Zagrovic B. Protein compactness and interaction valency define the architecture of a biomolecular condensate across scales. eLife 2023; 12:e80038. [PMID: 37470705 PMCID: PMC10406433 DOI: 10.7554/elife.80038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/18/2023] [Indexed: 07/21/2023] Open
Abstract
Non-membrane-bound biomolecular condensates have been proposed to represent an important mode of subcellular organization in diverse biological settings. However, the fundamental principles governing the spatial organization and dynamics of condensates at the atomistic level remain unclear. The Saccharomyces cerevisiae Lge1 protein is required for histone H2B ubiquitination and its N-terminal intrinsically disordered fragment (Lge11-80) undergoes robust phase separation. This study connects single- and multi-chain all-atom molecular dynamics simulations of Lge11-80 with the in vitro behavior of Lge11-80 condensates. Analysis of modeled protein-protein interactions elucidates the key determinants of Lge11-80 condensate formation and links configurational entropy, valency, and compactness of proteins inside the condensates. A newly derived analytical formalism, related to colloid fractal cluster formation, describes condensate architecture across length scales as a function of protein valency and compactness. In particular, the formalism provides an atomistically resolved model of Lge11-80 condensates on the scale of hundreds of nanometers starting from individual protein conformers captured in simulations. The simulation-derived fractal dimensions of condensates of Lge11-80 and its mutants agree with their in vitro morphologies. The presented framework enables a multiscale description of biomolecular condensates and embeds their study in a wider context of colloid self-organization.
Collapse
Affiliation(s)
- Anton A Polyansky
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational BiologyViennaAustria
| | - Laura D Gallego
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| | - Roman G Efremov
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussian Federation
| | - Alwin Köhler
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell BiologyViennaAustria
| | - Bojan Zagrovic
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational BiologyViennaAustria
| |
Collapse
|
35
|
Maricar S, Gudlur S, Miserez A. Phase-Separating Peptides Recruiting Aggregation-Induced Emission Fluorogen for Rapid E. coli Detection. Anal Chem 2023. [PMID: 37327402 DOI: 10.1021/acs.analchem.3c01046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rationally designed biomolecular condensates have found applications primarily as drug-delivery systems, thanks to their ability to self-assemble under physico-chemical triggers (such as temperature, pH, or ionic strength) and to concomitantly trap client molecules with exceptionally high efficiency (>99%). However, their potential in (bio)sensing applications remains unexplored. Here, we describe a simple and rapid assay to detect E. coli by combining phase-separating peptide condensates containing a protease recognition site, within which an aggregation-induced emission (AIE)-fluorogen is recruited. The recruited AIE-fluorogen's fluorescence is easily detected with the naked eye when the samples are viewed under UV-A light. In the presence of E. coli, the bacteria's outer membrane protease (OmpT) cleaves the phase-separating peptides at the encoded protease recognition site, resulting in two shorter peptide fragments incapable of liquid-liquid phase separation. As a result, no condensates are formed and the fluorogen remains non-fluorescent. The assay feasibility was first tested with recombinant OmpT reconstituted in detergent micelles and subsequently confirmed with E. coli K-12. In its current format, the assay can detect E. coli K-12 (108 CFU) within 2 h in spiked water samples and 1-10 CFU/mL with the addition of a 6-7 h pre-culture step. In comparison, most commercially available E. coli detection kits can take anywhere from 8 to 24 h to report their results. Optimizing the peptides for OmpT's catalytic activity can significantly improve the detection limit and assay time. Besides detecting E. coli, the assay can be adapted to detect other Gram-negative bacteria as well as proteases having diagnostic relevance.
Collapse
Affiliation(s)
- Syed Maricar
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 637553, Singapore
| | - Sushanth Gudlur
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 637553, Singapore
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 637553, Singapore
| |
Collapse
|
36
|
Jaiswal M, Tran TT, Guo J, Zhou M, Kunda S, Guo Z, Fanucci G. Spin-labeling Insights into How Chemical Fixation Impacts Glycan Organization on Cells. RESEARCH SQUARE 2023:rs.3.rs-3039983. [PMID: 37398188 PMCID: PMC10312935 DOI: 10.21203/rs.3.rs-3039983/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
As new methods to interrogate glycan organization on cells develop, it is important to have a molecular level understanding of how chemical fixation can impact results and interpretations. Site-directed spin labeling technologies are well suited to study how the spin label mobility is impacted by local environmental conditions, such as those imposed by cross-linking effects of paraformaldehyde cell fixation methods. Here, we utilize three different azide-containing sugars for metabolic glycan engineering with HeLa cells to incorporate azido glycans that are modified with a DBCO-based nitroxide moiety via click reaction. Continuous wave X-band electron paramagnetic resonance spectroscopy is employed to characterize how the chronological sequence of chemical fixation and spin labeling impacts the local mobility and accessibility of the nitroxide-labeled glycans in the glycocalyx of HeLa cells. Results demonstrate that chemical fixation with paraformaldehyde can alter local glycan mobility and care should be taken in the analysis of data in any study where chemical fixation and cellular labeling occur.
Collapse
|
37
|
Pavlova I, Iudin M, Surdina A, Severov V, Varizhuk A. G-Quadruplexes in Nuclear Biomolecular Condensates. Genes (Basel) 2023; 14:genes14051076. [PMID: 37239436 DOI: 10.3390/genes14051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
G-quadruplexes (G4s) have long been implicated in the regulation of chromatin packaging and gene expression. These processes require or are accelerated by the separation of related proteins into liquid condensates on DNA/RNA matrices. While cytoplasmic G4s are acknowledged scaffolds of potentially pathogenic condensates, the possible contribution of G4s to phase transitions in the nucleus has only recently come to light. In this review, we summarize the growing evidence for the G4-dependent assembly of biomolecular condensates at telomeres and transcription initiation sites, as well as nucleoli, speckles, and paraspeckles. The limitations of the underlying assays and the remaining open questions are outlined. We also discuss the molecular basis for the apparent permissive role of G4s in the in vitro condensate assembly based on the interactome data. To highlight the prospects and risks of G4-targeting therapies with respect to the phase transitions, we also touch upon the reported effects of G4-stabilizing small molecules on nuclear biomolecular condensates.
Collapse
Affiliation(s)
- Iuliia Pavlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Mikhail Iudin
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Anastasiya Surdina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Vjacheslav Severov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Anna Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
38
|
Guseva S, Schnapka V, Adamski W, Maurin D, Ruigrok RWH, Salvi N, Blackledge M. Liquid-Liquid Phase Separation Modifies the Dynamic Properties of Intrinsically Disordered Proteins. J Am Chem Soc 2023; 145:10548-10563. [PMID: 37146977 DOI: 10.1021/jacs.2c13647] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Liquid-liquid phase separation of flexible biomolecules has been identified as a ubiquitous phenomenon underlying the formation of membraneless organelles that harbor a multitude of essential cellular processes. We use nuclear magnetic resonance (NMR) spectroscopy to compare the dynamic properties of an intrinsically disordered protein (measles virus NTAIL) in the dilute and dense phases at atomic resolution. By measuring 15N NMR relaxation at different magnetic field strengths, we are able to characterize the dynamics of the protein in dilute and crowded conditions and to compare the amplitude and timescale of the different motional modes to those present in the membraneless organelle. Although the local backbone conformational sampling appears to be largely retained, dynamics occurring on all detectable timescales, including librational, backbone dihedral angle dynamics and segmental, chainlike motions, are considerably slowed down. Their relative amplitudes are also drastically modified, with slower, chain-like motions dominating the dynamic profile. In order to provide additional mechanistic insight, we performed extensive molecular dynamics simulations of the protein under self-crowding conditions at concentrations comparable to those found in the dense liquid phase. Simulation broadly reproduces the impact of formation of the condensed phase on both the free energy landscape and the kinetic interconversion between states. In particular, the experimentally observed reduction in the amplitude of the fastest component of backbone dynamics correlates with higher levels of intermolecular contacts or entanglement observed in simulations, reducing the conformational space available to this mode under strongly self-crowding conditions.
Collapse
Affiliation(s)
- Serafima Guseva
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Vincent Schnapka
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Wiktor Adamski
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Damien Maurin
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Rob W H Ruigrok
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Nicola Salvi
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Martin Blackledge
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
39
|
Herrera SE, Agazzi ML, Apuzzo E, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Polyelectrolyte-multivalent molecule complexes: physicochemical properties and applications. SOFT MATTER 2023; 19:2013-2041. [PMID: 36811333 DOI: 10.1039/d2sm01507b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The complexation of polyelectrolytes with other oppositely charged structures gives rise to a great variety of functional materials with potential applications in a wide spectrum of technological fields. Depending on the assembly conditions, polyelectrolyte complexes can acquire different macroscopic configurations such as dense precipitates, nanosized colloids and liquid coacervates. In the past 50 years, much progress has been achieved to understand the principles behind the phase separation induced by the interaction of two oppositely charged polyelectrolytes in aqueous solutions, especially for symmetric systems (systems in which both polyions have similar molecular weight and concentration). However, in recent years, the complexation of polyelectrolytes with alternative building blocks such as small charged molecules (multivalent inorganic species, oligopeptides, and oligoamines, among others) has gained attention in different areas. In this review, we discuss the physicochemical characteristics of the complexes formed by polyelectrolytes and multivalent small molecules, putting a special emphasis on their similarities with the well-known polycation-polyanion complexes. In addition, we analyze the potential of these complexes to act as versatile functional platforms in various technological fields, such as biomedicine and advanced materials engineering.
Collapse
Affiliation(s)
- Santiago E Herrera
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Maximiliano L Agazzi
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), (UNRC, CONICET), Ruta Nacional 36 KM 601, 5800 Río Cuarto, Argentina.
| | - Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - M Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| |
Collapse
|