1
|
Xie W, Li B, Liu L, Li H, Yue M, Niu Q, Liang S, Shao X, Lee H, Lee JY, Shao M, Wang Q, O'Hare D, He H. Advanced systems for enhanced CO 2 electroreduction. Chem Soc Rev 2025; 54:898-959. [PMID: 39629562 DOI: 10.1039/d4cs00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Carbon dioxide (CO2) electroreduction has extraordinary significance in curbing CO2 emissions while simultaneously producing value-added chemicals with economic and environmental benefits. In recent years, breakthroughs in designing catalysts, optimizing intrinsic activity, developing reactors, and elucidating reaction mechanisms have continuously driven the advancement of CO2 electroreduction. However, the industrialization of CO2 electroreduction remains a challenging task, with high energy consumption, high costs, limited reaction products, and restricted application scenarios being the issues that urgently need to be addressed. To accelerate the progress of CO2 electroreduction towards practical application, this review shifts the research focus from catalysts to aspects such as reactions and systems, aiming to improve reaction efficiency, reduce technical costs, expand the range of products, and enhance selectivity, offering readers a new perspective. In particular, innovative and specific design strategies such as CO2 reduction coupled with alternative oxidation, co-reduction reaction of CO2 and C/N/O/S-containing species, cascade systems, and integrated CO2 capture and reduction systems are discussed in detail. Additionally, personal views on the opportunities and future challenges of the aforementioned innovative strategies are provided, offering new insights for the future research and development of CO2 electroreduction.
Collapse
Affiliation(s)
- Wenfu Xie
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Bingkun Li
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Lu Liu
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Mingzhu Yue
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Qingman Niu
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Shuyu Liang
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Xiaodong Shao
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiang Wang
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | - Dermot O'Hare
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, UK
| | - Hong He
- Laboratory of Atmospheric Environment and Pollution Control, Research Center for EcoEnvironmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| |
Collapse
|
2
|
Kim JH, Kim HW, Chung MJ, Shin DH, Kim YR, Kim J, Jang YH, Cheong SW, Lee SH, Han J, Park HJ, Han JK, Hwang CS. A stochastic photo-responsive memristive neuron for an in-sensor visual system based on a restricted Boltzmann machine. NANOSCALE HORIZONS 2024; 9:2248-2258. [PMID: 39376201 DOI: 10.1039/d4nh00421c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In-sensor computing has gained attention as a solution to overcome the von Neumann computing bottlenecks inherent in conventional sensory systems. This attention is due to the ability of sensor elements to directly extract meaningful information from external signals, thereby simplifying complex data. The advantage of in-sensor computing can be maximized with the sampling principle of a restricted Boltzmann machine (RBM) to extract significant features. In this study, a stochastic photo-responsive neuron is developed using a TiN/In-Ga-Zn-O/TiN optoelectronic memristor and an Ag/HfO2/Pt threshold-switching memristor, which can be configured as an input neuron in an in-sensor RBM. It demonstrates a sigmoidal switching probability depending on light intensity. The stochastic properties allow for the simultaneous exploration of various neuron states within the network, making identifying optimal features in complex images easier. Based on semi-empirical simulations, high recognition accuracies of 90.9% and 95.5% are achieved using handwritten digit and face image datasets, respectively. In addition, the in-sensor RBM effectively reconstructs abnormal face images, indicating that integrating in-sensor computing with probabilistic neural networks can lead to reliable and efficient image recognition under unpredictable real-world conditions.
Collapse
Affiliation(s)
- Jin Hong Kim
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Hyun Wook Kim
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Min Jung Chung
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Dong Hoon Shin
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Yeong Rok Kim
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jaehyun Kim
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Yoon Ho Jang
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Sun Woo Cheong
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Soo Hyung Lee
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Janguk Han
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Hyung Jun Park
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Joon-Kyu Han
- System Semiconductor Engineering and Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea.
| | - Cheol Seong Hwang
- Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Choi W, Chae Y, Liu E, Kim D, Drisdell WS, Oh HS, Koh JH, Lee DK, Lee U, Won DH. Exploring the influence of cell configurations on Cu catalyst reconstruction during CO 2 electroreduction. Nat Commun 2024; 15:8345. [PMID: 39333114 PMCID: PMC11437247 DOI: 10.1038/s41467-024-52692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Membrane electrode assembly (MEA) cells incorporating Cu catalysts are effective for generating C2+ chemicals via the CO2 reduction reaction (CO2RR). However, the impact of MEA configuration on the inevitable reconstruction of Cu catalysts during CO2RR remains underexplored, despite its considerable potential to affect CO2RR efficacy. Herein, we demonstrate that MEA cells prompt a unique reconstruction of Cu, in contrast to H-type cells, which subsequently influences CO2RR outcomes. Utilizing three Cu-based catalysts, specifically engineered with different nanostructures, we identify contrasting selectivity trends in the production of C2+ chemicals between H-type and MEA cells. Operando X-ray absorption spectroscopy, alongside ex-situ analyses in both cell types, indicates that MEA cells facilitate the reduction of Cu2O, resulting in altered Cu surfaces compared to those in H-type cells. Time-resolved CO2RR studies, supported by Operando analysis, further highlight that significant Cu reconstruction within MEA cells is a primary factor leading to the deactivation of CO2RR into C2+ chemicals.
Collapse
Affiliation(s)
- Woong Choi
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Energy Engineering, Gyeongsang National University, Jinju, 52725, Republic of Korea
| | - Younghyun Chae
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Energy and Environmental Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Ershuai Liu
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Dongjin Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Walter S Drisdell
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Hyung-Suk Oh
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jai Hyun Koh
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Energy and Environmental Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Dong Ki Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
- Graduate School of Energy and Environment (Green School), Korea University, Seoul, 02841, Republic of Korea
| | - Ung Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Energy and Environmental Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Graduate School of Energy and Environment (Green School), Korea University, Seoul, 02841, Republic of Korea
| | - Da Hye Won
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Division of Energy and Environmental Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02477, Republic of Korea.
| |
Collapse
|
4
|
Lee H, Kwon S, Park N, Cha SG, Lee E, Kong TH, Cha J, Kwon Y. Scalable Low-Temperature CO 2 Electrolysis: Current Status and Outlook. JACS AU 2024; 4:3383-3399. [PMID: 39328755 PMCID: PMC11423314 DOI: 10.1021/jacsau.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
The electrochemical CO2 reduction (eCO2R) in membrane electrode assemblies (MEAs) has brought e-chemical production one step closer to commercialization because of its advantages of minimized ohmic resistance and stackability. However, the current performance of reported eCO2R in MEAs is still far below the threshold for economic feasibility where low overall cell voltage (<2 V) and extensive stability (>5 years) are required. Furthermore, while the production cost of e-chemicals heavily relies on the carbon capture and product separation processes, these areas have received much less attention compared to CO2 electrolysis, itself. In this perspective, we examine the current status of eCO2R technologies from both academic and industrial points of view. We highlight the gap between current capabilities and commercialization standards and offer future research directions for eCO2R technologies with the hope of achieving industrially viable e-chemical production.
Collapse
Affiliation(s)
- Hojeong Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seontaek Kwon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Namgyoo Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sun Gwan Cha
- Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Eunyoung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae-Hoon Kong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jihoo Cha
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Youngkook Kwon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
5
|
Belsa B, Xia L, García de Arquer FP. CO 2 Electrolysis Technologies: Bridging the Gap toward Scale-up and Commercialization. ACS ENERGY LETTERS 2024; 9:4293-4305. [PMID: 39296967 PMCID: PMC11406523 DOI: 10.1021/acsenergylett.4c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 09/21/2024]
Abstract
CO2 electroreduction (CO2E) converts CO2 into carbon-based fuels and chemical feedstocks that can be integrated into existing chemical processes. After decades of research, CO2E is approaching commercialization with several startups, pilot plants, and large initiatives targeting different products. Here, we analyze the global efforts in scaling up CO2E, addressing implementation challenges and proposing methods for acceleration. We present a comparative analysis of key performance indicators (KPIs) between laboratory and industrial settings and suggest a stepwise technoeconomic analysis (TEA) framework, supported by industrial data, exploiting interactions within the academic and industrial communities. We identify the lack of systems-oriented standardization and durability as the main bottlenecks slowing down progress in the lab-to-prototype-to-market pathway of CO2E technologies. Inspired by electrolysis and fuel cell technologies, we outline protocols to advance fundamental research and aid catalyst development progress in performance, upscaling, and technology readiness level of CO2E.
Collapse
Affiliation(s)
- Blanca Belsa
- The Barcelona Institute of Science and Technology, ICFO - Institut de Ciències Fotòniques, Castelldefels, Barcelona 08860, Spain
| | - Lu Xia
- The Barcelona Institute of Science and Technology, ICFO - Institut de Ciències Fotòniques, Castelldefels, Barcelona 08860, Spain
| | - F Pelayo García de Arquer
- The Barcelona Institute of Science and Technology, ICFO - Institut de Ciències Fotòniques, Castelldefels, Barcelona 08860, Spain
| |
Collapse
|
6
|
Xiao YC, Sun SS, Zhao Y, Miao RK, Fan M, Lee G, Chen Y, Gabardo CM, Yu Y, Qiu C, Guo Z, Wang X, Papangelakis P, Huang JE, Li F, O'Brien CP, Kim J, Han K, Corbett PJ, Howe JY, Sargent EH, Sinton D. Reactive capture of CO 2 via amino acid. Nat Commun 2024; 15:7849. [PMID: 39245666 PMCID: PMC11381538 DOI: 10.1038/s41467-024-51908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
Reactive capture of carbon dioxide (CO2) offers an electrified pathway to produce renewable carbon monoxide (CO), which can then be upgraded into long-chain hydrocarbons and fuels. Previous reactive capture systems relied on hydroxide- or amine-based capture solutions. However, selectivity for CO remains low (<50%) for hydroxide-based systems and conventional amines are prone to oxygen (O2) degradation. Here, we develop a reactive capture strategy using potassium glycinate (K-GLY), an amino acid salt (AAS) capture solution applicable to O2-rich CO2-lean conditions. By employing a single-atom catalyst, engineering the capture solution, and elevating the operating temperature and pressure, we increase the availability of dissolved in-situ CO2 and achieve CO production with 64% Faradaic efficiency (FE) at 50 mA cm-2. We report a measured CO energy efficiency (EE) of 31% and an energy intensity of 40 GJ tCO-1, exceeding the best hydroxide- and amine-based reactive capture reports. The feasibility of the full reactive capture process is demonstrated with both simulated flue gas and direct air input.
Collapse
Affiliation(s)
- Yurou Celine Xiao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Siyu Sonia Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Yong Zhao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Mengyang Fan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Yuanjun Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Christine M Gabardo
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Yan Yu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Chenyue Qiu
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, Canada
| | - Zunmin Guo
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Xinyue Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Panagiotis Papangelakis
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Jianan Erick Huang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Feng Li
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Jiheon Kim
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Kai Han
- Shell Global Solutions International B.V., Amsterdam, The Netherlands
| | - Paul J Corbett
- Shell Global Solutions International B.V., Amsterdam, The Netherlands
| | - Jane Y Howe
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Sun Z, Li C, Wei Z, Zhang F, Deng Z, Zhou K, Wang Y, Guo J, Yang J, Xiang Z, Ma P, Zhai H, Li S, Chen W. Sulfur-Bridged Asymmetric CuNi Bimetallic Atom Sites for CO 2 Reduction with High Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404665. [PMID: 38923612 DOI: 10.1002/adma.202404665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Double-atom catalysts (DACs) with asymmetric coordination are crucial for enhancing the benefits of electrochemical carbon dioxide reduction and advancing sustainable development, however, the rational design of DACs is still challenging. Herein, this work synthesizes atomically dispersed catalysts with novel sulfur-bridged Cu-S-Ni sites (named Cu-S-Ni/SNC), utilizing biomass wool keratin as precursor. The plentiful disulfide bonds in wool keratin overcome the limitations of traditional gas-phase S ligand etching process and enable the one-step formation of S-bridged sites. X-ray absorption spectroscopy (XAS) confirms the existence of bimetallic sites with N2Cu-S-NiN2 moiety. In H-cell, Cu-S-Ni/SNC shows high CO Faraday efficiency of 98.1% at -0.65 V versus RHE. Benefiting from the charge tuning effect between the metal site and bridged sulfur atoms, a large current density of 550 mA cm-2 can be achieved at -1.00 V in flow cell. Additionally, in situ XAS, attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), and density functional theory (DFT) calculations show Cu as the main adsorption site is dual-regulated by Ni and S atoms, which enhances CO2 activation and accelerates the formation of *COOH intermediates. This kind of asymmetric bimetallic atom catalysts may open new pathways for precision preparation and performance regulation of atomic materials toward energy applications.
Collapse
Affiliation(s)
- Zhiyi Sun
- Analysis and Testing Center, Beijing Institute of Technology, Beijing, 100081, China
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chen Li
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Zihao Wei
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fang Zhang
- Analysis and Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Ziwei Deng
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Kejia Zhou
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yong Wang
- Guangdong R&D Center for Technological Economy, Guangzhou, 510070, China
| | - Jinhong Guo
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiayi Yang
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zequn Xiang
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Peijie Ma
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Huazhang Zhai
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shenghua Li
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
8
|
Chowdhury A, Yang TCK, Lee LWC. Synergistic Enhancement of CO 2 photoreduction through sulfur defects in (3D/2D) CdS-nanoflowers/CN Binary heterojunction photocatalyst under visible light. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121602. [PMID: 38936023 DOI: 10.1016/j.jenvman.2024.121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Global warming is the biggest threat to the entire world owing to the continuous release of greenhouse gases such as CO2 from various sources. Herein, we have utilized renewable energy for the conversion of CO2 to valuable feedstocks through a semiconductor-mediated photocatalytic system. The cadmium sulfide nanoflowers (CS-NFs) decorated graphitic carbon nitride (CN) through a solvothermal route to form a Z-scheme CSCN heterojunction. The as-synthesized material has been characterized by various spectroscopic and microscopic tools. The optimal CSCN-0.5 (1:0.5) photocatalyst achieves a CO production rate of 130.9 μmol g-1 under visible light irradiation of 4h (λ > 420 nm), doubling that of pristine CS-NFs and CN. CO, along with CH4 (3.4 μmol g-1) and C2H6 (2.9 μmol g-1), is the sole product detected. Experimental results indicate that the CSCN-0.5 photocatalyst spatially separates electron-hole pairs, suppresses charge carrier recombination, and maintains robust redox ability, enhancing CO2 photoreduction. The CO2 reduction mechanism over CSCN heterojunction was also studied through in-situ DRIFTS and electron spin resonance (ESR) measurements. Therefore, CSCN proves that it could be used as a robust photocatalyst for the CO2 reduction reactions towards C1 and C2 feedstocks.
Collapse
Affiliation(s)
- Anuradha Chowdhury
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan.
| | - Thomas C-K Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan; Precision Analysis and Materials Research Centre, National Taipei University of Technology, Taipei, 10608, Taiwan.
| | - Louis Wei-Chih Lee
- Asia Electronic Material Co., Ltd., Taihe Village, Zhubei City, Hsinchu, 30267, Taiwan
| |
Collapse
|
9
|
Romero M, Gómez-Canaval S, Torre IG. Automatic Speech Recognition Advancements for Indigenous Languages of the Americas. APPLIED SCIENCES 2024; 14:6497. [DOI: 10.3390/app14156497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Indigenous languages are a fundamental legacy in the development of human communication, embodying the unique identity and culture of local communities in America. The Second AmericasNLP Competition Track 1 of NeurIPS 2022 proposed the task of training automatic speech recognition (ASR) systems for five Indigenous languages: Quechua, Guarani, Bribri, Kotiria, and Wa’ikhana. In this paper, we describe the fine-tuning of a state-of-the-art ASR model for each target language, using approximately 36.65 h of transcribed speech data from diverse sources enriched with data augmentation methods. We systematically investigate, using a Bayesian search, the impact of the different hyperparameters on the Wav2vec2.0 XLS-R variants of 300 M and 1 B parameters. Our findings indicate that data and detailed hyperparameter tuning significantly affect ASR accuracy, but language complexity determines the final result. The Quechua model achieved the lowest character error rate (CER) (12.14), while the Kotiria model, despite having the most extensive dataset during the fine-tuning phase, showed the highest CER (36.59). Conversely, with the smallest dataset, the Guarani model achieved a CER of 15.59, while Bribri and Wa’ikhana obtained, respectively, CERs of 34.70 and 35.23. Additionally, Sobol’ sensitivity analysis highlighted the crucial roles of freeze fine-tuning updates and dropout rates. We release our best models for each language, marking the first open ASR models for Wa’ikhana and Kotiria. This work opens avenues for future research to advance ASR techniques in preserving minority Indigenous languages.
Collapse
Affiliation(s)
- Monica Romero
- ETS of Computer Systems Engineering, Universidad Politécnica de Madrid, 28031 Madrid, Spain
| | - Sandra Gómez-Canaval
- ETS of Computer Systems Engineering, Universidad Politécnica de Madrid, 28031 Madrid, Spain
| | - Ivan G. Torre
- ETS of Computer Systems Engineering, Universidad Politécnica de Madrid, 28031 Madrid, Spain
| |
Collapse
|
10
|
Chen L, Bi T, Lizundia E, Liu A, Qi L, Ma Y, Huang J, Lu Z, Yu L, Deng H, Chen C. Biomass waste-assisted micro(nano)plastics capture, utilization, and storage for sustainable water remediation. Innovation (N Y) 2024; 5:100655. [PMID: 39040688 PMCID: PMC11260858 DOI: 10.1016/j.xinn.2024.100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/03/2024] [Indexed: 07/24/2024] Open
Abstract
Micro(nano)plastics (MNPs) have become a significant environmental concern due to their widespread presence in the biosphere and potential harm to ecosystems and human health. Here, we propose for the first time a MNPs capture, utilization, and storage (PCUS) concept to achieve MNPs remediation from water while meeting economically productive upcycling and environmentally sustainable plastic waste management. A highly efficient capturing material derived from surface-modified woody biomass waste (M-Basswood) is developed to remove a broad spectrum of multidimensional and compositional MNPs from water. The M-Basswood delivered a high and stable capture efficiency of >99.1% at different pH or salinity levels. This exceptional capture performance is driven by multiscale interactions between M-Basswood and MNPs, involving physical trapping, strong electrostatic attractions, and triggered MNPs cluster-like aggregation sedimentation. Additionally, the in vivo biodistribution of MNPs shows low ingestion and accumulation of MNPs in the mice organs. After MNPs remediation from water, the M-Basswood, together with captured MNPs, is further processed into a high-performance composite board product where MNPs serve as the glue for utilization and storage. Furthermore, the life cycle assessment (LCA) and techno-economic analysis (TEA) results demonstrate the environmental friendliness and economic viability of our proposed full-chain PCUS strategy, promising to drive positive change in plastic pollution and foster a circular economy.
Collapse
Affiliation(s)
- Lu Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Tingting Bi
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Edif. Martina Casiano, 48940 Leioa, Spain
| | - Anxiong Liu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
- Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Luhe Qi
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Yifan Ma
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Jing Huang
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Ziyang Lu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Le Yu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Chaoji Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| |
Collapse
|
11
|
O'Brien CP, Miao RK, Shayesteh Zeraati A, Lee G, Sargent EH, Sinton D. CO 2 Electrolyzers. Chem Rev 2024; 124:3648-3693. [PMID: 38518224 DOI: 10.1021/acs.chemrev.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
CO2 electrolyzers have progressed rapidly in energy efficiency and catalyst selectivity toward valuable chemical feedstocks and fuels, such as syngas, ethylene, ethanol, and methane. However, each component within these complex systems influences the overall performance, and the further advances needed to realize commercialization will require an approach that considers the whole process, with the electrochemical cell at the center. Beyond the cell boundaries, the electrolyzer must integrate with upstream CO2 feeds and downstream separation processes in a way that minimizes overall product energy intensity and presents viable use cases. Here we begin by describing upstream CO2 sources, their energy intensities, and impurities. We then focus on the cell, the most common CO2 electrolyzer system architectures, and each component within these systems. We evaluate the energy savings and the feasibility of alternative approaches including integration with CO2 capture, direct conversion of flue gas and two-step conversion via carbon monoxide. We evaluate pathways that minimize downstream separations and produce concentrated streams compatible with existing sectors. Applying this comprehensive upstream-to-downstream approach, we highlight the most promising routes, and outlook, for electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Ali Shayesteh Zeraati
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
12
|
Shabbir S, Yang N, Wang D. Enhanced uranium extraction from seawater: from the viewpoint of kinetics and thermodynamics. NANOSCALE 2024; 16:4937-4960. [PMID: 38362657 DOI: 10.1039/d3nr05905g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Uranium extraction from seawater (UES) is recognized as one of the seven pivotal chemical separations with the potential to revolutionize global paradigms. The forthcoming decade is anticipated to witness a surge in UES, driven by escalating energy demands. The oceanic reservoirs, possessing uranium quantities approximately 1000-fold higher than terrestrial mines, present a more sustainable and environmentally benign alternative. Empirical evidence from historical research indicates that adsorption emerges as the most efficacious process for uranium recovery from seawater, considering operational feasibility, cost-effectiveness, and selectivity. Over the years, scientific exploration has led to the development of a plethora of adsorbents with superior adsorption capacity. It would be efficient to design materials with a deep understanding of the adsorption from the perspective of kinetics and thermodynamics. Here, we summarize recent advancements in UES technology and the contemporary challenges encountered in this domain. Furthermore, we present our perspectives on the future trajectory of UES and finally offer our insights into this subject.
Collapse
Affiliation(s)
- Sania Shabbir
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Yao Y, Shi T, Chen W, Wu J, Fan Y, Liu Y, Cao L, Chen Z. A surface strategy boosting the ethylene selectivity for CO 2 reduction and in situ mechanistic insights. Nat Commun 2024; 15:1257. [PMID: 38341442 DOI: 10.1038/s41467-024-45704-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Electrochemical reduction of carbon dioxide into ethylene, as opposed to traditional industrial methods, represents a more environmentally friendly and promising technical approach. However, achieving high activity of ethylene remains a huge challenge due to the numerous possible reaction pathways. Here, we construct a hierarchical nanoelectrode composed of CuO treated with dodecanethiol to achieve elevated ethylene activity with a Faradaic efficiency reaching 79.5%. Through on in situ investigations, it is observed that dodecanethiol modification not only facilitates CO2 transfer and enhances *CO coverage on the catalyst surfaces, but also stabilizes Cu(100) facet. Density functional theory calculations of activation energy barriers of the asymmetrical C-C coupling between *CO and *CHO further support that the greatly increased selectivity of ethylene is attributed to the thiol-stabilized Cu(100). Our findings not only provide an effective strategy to design and construct Cu-based catalysts for highly selective CO2 to ethylene, but also offer deep insights into the mechanism of CO2 to ethylene.
Collapse
Affiliation(s)
- Yinchao Yao
- Energy & Catalysis Center, Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
| | - Tong Shi
- Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Wenxing Chen
- Energy & Catalysis Center, Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
| | - Jiehua Wu
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd, 100013, Beijing, PR China
| | - Yunying Fan
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Yichun Liu
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Liang Cao
- Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| | - Zhuo Chen
- Energy & Catalysis Center, Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, PR China.
| |
Collapse
|
14
|
Liu Y, An Y, Zhu J, Zhu L, Li X, Gao P, He G, Pang Q. Integrated energy storage and CO 2 conversion using an aqueous battery with tamed asymmetric reactions. Nat Commun 2024; 15:977. [PMID: 38302458 PMCID: PMC10834454 DOI: 10.1038/s41467-023-44283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024] Open
Abstract
Developing a CO2-utilization and energy-storage integrated system possesses great advantages for carbon- and energy-intensive industries. Efforts have been made to developing the Zn-CO2 batteries, but access to long cycling life and low charging voltage remains a grand challenge. Here we unambiguously show such inefficiencies originate from the high-barrier oxygen evolution reaction on charge, and by recharging the battery via oxidation of reducing molecules, Faradaic efficiency-enhanced CO2 reduction and low-overpotential battery regeneration can be simultaneously achieved. Showcased by using hydrazine oxidation, our battery demonstrates a long life over 1000 hours with a charging voltage as low as 1.2 V. The low charging voltage and formation of gaseous product upon hydrazine oxidation are the key to stabilize the catalyst over cycling. Our findings suggest that by fundamentally taming the asymmetric reactions, aqueous batteries are viable tools to achieve integrated energy storage and CO2 conversion that is economical, highly energy efficient, and scalable.
Collapse
Affiliation(s)
- Yumei Liu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Yun An
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Jiexin Zhu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, 100871, Beijing, China
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Lujun Zhu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Xiaomei Li
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China
| | - Peng Gao
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Quanquan Pang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, 100871, Beijing, China.
| |
Collapse
|
15
|
Gkotsis P, Peleka E, Zouboulis A. Membrane-Based Technologies for Post-Combustion CO 2 Capture from Flue Gases: Recent Progress in Commonly Employed Membrane Materials. MEMBRANES 2023; 13:898. [PMID: 38132902 PMCID: PMC10744594 DOI: 10.3390/membranes13120898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Carbon dioxide (CO2), which results from fossil fuel combustion and industrial processes, accounts for a substantial part of the total anthropogenic greenhouse gases (GHGs). As a result, several carbon capture, utilization and storage (CCUS) technologies have been developed during the last decade. Chemical absorption, adsorption, cryogenic separation and membrane separation are the most widely used post-combustion CO2 capture technologies. This study reviews post-combustion CO2 capture technologies and the latest progress in membrane processes for CO2 separation. More specifically, the objective of the present work is to present the state of the art of membrane-based technologies for CO2 capture from flue gases and focuses mainly on recent advancements in commonly employed membrane materials. These materials are utilized for the fabrication and application of novel composite membranes or mixed-matrix membranes (MMMs), which present improved intrinsic and surface characteristics and, thus, can achieve high selectivity and permeability. Recent progress is described regarding the utilization of metal-organic frameworks (MOFs), carbon molecular sieves (CMSs), nanocomposite membranes, ionic liquid (IL)-based membranes and facilitated transport membranes (FTMs), which comprise MMMs. The most significant challenges and future prospects of implementing membrane technologies for CO2 capture are also presented.
Collapse
Affiliation(s)
| | | | - Anastasios Zouboulis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Faculty of Sciences, Aristotle University, GR-54124 Thessaloniki, Greece; (P.G.); (E.P.)
| |
Collapse
|
16
|
Sharma AK, Ghodke PK, Goyal N, Bobde P, Kwon EE, Lin KYA, Chen WH. A critical review on biochar production from pine wastes, upgradation techniques, environmental sustainability, and challenges. BIORESOURCE TECHNOLOGY 2023; 387:129632. [PMID: 37562491 DOI: 10.1016/j.biortech.2023.129632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Pine wastes, including pine needles, cones, and wood, are abundantly produced as an agroforestry by-product globally and have shown tremendous potential for biochar production. Various thermochemical conversion technologies have exhibited promising results in converting pine wastes to biochar, displaying impressive performance. Hence, this review paper aims to investigate the possibilities and recent technological advancements for synthesizing biochar from pine waste. Furthermore, it explores techniques for enhancing the properties of biochar and its integrated applications in various fields, such as soil and water remediation, carbon sequestration, battery capacitor synthesis, and bio-coal production. Finally, the paper sheds light on the limitations of current strategies, emphasizing the need for further research and study to address the challenges in pine waste-based biochar synthesis. By promoting sustainable and effective utilization of pine wastes, this review contributes to environmental conservation and resource management.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Department of Chemistry, Applied Sciences Cluster, School of Advance Engineering, and Centre for Alternate Energy Research (CAER), R&D, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Praveen Kumar Ghodke
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Nishu Goyal
- School of Health Sciences, University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres Building, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Prakash Bobde
- R & D, University of Petroleum and Energy Studies, P.O. Bidholi Via-Prem Nagar, Dehradun 248007, India
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| |
Collapse
|
17
|
Chen M, Xu J. CO 2 Capture Mechanism by Deep Eutectic Solvents Formed by Choline Prolinate and Ethylene Glycol. Molecules 2023; 28:5461. [PMID: 37513333 PMCID: PMC10385772 DOI: 10.3390/molecules28145461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The choline prolinate ([Ch][Pro]) as a hydrogen bond acceptor and ethylene glycol (EG) as a hydrogen bond donor are both used to synthesize the deep eutectic solvents (DESs) [Ch][Pro]-EG to capture CO2. The CO2 capacity of [Ch][Pro]-EG is determined, and the nuclear magnetic resonance (NMR) and infrared (IR) spectrum are used to investigate the CO2 capture mechanism. The results indicate that CO2 reacts with both the amino group of [Pro]- anion and the hydroxyl group of EG, and the mechanism found in this work is different from that reported in the literature for the [Ch][Pro]-EG DESs.
Collapse
Affiliation(s)
- Mingzhe Chen
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Jinming Xu
- School of Science, China University of Geosciences, Beijing 100083, China
| |
Collapse
|