1
|
Ngo C, Garrec C, Tomasello E, Dalod M. The role of plasmacytoid dendritic cells (pDCs) in immunity during viral infections and beyond. Cell Mol Immunol 2024; 21:1008-1035. [PMID: 38777879 PMCID: PMC11364676 DOI: 10.1038/s41423-024-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Type I and III interferons (IFNs) are essential for antiviral immunity and act through two different but complimentary pathways. First, IFNs activate intracellular antimicrobial programs by triggering the upregulation of a broad repertoire of viral restriction factors. Second, IFNs activate innate and adaptive immunity. Dysregulation of IFN production can lead to severe immune system dysfunction. It is thus crucial to identify and characterize the cellular sources of IFNs, their effects, and their regulation to promote their beneficial effects and limit their detrimental effects, which can depend on the nature of the infected or diseased tissues, as we will discuss. Plasmacytoid dendritic cells (pDCs) can produce large amounts of all IFN subtypes during viral infection. pDCs are resistant to infection by many different viruses, thus inhibiting the immune evasion mechanisms of viruses that target IFN production or their downstream responses. Therefore, pDCs are considered essential for the control of viral infections and the establishment of protective immunity. A thorough bibliographical survey showed that, in most viral infections, despite being major IFN producers, pDCs are actually dispensable for host resistance, which is achieved by multiple IFN sources depending on the tissue. Moreover, primary innate and adaptive antiviral immune responses are only transiently affected in the absence of pDCs. More surprisingly, pDCs and their IFNs can be detrimental in some viral infections or autoimmune diseases. This makes the conservation of pDCs during vertebrate evolution an enigma and thus raises outstanding questions about their role not only in viral infections but also in other diseases and under physiological conditions.
Collapse
Affiliation(s)
- Clémence Ngo
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Clémence Garrec
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Elena Tomasello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
2
|
Carter MJ, Carrol ED, Ranjit S, Mozun R, Kissoon N, Watson RS, Schlapbach LJ. Susceptibility to childhood sepsis, contemporary management, and future directions. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:682-694. [PMID: 39142742 DOI: 10.1016/s2352-4642(24)00141-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 08/16/2024]
Abstract
Sepsis disproportionally affects children across all health-care settings and is one of the leading causes of morbidity and mortality in neonatal and paediatric age groups. As shown in the first paper in this Series, the age-specific incidence of sepsis is highest during the first years of life, before approaching adult incidence rates during adolescence. In the second paper in this Series, we focus on the unique susceptibility of paediatric patients to sepsis and how the underlying dysregulated host response relates to developmental aspects of children's immune system, genetic, perinatal, and environmental factors, and comorbidities and socioeconomic determinants of health, which often differ between children and adults. State-of-the-art clinical management of paediatric sepsis is organised around three treatment pillars-diagnosis, early resuscitation, and titration of advanced care-and we examine available treatment guidelines and the limitations of their supporting evidence. Serious evidence gaps remain in key areas of paediatric sepsis care, especially surrounding recognition, common interventions, and survivor support, and to this end we offer a research roadmap for the next decade that could accelerate targeted diagnostics and personalised use of immunomodulation. However, improving outcomes for children with sepsis relies fundamentally on systematic quality improvement in both recognition and treatment, which is the theme of the third paper in this Series. Digital health, as shown in the fourth and final paper of this Series, holds promising potential in breaking down the barriers that hinder progress in paediatric sepsis care and, ultimately, global child health.
Collapse
Affiliation(s)
- Michael J Carter
- Centre for Human Genetics, University of Oxford, Oxford, UK; Paediatric Intensive Care unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Enitan D Carrol
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK
| | | | - Rebeca Mozun
- Department of Intensive Care and Neonatology, and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Niranjan Kissoon
- Global Child Health Department of Pediatrics and Emergency Medicine, British Columbia Women and Children's Hospital and the University of British Columbia, Vancouver, BC, Canada
| | - R Scott Watson
- Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, USA
| | - Luregn J Schlapbach
- Department of Intensive Care and Neonatology, and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Kar M, Johnson KEE, Vanderheiden A, Elrod EJ, Floyd K, Geerling E, Stone ET, Salinas E, Banakis S, Wang W, Sathish S, Shrihari S, Davis-Gardner ME, Kohlmeier J, Pinto A, Klein R, Grakoui A, Ghedin E, Suthar MS. CD4 + and CD8 + T cells are required to prevent SARS-CoV-2 persistence in the nasal compartment. SCIENCE ADVANCES 2024; 10:eadp2636. [PMID: 39178263 PMCID: PMC11343035 DOI: 10.1126/sciadv.adp2636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
SARS-CoV-2 infection induces the generation of virus-specific CD4+ and CD8+ effector and memory T cells. However, the contribution of T cells in controlling SARS-CoV-2 during infection is not well understood. Following infection of C57BL/6 mice, SARS-CoV-2-specific CD4+ and CD8+ T cells are recruited to the respiratory tract, and a vast proportion secrete the cytotoxic molecule granzyme B. Using depleting antibodies, we found that T cells within the lungs play a minimal role in viral control, and viral clearance occurs in the absence of both CD4+ and CD8+ T cells through 28 days postinfection. In the nasal compartment, depletion of both CD4+ and CD8+ T cells, but not individually, results in persistent, culturable virus replicating in the nasal epithelial layer through 28 days postinfection. Viral sequencing analysis revealed adapted mutations across the SARS-CoV-2 genome, including a large deletion in ORF6. Overall, our findings highlight the importance of T cells in controlling virus replication within the respiratory tract during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Meenakshi Kar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Katherine E. E. Johnson
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth J. Elrod
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Katharine Floyd
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - E. Taylor Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Eduardo Salinas
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Stephanie Banakis
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Wei Wang
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Shruti Sathish
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Swathi Shrihari
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Meredith E. Davis-Gardner
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Jacob Kohlmeier
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Amelia Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Robyn Klein
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Schulich School of Medicine and Dentistry, Western Institute of Neuroscience, Western University, London, Ontario, Canada
| | - Arash Grakoui
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Mehul S. Suthar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| |
Collapse
|
4
|
Zong L, Zheng Y, Yu X, Dai X, Huang R, Yan G, Xu Y, Zheng M. ICOS-ICOSL pathway enhances NKT-like cell antiviral function in pregnant women with COVID-19. Int J Med Sci 2024; 21:1890-1902. [PMID: 39113896 PMCID: PMC11302565 DOI: 10.7150/ijms.95952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Objective: The immune response initiated by SARS-CoV-2 infection in pregnancy is poorly elucidated. We aimed to access and compare the antiviral cellular responses and lymphocytes activation between healthy pregnancies and pregnant women infected with SARS-CoV-2. Methods: We detected the immunological changes of lymphocytes in peripheral blood of healthy non-pregnant women, non-pregnant women with COVID-19, healthy pregnant women, pregnant women with COVID-19 and convalescent group by flow cytometry. In vitro blockade was used to identify NKT-like cell activation through ICOS-ICOSL pathway. Results: We found that CD3+CD56+ NKT-like cells decreased significantly in COVID-19 positive pregnant women compared to healthy pregnant women. NKT-like cells of pregnant women expressed higher level of activating receptors CD69 and NKp46 after SARS-CoV-2 infection. Particularly, they also increased the expression of the co-stimulatory molecule ICOS. NKT-like cells of pregnant women with COVID-19 up-regulated the expression of IFN-γ, CD107a and Ki67. Meanwhile, we found that ICOSL expression was significantly increased on pDCs in pregnant women with COVID-19. Blocking ICOS in vitro significantly decreased the antiviral activity of NKT-like cells in COVID-19 positive pregnant women, suggesting that ICOS-ICOSL may play an important role in the virus clearance by NKT-like cells. Conclusions: During SARS-CoV-2 infection, NKT-like cells of pregnant women activated through ICOS-ICOSL pathway and played an important role in the antiviral response.
Collapse
Affiliation(s)
- Lu Zong
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuanling Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Xiaojing Yu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Xiaoran Dai
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Ruoyu Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Guoxiu Yan
- Department of Clinical Laboratory, Anhui Provincial Maternity and Child Health Hospital, Hefei, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Li J, Xing H, Meng F, Liu T, Hong X, Han X, Dong Y, Li M, Wang Z, Zhang S, Cui C, Zheng A. Virus-Mimetic Extracellular-Vesicle Vaccine Boosts Systemic and Mucosal Immunity via Immune Recruitment. ACS NANO 2024. [PMID: 39013102 DOI: 10.1021/acsnano.4c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Mucosal vaccines can prevent viruses from infecting the respiratory mucosa, rather than only curtailing infection and protecting against the development of disease symptoms. The SARS-CoV-2 spike receptor-binding domain (RBD) is a compelling vaccine target but is undermined by suboptimal mucosal immunogenicity. Here, we report a SARS-CoV-2-mimetic extracellular-vesicle vaccine developed using genetic engineering and dendritic cell membrane budding. After mucosal immunization, the vaccine recruits antigen-presenting cells rapidly initiating a strong innate immune response. Notably, it obviates the need for adjuvants and can induce germinal center formation through both intramuscular and intratracheal vaccination. It not only elicits high levels of RBD-specific antibodies but also stimulates extensive cellular immunity in the respiratory mucosa. A sequential immunization strategy, starting with an intramuscular injection followed by an intratracheal booster, significantly bolsters mucosal immunity with high levels of IgA and tissue-resident memory T cell responses, thereby establishing a formidable defense against pseudovirus infection.
Collapse
Affiliation(s)
- Jingru Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Haonan Xing
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Fan Meng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ting Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Xiaoxuan Hong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Xiaolu Han
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuhan Dong
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Meng Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zengming Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shuang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Chunying Cui
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Aiping Zheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
6
|
Borczuk AC. Pathology of COVID-19 Lung Disease. Surg Pathol Clin 2024; 17:203-214. [PMID: 38692805 DOI: 10.1016/j.path.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The pathology of severe COVID-19 lung injury is predominantly diffuse alveolar damage, with other reported patterns including acute fibrinous organizing pneumonia, organizing pneumonia, and bronchiolitis. Lung injury was caused by primary viral injury, exaggerated immune responses, and superinfection with bacteria and fungi. Although fatality rates have decreased from the early phases of the pandemic, persistent pulmonary dysfunction occurs and its pathogenesis remains to be fully elucidated.
Collapse
Affiliation(s)
- Alain C Borczuk
- Department of Pathology, Northwell Health, 2200 Northern Boulevard Suite 104, Greenvale, NY 11548, USA.
| |
Collapse
|
7
|
Garcia-Vidal E, Calba I, Riveira-Muñoz E, García E, Clotet B, Serra-Mitjà P, Cabrera C, Ballana E, Badia R. Nucleotide-Binding Oligomerization Domain 1 (NOD1) Agonists Prevent SARS-CoV-2 Infection in Human Lung Epithelial Cells through Harnessing the Innate Immune Response. Int J Mol Sci 2024; 25:5318. [PMID: 38791357 PMCID: PMC11121681 DOI: 10.3390/ijms25105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The lung is prone to infections from respiratory viruses such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). A challenge in combating these infections is the difficulty in targeting antiviral activity directly at the lung mucosal tract. Boosting the capability of the respiratory mucosa to trigger a potent immune response at the onset of infection could serve as a potential strategy for managing respiratory infections. This study focused on screening immunomodulators to enhance innate immune response in lung epithelial and immune cell models. Through testing various subfamilies and pathways of pattern recognition receptors (PRRs), the nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family was found to selectively activate innate immunity in lung epithelial cells. Activation of NOD1 and dual NOD1/2 by the agonists TriDAP and M-TriDAP, respectively, increased the number of IL-8+ cells by engaging the NF-κB and interferon response pathways. Lung epithelial cells showed a stronger response to NOD1 and dual NOD1/2 agonists compared to control. Interestingly, a less-pronounced response to NOD1 agonists was noted in PBMCs, indicating a tissue-specific effect of NOD1 in lung epithelial cells without inducing widespread systemic activation. The specificity of the NOD agonist pathway was confirmed through gene silencing of NOD1 (siRNA) and selective NOD1 and dual NOD1/2 inhibitors in lung epithelial cells. Ultimately, activation induced by NOD1 and dual NOD1/2 agonists created an antiviral environment that hindered SARS-CoV-2 replication in vitro in lung epithelial cells.
Collapse
Affiliation(s)
| | - Ignasi Calba
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | | | | | - Bonaventura Clotet
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- University of Vic—Central University of Catalonia (UVic-UCC), 08500 Vic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, CIBERINFEC, 28029 Madrid, Spain
| | - Pere Serra-Mitjà
- Pulmonology and Allergy Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Barcelona, Spain;
| | - Cecilia Cabrera
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | - Ester Ballana
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, CIBERINFEC, 28029 Madrid, Spain
| | - Roger Badia
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| |
Collapse
|
8
|
Maino A, Amen A, Plumas J, Bouquet L, Deschamps M, Saas P, Chaperot L, Manches O. Development of a New Off-the-Shelf Plasmacytoid Dendritic Cell-Based Approach for the Expansion and Characterization of SARS-CoV-2-Specific T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:825-833. [PMID: 38214610 DOI: 10.4049/jimmunol.2300704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024]
Abstract
Global vaccination against COVID-19 has been widely successful; however, there is a need for complementary immunotherapies in severe forms of the disease and in immunocompromised patients. Cytotoxic CD8+ T cells have a crucial role in disease control, but their function can be dysregulated in severe forms of the disease. We report here a cell-based approach using a plasmacytoid dendritic cell line (PDC*line) to expand in vitro specific CD8+ responses against COVID-19 Ags. We tested the immunogenicity of eight HLA-A*02:01 restricted peptides derived from diverse SARS-Cov-2 proteins, selected by bioinformatics analyses in unexposed and convalescent donors. Higher ex vivo frequencies of specific T cells against these peptides were found in convalescent donors compared with unexposed donors, suggesting in situ T cell expansion upon viral infection. The peptide-loaded PDC*line induced robust CD8+ responses with total amplification rates that led up to a 198-fold increase in peptide-specific CD8+ T cell frequencies for a single donor. Of note, six of eight selected peptides provided significant amplifications, all of which were conserved between SARS-CoV variants and derived from the membrane, the spike protein, the nucleoprotein, and the ORF1ab. Amplified and cloned antiviral CD8+ T cells secreted IFN-γ upon peptide-specific activation. Furthermore, specific TCR sequences were identified for two highly immunogenic Ags. Hence, PDC*line represents an efficient platform to identify immunogenic viral targets for future immunotherapies.
Collapse
Affiliation(s)
- Anthony Maino
- Etablissement Français du Sang, Recherche et Développement, Grenoble, France
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Axelle Amen
- Laboratoire d'Immunologie, Centre Hospitalier Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, CNRS, CEA, UMR 5075, Institut de Biologie Structurale, Grenoble, France
| | - Joël Plumas
- Etablissement Français du Sang, Recherche et Développement, Grenoble, France
- PDC*line Pharma SAS, Grenoble, France
| | - Lucie Bouquet
- Université de Franche-Comté, Etablissement Français du Sang, INSERM, UMR RIGHT, Besançon, France
| | - Marina Deschamps
- Université de Franche-Comté, Etablissement Français du Sang, INSERM, UMR RIGHT, Besançon, France
| | - Philippe Saas
- Etablissement Français du Sang, Recherche et Développement, Grenoble, France
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Laurence Chaperot
- Etablissement Français du Sang, Recherche et Développement, Grenoble, France
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Olivier Manches
- Etablissement Français du Sang, Recherche et Développement, Grenoble, France
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
9
|
Borczuk AC. Pathogenesis of Pulmonary Long COVID-19. Mod Pathol 2024; 37:100378. [PMID: 37931841 DOI: 10.1016/j.modpat.2023.100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
COVID-19 is characterized by an acute respiratory illness that, in some patients, progresses to respiratory failure, largely demonstrating a pattern of acute respiratory distress syndrome. Excluding fatal cases, the outcome of this severe illness ranges from complete resolution to persistent respiratory dysfunction. This subacute-to-chronic respiratory illness has different manifestations and is collectively termed as "long COVID." The pathogenesis of organ dysfunction in acute injury stems from exaggerated innate immune response, complement activation, and monocyte influx, with a shift toward an organ injury state with abnormalities in cellular maturation. Although the increased rate of thrombosis observed in acute COVID-19 does not appear to persist, interestingly, ongoing symptomatic COVID-19 and post-COVID pathogeneses appear to reflect the persistence of immune and cellular disturbances triggered by the acute and subacute periods.
Collapse
|
10
|
Noh HE, Rha MS. Mucosal Immunity against SARS-CoV-2 in the Respiratory Tract. Pathogens 2024; 13:113. [PMID: 38392851 PMCID: PMC10892713 DOI: 10.3390/pathogens13020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The respiratory tract, the first-line defense, is constantly exposed to inhaled allergens, pollutants, and pathogens such as respiratory viruses. Emerging evidence has demonstrated that the coordination of innate and adaptive immune responses in the respiratory tract plays a crucial role in the protection against invading respiratory pathogens. Therefore, a better understanding of mucosal immunity in the airways is critical for the development of novel therapeutics and next-generation vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses. Since the coronavirus disease 2019 pandemic, our knowledge of mucosal immune responses in the airways has expanded. In this review, we describe the latest knowledge regarding the key components of the mucosal immune system in the respiratory tract. In addition, we summarize the host immune responses in the upper and lower airways following SARS-CoV-2 infection and vaccination, and discuss the impact of allergic airway inflammation on mucosal immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Hae-Eun Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Kar M, Johnson KEE, Vanderheiden A, Elrod EJ, Floyd K, Geerling E, Stone ET, Salinas E, Banakis S, Wang W, Sathish S, Shrihari S, Davis-Gardner ME, Kohlmeier J, Pinto A, Klein R, Grakoui A, Ghedin E, Suthar MS. CD4+ and CD8+ T cells are required to prevent SARS-CoV-2 persistence in the nasal compartment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576505. [PMID: 38410446 PMCID: PMC10896337 DOI: 10.1101/2024.01.23.576505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and continues to pose a significant public health threat throughout the world. Following SARS-CoV-2 infection, virus-specific CD4+ and CD8+ T cells are rapidly generated to form effector and memory cells and persist in the blood for several months. However, the contribution of T cells in controlling SARS-CoV-2 infection within the respiratory tract are not well understood. Using C57BL/6 mice infected with a naturally occurring SARS-CoV-2 variant (B.1.351), we evaluated the role of T cells in the upper and lower respiratory tract. Following infection, SARS-CoV-2-specific CD4+ and CD8+ T cells are recruited to the respiratory tract and a vast proportion secrete the cytotoxic molecule Granzyme B. Using antibodies to deplete T cells prior to infection, we found that CD4+ and CD8+ T cells play distinct roles in the upper and lower respiratory tract. In the lungs, T cells play a minimal role in viral control with viral clearance occurring in the absence of both CD4+ and CD8+ T cells through 28 days post-infection. In the nasal compartment, depletion of both CD4+ and CD8+ T cells, but not individually, results in persistent and culturable virus replicating in the nasal compartment through 28 days post-infection. Using in situ hybridization, we found that SARS-CoV-2 infection persisted in the nasal epithelial layer of tandem CD4+ and CD8+ T cell-depleted mice. Sequence analysis of virus isolates from persistently infected mice revealed mutations spanning across the genome, including a deletion in ORF6. Overall, our findings highlight the importance of T cells in controlling virus replication within the respiratory tract during SARS-CoV-2 infection.
Collapse
|
12
|
Liu B, Wang Y, Han G, Zhu M. Tolerogenic dendritic cells in radiation-induced lung injury. Front Immunol 2024; 14:1323676. [PMID: 38259434 PMCID: PMC10800505 DOI: 10.3389/fimmu.2023.1323676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Radiation-induced lung injury is a common complication associated with radiotherapy. It is characterized by early-stage radiation pneumonia and subsequent radiation pulmonary fibrosis. However, there is currently a lack of effective therapeutic strategies for radiation-induced lung injury. Recent studies have shown that tolerogenic dendritic cells interact with regulatory T cells and/or regulatory B cells to stimulate the production of immunosuppressive molecules, control inflammation, and prevent overimmunity. This highlights a potential new therapeutic activity of tolerogenic dendritic cells in managing radiation-induced lung injury. In this review, we aim to provide a comprehensive overview of tolerogenic dendritic cells in the context of radiation-induced lung injury, which will be valuable for researchers in this field.
Collapse
Affiliation(s)
| | - Yilong Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
13
|
Mehta P, Chattopadhyay P, Mohite R, D'Rozario R, Bandopadhyay P, Sarif J, Ray Y, Ganguly D, Pandey R. Suppressed transcript diversity and immune response in COVID-19 ICU patients: a longitudinal study. Life Sci Alliance 2024; 7:e202302305. [PMID: 37918965 PMCID: PMC10622646 DOI: 10.26508/lsa.202302305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Understanding the dynamic changes in gene expression during Acute Respiratory Distress Syndrome (ARDS) progression in post-acute infection patients is crucial for unraveling the underlying mechanisms. Study investigates the longitudinal changes in gene/transcript expression patterns in hospital-admitted severe COVID-19 patients with ARDS post-acute SARS-CoV-2 infection. Blood samples were collected at three time points and patients were stratified into severe and mild ARDS, based on their oxygenation saturation (SpO2/FiO2) kinetics over 7 d. Decline in transcript diversity was observed over time, particularly in patients with higher severity, indicating dysregulated transcriptional landscape. Comparing gene/transcript-level analyses highlighted a rather limited overlap. With disease progression, a transition towards an inflammatory state was evident. Strong association was found between antibody response and disease severity, characterized by decreased antibody response and activated B cell population in severe cases. Bayesian network analysis identified various factors associated with disease progression and severity, viz. humoral response, TLR signaling, inflammatory response, interferon response, and effector T cell abundance. The findings highlight dynamic gene/transcript expression changes during ARDS progression, impact on tissue oxygenation and elucidate disease pathogenesis.
Collapse
Affiliation(s)
- Priyanka Mehta
- https://ror.org/05ef28661 Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- https://ror.org/05ef28661 Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ramakant Mohite
- https://ror.org/05ef28661 Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Ranit D'Rozario
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- https://ror.org/01kh0x418 IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Purbita Bandopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- https://ror.org/01kh0x418 IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jafar Sarif
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- https://ror.org/01kh0x418 IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Yogiraj Ray
- Infectious Disease and Beleghata General Hospital, Kolkata, India
- Department of Infectious Diseases, Shambhunath Pandit Hospital, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Dipyaman Ganguly
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- https://ror.org/01kh0x418 IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rajesh Pandey
- https://ror.org/05ef28661 Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Tan X, Grice LF, Tran M, Mulay O, Monkman J, Blick T, Vo T, Almeida AC, da Silva Motta J, de Moura KF, Machado-Souza C, Souza-Fonseca-Guimaraes P, Baena CP, de Noronha L, Guimaraes FSF, Luu HN, Drennon T, Williams S, Stern J, Uytingco C, Pan L, Nam A, Cooper C, Short K, Belz GT, Souza-Fonseca-Guimaraes F, Kulasinghe A, Nguyen Q. A robust platform for integrative spatial multi-omics analysis to map immune responses to SARS-CoV-2 infection in lung tissues. Immunology 2023; 170:401-418. [PMID: 37605469 DOI: 10.1111/imm.13679] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/03/2023] [Indexed: 08/23/2023] Open
Abstract
The SARS-CoV-2 (COVID-19) virus has caused a devastating global pandemic of respiratory illness. To understand viral pathogenesis, methods are available for studying dissociated cells in blood, nasal samples, bronchoalveolar lavage fluid and similar, but a robust platform for deep tissue characterization of molecular and cellular responses to virus infection in the lungs is still lacking. We developed an innovative spatial multi-omics platform to investigate COVID-19-infected lung tissues. Five tissue-profiling technologies were combined by a novel computational mapping methodology to comprehensively characterize and compare the transcriptome and targeted proteome of virus infected and uninfected tissues. By integrating spatial transcriptomics data (Visium, GeoMx and RNAScope) and proteomics data (CODEX and PhenoImager HT) at different cellular resolutions across lung tissues, we found strong evidence for macrophage infiltration and defined the broader microenvironment surrounding these cells. By comparing infected and uninfected samples, we found an increase in cytokine signalling and interferon responses at different sites in the lung and showed spatial heterogeneity in the expression level of these pathways. These data demonstrate that integrative spatial multi-omics platforms can be broadly applied to gain a deeper understanding of viral effects on cellular environments at the site of infection and to increase our understanding of the impact of SARS-CoV-2 on the lungs.
Collapse
Affiliation(s)
- Xiao Tan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Laura F Grice
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Minh Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Onkar Mulay
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - James Monkman
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Tony Blick
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Tuan Vo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ana Clara Almeida
- Pontifícia Universidade Católica do Paraná, PUCPR, Curitiba, Paraná, Brazil
- Laboratório de Patologia Experimental, PPGCS da PUCPR, Curitiba, Brazil
| | | | - Karen Fernandes de Moura
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Cleber Machado-Souza
- Faculdades Pequeno Príncipe-Instituto de Pesquisa Pelé Pequeno príncipe, Curitiba, Paraná, Brazil
| | | | | | - Lucia de Noronha
- Pontifícia Universidade Católica do Paraná, PUCPR, Curitiba, Paraná, Brazil
- Laboratório de Patologia Experimental, PPGCS da PUCPR, Curitiba, Brazil
| | | | - Hung N Luu
- UMPC Hillman Cancer Center & School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | - Liuliu Pan
- NanoString Technologies Inc, Seattle, Washington, USA
| | - Andy Nam
- NanoString Technologies Inc, Seattle, Washington, USA
| | - Caroline Cooper
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Kirsty Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Gabrielle T Belz
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | | | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Reseach Institute, Queensland, Australia
| |
Collapse
|
15
|
Korobova ZR, Arsentieva NA, Totolian AA. Macrophage-Derived Chemokine MDC/CCL22: An Ambiguous Finding in COVID-19. Int J Mol Sci 2023; 24:13083. [PMID: 37685890 PMCID: PMC10487728 DOI: 10.3390/ijms241713083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Macrophage-derived chemokine (MDC/CCL22) is a chemokine of the C-C subfamily. It is involved in T-cellular maturation and migration. Our previous research shows that plasma CCL22/MDC tends to show a statistically significant depletion of concentrations in acute patients and convalescents when compared to healthy donors. In the current work, we investigate existing views on MDC/CCL22 dynamics in association with various pathologies, including respiratory diseases and, specifically, COVID-19. Additionally, we present our explanations for the observed decrease in MDC/CCL22 concentrations in COVID-19. The first hypothesis we provide implies that viral products bind to MDC/CCL22 and block its activity. Another explanation for this phenomenon is based on dendritic cells population and the inhibition of their function.
Collapse
Affiliation(s)
- Zoia R. Korobova
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, Mira St. 14, 197101 St. Petersburg, Russia; (Z.R.K.); (N.A.A.)
- Department of Immunology, Pavlov First State Medical University of St. Petersburg, L’va Tolstogo St. 6–8, 197022 St. Petersburg, Russia
| | - Natalia A. Arsentieva
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, Mira St. 14, 197101 St. Petersburg, Russia; (Z.R.K.); (N.A.A.)
- Department of Immunology, Pavlov First State Medical University of St. Petersburg, L’va Tolstogo St. 6–8, 197022 St. Petersburg, Russia
| | - Areg A. Totolian
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, Mira St. 14, 197101 St. Petersburg, Russia; (Z.R.K.); (N.A.A.)
- Department of Immunology, Pavlov First State Medical University of St. Petersburg, L’va Tolstogo St. 6–8, 197022 St. Petersburg, Russia
| |
Collapse
|
16
|
Aiello A, Najafi-Fard S, Goletti D. Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: similarities and differences. Front Immunol 2023; 14:1244556. [PMID: 37662901 PMCID: PMC10470049 DOI: 10.3389/fimmu.2023.1244556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) and Coronavirus disease-2019 (COVID-19), whose etiologic agent is severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are currently the two deadliest infectious diseases in humans, which together have caused about more than 11 million deaths worldwide in the past 3 years. TB and COVID-19 share several aspects including the droplet- and aerosol-borne transmissibility, the lungs as primary target, some symptoms, and diagnostic tools. However, these two infectious diseases differ in other aspects as their incubation period, immune cells involved, persistence and the immunopathological response. In this review, we highlight the similarities and differences between TB and COVID-19 focusing on the innate and adaptive immune response induced after the exposure to Mtb and SARS-CoV-2 and the pathological pathways linking the two infections. Moreover, we provide a brief overview of the immune response in case of TB-COVID-19 co-infection highlighting the similarities and differences of each individual infection. A comprehensive understanding of the immune response involved in TB and COVID-19 is of utmost importance for the design of effective therapeutic strategies and vaccines for both diseases.
Collapse
Affiliation(s)
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
17
|
Samuel CE. Interferon at the crossroads of SARS-CoV-2 infection and COVID-19 disease. J Biol Chem 2023; 299:104960. [PMID: 37364688 PMCID: PMC10290182 DOI: 10.1016/j.jbc.2023.104960] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
A novel coronavirus now known as SARS-CoV-2 emerged in late 2019, possibly following a zoonotic crossover from a coronavirus present in bats. This virus was identified as the pathogen responsible for the severe respiratory disease, coronavirus disease-19 (COVID-19), which as of May 2023, has killed an estimated 6.9 million people globally according to the World Health Organization. The interferon (IFN) response, a cornerstone of antiviral innate immunity, plays a key role in determining the outcome of infection by SARS-CoV-2. This review considers evidence that SARS-CoV-2 infection leads to IFN production; that virus replication is sensitive to IFN antiviral action; molecular mechanisms by which the SARS-CoV-2 virus antagonizes IFN action; and how genetic variability of SARS-CoV-2 and the human host affects the IFN response at the level of IFN production or action or both. Taken together, the current understanding suggests that deficiency of an effective IFN response is an important determinant underlying some cases of critical COVID-19 disease and that IFNλ and IFNα/β have potential as therapeutics for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA.
| |
Collapse
|
18
|
Bellucci G, Albanese A, Rizzi C, Rinaldi V, Salvetti M, Ristori G. The value of Interferon β in multiple sclerosis and novel opportunities for its anti-viral activity: a narrative literature review. Front Immunol 2023; 14:1161849. [PMID: 37334371 PMCID: PMC10275407 DOI: 10.3389/fimmu.2023.1161849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
Interferon-beta (IFN-β) for Multiple Sclerosis (MS) is turning 30. The COVID-19 pandemic rejuvenated the interest in interferon biology in health and disease, opening translational opportunities beyond neuroinflammation. The antiviral properties of this molecule are in accord with the hypothesis of a viral etiology of MS, for which a credible culprit has been identified in the Epstein-Barr Virus. Likely, IFNs are crucial in the acute phase of SARS-CoV-2 infection, as demonstrated by inherited and acquired impairments of the interferon response that predispose to a severe COVID-19 course. Accordingly, IFN-β exerted protection against SARS-CoV-2 in people with MS (pwMS). In this viewpoint, we summarize the evidence on IFN-β mechanisms of action in MS with a focus on its antiviral properties, especially against EBV. We synopsize the role of IFNs in COVID-19 and the opportunities and challenges of IFN-β usage for this condition. Finally, we leverage the lessons learned in the pandemic to suggest a role of IFN-β in long-COVID-19 and in special MS subpopulations.
Collapse
Affiliation(s)
- Gianmarco Bellucci
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
| | - Angela Albanese
- Merck Serono S.p.A., An Affiliate of Merck KGaA, Rome, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Caterina Rizzi
- Merck Serono S.p.A., An Affiliate of Merck KGaA, Rome, Italy
| | - Virginia Rinaldi
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Giovanni Ristori
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
19
|
Sacchi A, Giannessi F, Sabatini A, Percario ZA, Affabris E. SARS-CoV-2 Evasion of the Interferon System: Can We Restore Its Effectiveness? Int J Mol Sci 2023; 24:ijms24119353. [PMID: 37298304 DOI: 10.3390/ijms24119353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Type I and III Interferons (IFNs) are the first lines of defense in microbial infections. They critically block early animal virus infection, replication, spread, and tropism to promote the adaptive immune response. Type I IFNs induce a systemic response that impacts nearly every cell in the host, while type III IFNs' susceptibility is restricted to anatomic barriers and selected immune cells. Both IFN types are critical cytokines for the antiviral response against epithelium-tropic viruses being effectors of innate immunity and regulators of the development of the adaptive immune response. Indeed, the innate antiviral immune response is essential to limit virus replication at the early stages of infection, thus reducing viral spread and pathogenesis. However, many animal viruses have evolved strategies to evade the antiviral immune response. The Coronaviridae are viruses with the largest genome among the RNA viruses. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic. The virus has evolved numerous strategies to contrast the IFN system immunity. We intend to describe the virus-mediated evasion of the IFN responses by going through the main phases: First, the molecular mechanisms involved; second, the role of the genetic background of IFN production during SARS-CoV-2 infection; and third, the potential novel approaches to contrast viral pathogenesis by restoring endogenous type I and III IFNs production and sensitivity at the sites of infection.
Collapse
Affiliation(s)
- Alessandra Sacchi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Flavia Giannessi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Andrea Sabatini
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Zulema Antonia Percario
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Elisabetta Affabris
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| |
Collapse
|
20
|
Méndez-García LA, Solleiro-Villavicencio H, Guartazaca-Guerrero S, Rodríguez-Morales J, Carrillo-Ruiz JD. Neurological Diseases Define the Cytokine Profile in CFS during SARS-CoV-2 Infection in Highly Ill Patients. Trop Med Infect Dis 2023; 8:290. [PMID: 37368708 DOI: 10.3390/tropicalmed8060290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Neuroinflammation is critical in developing and progressing neurological diseases. The underlying pro-inflammatory cytokine expression combined with additional mechanisms in the neuropathology, such as oxidative stress, brain-blood barrier damage, and endothelial dysfunction, could contribute to the susceptibility to developing severe COVID-19. The physiopathology of SARS-CoV-2 and other human coronaviruses (H-CoVs) has not been completely understood; however, they have all been linked to a disproportionated response of the immune system, particularly an exacerbated cytokine production and the dysregulation of total cell counts. In this article, based on the compilation of studies reported by our working group regarding COVID-19 and neurological diseases, we propose that the inflammation observed in the central nervous system, through a CSF analysis, could be conditioned by neurological disease(s) and enhanced by COVID-19. Therefore, it is necessary to determine the cytokine profile in different neurological disorders to propose adequate treatments and avoid severe forms of the disease in these patients.
Collapse
Affiliation(s)
- Lucía Angélica Méndez-García
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City 06720, Mexico
| | | | | | - Jahir Rodríguez-Morales
- Neurology and Neurosurgery Unit, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City 06720, Mexico
| | - José Damián Carrillo-Ruiz
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City 06720, Mexico
- Neurology and Neurosurgery Unit, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City 06720, Mexico
- Coordination of Neuroscience, Faculty of Psychology, Mexico Anahuac University, Mexico City 52786, Mexico
| |
Collapse
|