1
|
Cai Z, Bu QQ, Wang XY, Yang S, Zhou J, Yu JS. Recent advances and perspectives in synthetic applications of silylboronates as silyl radical precursors. Chem Sci 2025; 16:2154-2169. [PMID: 39811000 PMCID: PMC11726062 DOI: 10.1039/d4sc06777k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Silylboronates, as powerful and versatile reagents, have been widely used in synthetic chemistry over the past few decades, due to their ability to incorporate silicon and boron atoms into organic molecules. With the rapid development of radical chemistry, the use of silylboronates as silyl radical precursors has recently become a research focus in organic synthesis. Significant achievements have been made in the synthetic applications of silylboronates as silyl radical sources for various C-Si and C-X bond forming transformations. This review summarizes these recent advances, discusses their advantages and limitations, and illustrates the synthetic chances still open for further research and applications in this emerging area.
Collapse
Affiliation(s)
- Zhihua Cai
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University Shihezi Xinjiang 832003 P. R. China
- Xinjiang Key Laboratory of Organosilicon Functional Molecules and Materials Turpan Xinjiang 838200 P. R. China
| | - Qing-Qing Bu
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University Shihezi Xinjiang 832003 P. R. China
- Xinjiang Key Laboratory of Organosilicon Functional Molecules and Materials Turpan Xinjiang 838200 P. R. China
| | - Xi-Yu Wang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 P. R. China
| | - Shengchao Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University Shihezi Xinjiang 832003 P. R. China
- Xinjiang Key Laboratory of Organosilicon Functional Molecules and Materials Turpan Xinjiang 838200 P. R. China
| | - Jian Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 P. R. China
| | - Jin-Sheng Yu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 P. R. China
| |
Collapse
|
2
|
Wang X, Zhang X, He X, Guo G, Huang Q, You F, Wang Q, Qu R, Zhou F, Lian Z. Triphasic Hydroxysilylation of Alkenes by Mechanically Piezoelectric Catalysis. Angew Chem Int Ed Engl 2024; 63:e202410334. [PMID: 39134908 DOI: 10.1002/anie.202410334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Indexed: 11/01/2024]
Abstract
The 1,2-hydroxysilylation of alkenes is crucial for synthesizing organosilicon compounds which are key intermediates in material science, pharmaceuticals, and organic synthesis. The development of strategies employing hydrogen atom transfer pathways is currently hindered by the existence of various competing reactions. Herein, we reported a novel mechanochemical strategy for the triphasic 1,2-hydroxysilylation of alkenes through a single-electron-transfer pathway. Our approach not only circumvents competitive reactions to enable the first-ever 1,2-hydroxysilylation of unactivated alkenes but also pioneers the research in mechanic force-induced triphasic reactions under ambient conditions. This gentle method offers excellent compatibility with various functional groups, operates under simple and solvent-free conditions, ensures rapid reaction time. Preliminary mechanistic investigations suggest that silylboronate can be transformed to a silicon radical by highly polarized Li2TiO3 particles and oxygen under ball-milling condition.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Xiaochun He
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Guangqing Guo
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Huang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Fengzhi You
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qingqing Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Ruiling Qu
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Fei Zhou
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| |
Collapse
|
3
|
Iimuro H, Ishigaki S, Araujo Dias AJ, Inoue T, Tanaka K, Nagashima Y. Photocatalytic Generation of Germyl Radicals from Digermanes Enabling the Hydro/Deuteriogermylation of Alkenes. J Org Chem 2024; 89:15623-15629. [PMID: 39382946 DOI: 10.1021/acs.joc.4c01693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
We have developed a visible-light-induced method to photolyze digermanes through single-electron oxidation using a photocatalyst, in contrast to direct excitation, to generate germyl radicals and achieve the hydro/deuteriogermylation of alkenes. This protocol allows the previously elusive incorporation of the small trimethylgermyl group and deuterium, metabolically stable bioisosteres of tert-butyl and hydrogen, respectively, making this approach attractive in not only organic synthesis but also medicinal chemistry.
Collapse
Affiliation(s)
- Haruka Iimuro
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shiho Ishigaki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Antônio Junio Araujo Dias
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tomonori Inoue
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Shimose A, Ishigaki S, Sato Y, Nogami J, Toriumi N, Uchiyama M, Tanaka K, Nagashima Y. Dearomative Construction of 2D/3D Frameworks from Quinolines via Nucleophilic Addition/Borate-Mediated Photocycloaddition. Angew Chem Int Ed Engl 2024; 63:e202403461. [PMID: 38803130 DOI: 10.1002/anie.202403461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Dearomative construction of multiply-fused 2D/3D frameworks, composed of aromatic two-dimensional (2D) rings and saturated three-dimensional (3D) rings, from readily available quinolines has greatly contributed to drug discovery. However, dearomative cycloadditions of quinolines in the presence of photocatalysts usually afford 5,6,7,8-tetrahydroquinoline (THQ)-based polycycles, and dearomative access to 1,2,3,4-THQ-based structures remains limited. Herein, we present a chemo-, regio-, diastereo-, and enantioselective dearomative transformation of quinolines into 1,2,3,4-THQ-based 6-6-4-membered rings without any catalyst, through a combination of nucleophilic addition and borate-mediated [2+2] photocycloaddition. Detailed mechanistic studies revealed that the photoexcited borate complex, generated from quinoline, organolithium, and HB(pin), accelerates the cycloaddition and suppresses the rearomatization that usually occurs in conventional photocycloaddition. Based on our mechanistic analysis, we also developed further photoinduced cycloadditions affording other types of 2D/3D frameworks from isoquinoline and phenanthrene.
Collapse
Affiliation(s)
- Asuha Shimose
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Shiho Ishigaki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yu Sato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Naoyuki Toriumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
5
|
Ji P, Duan K, Li M, Wang Z, Meng X, Zhang Y, Wang W. Photochemical dearomative skeletal modifications of heteroaromatics. Chem Soc Rev 2024; 53:6600-6624. [PMID: 38817197 PMCID: PMC11181993 DOI: 10.1039/d4cs00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Indexed: 06/01/2024]
Abstract
Dearomatization has emerged as a powerful tool for rapid construction of 3D molecular architectures from simple, abundant, and planar (hetero)arenes. The field has evolved beyond simple dearomatization driven by new synthetic technology development. With the renaissance of photocatalysis and expansion of the activation mode, the last few years have witnessed impressive developments in innovative photochemical dearomatization methodologies, enabling skeletal modifications of dearomatized structures. They offer truly efficient and useful tools for facile construction of highly complex structures, which are viable for natural product synthesis and drug discovery. In this review, we aim to provide a mechanistically insightful overview on these innovations based on the degree of skeletal alteration, categorized into dearomative functionalization and skeletal editing, and to highlight their synthetic utilities.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Kuaikuai Duan
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Menglong Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Meng
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Yueteng Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| |
Collapse
|
6
|
Araujo Dias AJ, Muranaka A, Uchiyama M, Tanaka K, Nagashima Y. Vibration-mediated long-wavelength photolysis of electronegative bonds beyond S 0-S 1 and S 0-T 1 transitions. Commun Chem 2024; 7:126. [PMID: 38834838 DOI: 10.1038/s42004-024-01208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
Photolysis is an attractive method in organic synthesis to produce free radicals through direct bond cleavage. However, in this method, specific irradiation wavelengths of light have been considered indispensable for excitation through S0-Sn or S0-Tn transitions. Here we report the photoinduced homolysis of electronegative interelement bonds using light at wavelengths much longer than theoretically and spectroscopically predicted for the S0-Sn or S0-Tn transitions. This long-wavelength photolysis proceeds in N-Cl, N-F, and O-Cl bonds at room temperature under blue, green, and red LED irradiation, initiating diverse radical reactions. Through experimental, spectroscopic, and computational studies, we propose that this "hidden" absorption is accessible via electronic excitations from naturally occurring vibrationally excited ground states to unbonded excited states and is due to the electron-pair repulsion between electronegative atoms.
Collapse
Affiliation(s)
- Antônio Junio Araujo Dias
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Atsuya Muranaka
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan.
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|
7
|
Komaki T, Sato Y, Uchiyama M, Tanaka K, Nagashima Y. Visible-Light-Induced trans-Hydroboration of Diaryl Alkynes Utilizing Excited State of Borate Complexes. Org Lett 2024; 26:2180-2185. [PMID: 38466232 DOI: 10.1021/acs.orglett.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
We have developed visible-light-induced trans-hydroboration of diaryl alkynes via direct photoexcitation of in-situ-generated diboron complexes, affording previously elusive (E)-1,2-diaryl-vinylboronates with high stereoselectivity. Experimental, spectroscopic, and theoretical mechanistic studies revealed that the triplet-state borate complex facilitates B-B bond cleavage and the desired C-B bond formation. This methodology does not require any catalyst and is operationally simple. The highly borylated 1,2-diaryl alkenes [1-(2-borylphenyl)vinyl)boronates] are shown to be useful as building blocks.
Collapse
Affiliation(s)
- Takahiro Komaki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yu Sato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
8
|
Harada M, Fujioka S, Ansai S, Wang C, Kamino S, Hirano K, Uchiyama M. BN-Embedded Aromatic Hydrocarbon Synthesis via Nucleophilic Diboration Reactions. Org Lett 2024; 26:247-251. [PMID: 38112185 DOI: 10.1021/acs.orglett.3c03898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Activation of bis(pinacolato)diboron with aromatic lithium amide promotes diboration of the proximal C-C triple bond, leading to BN-embedded aromatic compounds. In situ treatment of the initially generated spirocyclic borate intermediate with aqueous acid or organometallic reagents enables ligand installation on the endocyclic boron atom.
Collapse
Affiliation(s)
- Mei Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Shota Fujioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shoma Ansai
- Faculty of Pharmaceutical Sciences, Institute of Medicinal, Pharmaceutical, and Health Sciences, Kanazawa University, Ka-kuma-machi, Kanazawa 920-1192, Japan
| | - Chao Wang
- Faculty of Pharmaceutical Sciences, Institute of Medicinal, Pharmaceutical, and Health Sciences, Kanazawa University, Ka-kuma-machi, Kanazawa 920-1192, Japan
| | - Shinichiro Kamino
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Keiichi Hirano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 920-1192, Japan
| |
Collapse
|
9
|
Biremond T, Riomet M, Jubault P, Poisson T. Photocatalytic and Electrochemical Borylation and Silylation Reactions. CHEM REC 2023; 23:e202300172. [PMID: 37358334 DOI: 10.1002/tcr.202300172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Indexed: 06/27/2023]
Abstract
Due to their high versatility borylated and silylated compounds are inevitable synthons for organic chemists. To escape the classical hydroboration/hydrosilylation paradigm, chemists turned their attention to more modern and green methods such as photoredox chemistry and electrosynthesis. This account focuses on novel methods for the generation of boryl and silyl radicals to forge C-B and C-Si bonds from our group.
Collapse
Affiliation(s)
- Tony Biremond
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Margaux Riomet
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Philippe Jubault
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Thomas Poisson
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| |
Collapse
|