1
|
Li D, Liu Z, Zhao W, Guo Y, Wang Z, Xu D, Huang H, Pang LX, Zhou T, Liu WF, Zhou D. Global-optimized energy storage performance in multilayer ferroelectric ceramic capacitors. Nat Commun 2025; 16:188. [PMID: 39747088 PMCID: PMC11696514 DOI: 10.1038/s41467-024-55491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Multilayer ceramic capacitor as a vital core-component for various applications is always in the spotlight. Next-generation electrical and electronic systems elaborate further requirements of multilayer ceramic capacitors in terms of higher energy storage capabilities, better stabilities, environmental-friendly lead-free, etc., where these major obstacles may restrict each other. An effective strategy for energy storage performance global optimization is put up here by constructing local polymorphic polarization configuration integrated with prototype device manufacturing. A large energy density of 20.0 J·cm-3 along with a high efficiency of 86.5%, and remarkable high-temperature stability, are achieved in lead-free multilayer ceramic capacitors. The strategy provides a feasible routine from nano, micro to macro regions in manipulating local polarizations, domain-switching barriers and breakdown strength, illustrating its great potential to be generally applicable in the design of high-performance energy storage multilayer ceramic capacitors.
Collapse
Affiliation(s)
- Da Li
- Electronic Materials Research Laboratory & Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhaobo Liu
- School of Materials Science and Engineering & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Weichen Zhao
- Electronic Materials Research Laboratory & Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Guo
- Electronic Materials Research Laboratory & Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhentao Wang
- Electronic Materials Research Laboratory & Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Diming Xu
- Electronic Materials Research Laboratory & Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Houbing Huang
- School of Materials Science and Engineering & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China.
| | - Li-Xia Pang
- Laboratory of Thin Film Techniques and Optical Test, Xi'an Technological University, Xi'an, Shaanxi, China
| | - Tao Zhou
- School of Electronic and Information Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Wen-Feng Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Di Zhou
- Electronic Materials Research Laboratory & Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Zhang MH, Thong HC, Jiang B, Zhang N, Zhao C, Wu Z, Zhou T, Wu C, Yao F, Bi K, Gong W, Xu B, Wang K. Field-Induced Polarization Rotation in Order-Disorder (K,Na)NbO 3-Based Ferroelectrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413587. [PMID: 39707686 DOI: 10.1002/adma.202413587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/11/2024] [Indexed: 12/23/2024]
Abstract
Phase boundary is highly recognized for its capability in engineering various physical properties of ferroelectrics. Here, field-induced polarization rotation is reported in a high-performance (K, Na)NbO3-based ferroelectric system at the rhombohedral-tetragonal phase boundary. First, the lattice structure is examined from both macroscopic and local scales, implementing Rietveld refinement and pair distribution function analysis, respectively. The macroscopic phase coexistence at the phase boundary can be interchangeably rationalized with an average projection of collective local disordered units, exhibiting the order-disorder nature. The structural evidence of field-induced polarization rotation is provided by the in situ synchrotron study. Theoretical studies including density functional theory calculation and molecular dynamics simulation also predict the polarization rotation mechanism. The simulation result reveals the variation of the degree of ordering during the polarization rotation as a key feature of the boosted electrical properties in the order-disorder ferroelectric system. The discovery provides meaningful insight into the design of ferroelectrics with enhanced physical properties.
Collapse
Affiliation(s)
| | - Hao-Cheng Thong
- Tsinghua State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Bo Jiang
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, 37830, USA
- Department of Chemistry, Centre for Materials Science and Nanotechnology, University of Oslo, POB 1033 Blindern, Oslo, NO-0315, Norway
| | - Nan Zhang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Changhao Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xianning West Road 28, Xi'an, 710049, P. R. China
| | - Zhenghao Wu
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, P. R. China
| | - Tianhang Zhou
- College of Carbon Neutrality Future Technology, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Chaofeng Wu
- Center of Advanced Ceramic Materials and Devices, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 314006, China
| | | | - Ke Bi
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, P. R. China
| | - Wen Gong
- Wuzhen Laboratory, Jiaxing, 314500, P. R. China
- Tongxiang Tsingfeng Technology Co. Ltd, Jiaxing, Zhejiang, 314501, China
| | - Ben Xu
- Graduate School, China Academy of Engineering Physics, Beijing, 100193, P. R. China
| | - Ke Wang
- Wuzhen Laboratory, Jiaxing, 314500, P. R. China
- Tsinghua State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Zhang L, Jing R, Huang Y, Yang Y, Li Y, Tang M, Cao S, Chen Z, Gao F, Du Y, Zhou S, Zhao J, Liu S, Wang D, Zhang S, Jin L. Ultra-Weak Polarization-Strain Coupling Effect Boosts Capacitive Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406219. [PMID: 39135405 DOI: 10.1002/adma.202406219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Indexed: 10/11/2024]
Abstract
In pulse power systems, multilayer ceramic capacitors (MLCCs) encounter significant challenges due to the heightened loading electric field (E), which can lead to fatigue damage and ultrasonic concussion caused by electrostrictive strain. To address these issues, an innovative strategy focused on achieving an ultra-weak polarization-strain coupling effect is proposed, which effectively reduces strain in MLCCs. Remarkably, an ultra-low electrostrictive coefficient (Q33) of 0.012 m4 C-2 is achieved in the composition 0.55(Bi0.5Na0.5)TiO3-0.45Pb(Mg1/3Nb2/3)O3, resulting in a significantly reduced strain of 0.118% at 330 kV cm-1. At the atomic scale, the local structural heterogeneity leads to an expanded and loose lattice structure, providing ample space for large ionic displacement polarization instead of lattice stretching when subjected to the applied E. This unique behavior not only promotes energy storage performance (ESP) but also accounts for the observed ultra-low Q33 and strain. Consequently, the MLCC device exhibits an impressive energy storage density of 14.6 J cm-3 and an ultrahigh efficiency of 93% at 720 kV cm-1. Furthermore, the superior ESP of the MLCC demonstrates excellent fatigue resistance and temperature stability, making it a promising solution for practical applications. Overall, this pivotal strategy offers a cost-effective solution for state-of-the-art MLCCs with ultra-low strain-vibration in pulse power systems.
Collapse
Affiliation(s)
- Leiyang Zhang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ruiyi Jing
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yunyao Huang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yule Yang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yang Li
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mingyang Tang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuyao Cao
- College of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China
| | - Zibin Chen
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Feng Gao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuxiao Du
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shiyu Zhou
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianwei Zhao
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shiyu Liu
- College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387, China
| | - Dawei Wang
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Shujun Zhang
- Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Li Jin
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
4
|
Li T, Deng S, Liu H, Chen J. Insights into Strain Engineering: From Ferroelectrics to Related Functional Materials and Beyond. Chem Rev 2024; 124:7045-7105. [PMID: 38754042 DOI: 10.1021/acs.chemrev.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Ferroelectrics have become indispensable components in various application fields, including information processing, energy harvesting, and electromechanical conversion, owing to their unique ability to exhibit electrically or mechanically switchable polarization. The distinct polar noncentrosymmetric lattices of ferroelectrics make them highly responsive to specific crystal structures. Even slight changes in the lattice can alter the polarization configuration and response to external fields. In this regard, strain engineering has emerged as a prevalent regulation approach that not only offers a versatile platform for structural and performance optimization within ferroelectrics but also unlocks boundless potential in various functional materials. In this review, we systematically summarize the breakthroughs in ferroelectric-based functional materials achieved through strain engineering and progress in method development. We cover research activities ranging from fundamental attributes to wide-ranging applications and novel functionalities ranging from electromechanical transformation in sensors and actuators to tunable dielectric materials and information technologies, such as transistors and nonvolatile memories. Building upon these achievements, we also explore the endeavors to uncover the unprecedented properties through strain engineering in related chemical functionalities, such as ferromagnetism, multiferroicity, and photoelectricity. Finally, through discussions on the prospects and challenges associated with strain engineering in the materials, this review aims to stimulate the development of new methods for strain regulation and performance boosting in functional materials, transcending the boundaries of ferroelectrics.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shiqing Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Chen
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Zidani J, Alaoui IH, Zannen M, Birks E, Chchiyai Z, Majdoub M, Manoun B, El Marssi M, Lahmar A. On the Lanthanide Effect on Functional Properties of 0.94Na 0.5Bi 0.5TiO 3-0.06BaTiO 3 Ceramic. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1783. [PMID: 38673140 PMCID: PMC11050839 DOI: 10.3390/ma17081783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
The beneficial effects of lanthanide incorporation into 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 (BNT-BT) matrix on its functional properties were investigated. The conventional solid-state method was used for synthesizing samples. The structural refinement revealed that all samples crystallized in R3c rhombohedral symmetry. Raman spectroscopy study was carried out using green laser excitation and revealed that no clear perceptible variation in frequency is observed. Dielectric measurements unveiled that the introduction of rare earth obstructed the depolarization temperature promoted in BNT-BT, the diffusive phase transition decreasing with increasing lanthanide size. Only dysprosium addition showed comparable diffusion constant and dielectric behavior as the unmodified composition. Further, the comparison of the obtained ferroelectric hysteresis and strain-electric field loops revealed that only Dy-phase exhibited interesting properties comparing parent composition. In addition, the incorporation of lanthanides Ln3+ into the BNT-BT matrix led to the development of luminescence characteristics in the visible and near infrared regions, depending on the excitation wavelengths. The simultaneous occurrence of photoluminescence and ferroelectric/piezoelectric properties opens up possibilities for BNT-BT-Ln to exhibit multifunctionality in a wide range of applications.
Collapse
Affiliation(s)
- Jacem Zidani
- Laboratory of Physics of Condensed Matter (LPMC), University of Picardie Jules Verne, Scientific, Pole, 33 rue Saint-Leu, 80039 Amiens, France; (J.Z.); (I.H.A.); (M.E.M.)
- Laboratory of Interfaces and Advanced Materials (LIMA), Faculty of Sciences of Monastir, University of Monastir, Bd. of the Environment, Monastir 5019, Tunisia; (M.Z.); (M.M.)
| | - Ilham Hamdi Alaoui
- Laboratory of Physics of Condensed Matter (LPMC), University of Picardie Jules Verne, Scientific, Pole, 33 rue Saint-Leu, 80039 Amiens, France; (J.Z.); (I.H.A.); (M.E.M.)
| | - Moneim Zannen
- Laboratory of Interfaces and Advanced Materials (LIMA), Faculty of Sciences of Monastir, University of Monastir, Bd. of the Environment, Monastir 5019, Tunisia; (M.Z.); (M.M.)
| | - Eriks Birks
- Institute of Solid-State Physics, University of Latvia, LV-1586 Riga, Latvia;
| | - Zakaria Chchiyai
- Laboratory of Inorganic Materials for Sustainable Energy Technologies (LIMSET), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco;
| | - Mustapha Majdoub
- Laboratory of Interfaces and Advanced Materials (LIMA), Faculty of Sciences of Monastir, University of Monastir, Bd. of the Environment, Monastir 5019, Tunisia; (M.Z.); (M.M.)
| | - Bouchaib Manoun
- FST, Rayonnement-Matière et Instrumentation, S3M, Hassan First University of Settat, Settat 26000, Morocco;
- Materials Science, Energy, and Nano-Engineering Department, University Mohammed VI Polytechnic, Ben Guerir 43150, Morocco
| | - Mimoun El Marssi
- Laboratory of Physics of Condensed Matter (LPMC), University of Picardie Jules Verne, Scientific, Pole, 33 rue Saint-Leu, 80039 Amiens, France; (J.Z.); (I.H.A.); (M.E.M.)
| | - Abdelilah Lahmar
- Laboratory of Physics of Condensed Matter (LPMC), University of Picardie Jules Verne, Scientific, Pole, 33 rue Saint-Leu, 80039 Amiens, France; (J.Z.); (I.H.A.); (M.E.M.)
| |
Collapse
|
6
|
Xu X, Zhang Y, Tang J, Chen P, Zeng L, Xia Z, Xing W, Zhou Q, Wang Y, Song H, Guo G, Deng G. Optomechanical Microwave-to-Optical Photon Transducer Chips: Empowering the Quantum Internet Revolution. MICROMACHINES 2024; 15:485. [PMID: 38675296 PMCID: PMC11052314 DOI: 10.3390/mi15040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The first quantum revolution has brought us the classical Internet and information technology. Today, as technology advances rapidly, the second quantum revolution quietly arrives, with a crucial moment for quantum technology to establish large-scale quantum networks. However, solid-state quantum bits (such as superconducting and semiconductor qubits) typically operate in the microwave frequency range, making it challenging to transmit signals over long distances. Therefore, there is an urgent need to develop quantum transducer chips capable of converting microwaves into optical photons in the communication band, since the thermal noise of optical photons at room temperature is negligible, rendering them an ideal information carrier for large-scale spatial communication. Such devices are important for connecting different physical platforms and efficiently transmitting quantum information. This paper focuses on the fast-developing field of optomechanical quantum transducers, which has flourished over the past decade, yielding numerous advanced achievements. We categorize transducers based on various mechanical resonators and discuss their principles of operation and their achievements. Based on existing research on optomechanical transducers, we compare the parameters of several mechanical resonators and analyze their advantages and limitations, as well as provide prospects for the future development of quantum transducers.
Collapse
Affiliation(s)
- Xinyao Xu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
| | - Yifei Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
| | - Jindao Tang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
| | - Peiqin Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
| | - Liping Zeng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
| | - Ziwei Xia
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
| | - Wenbo Xing
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
| | - Qiang Zhou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
- Key Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - You Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
- Southwest Institute of Technical Physics, Chengdu 610054, China
| | - Haizhi Song
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
- Southwest Institute of Technical Physics, Chengdu 610054, China
| | - Guangcan Guo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
| | - Guangwei Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; (X.X.); (Y.Z.)
- Key Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
- Institute of Electronics and Information Industry Technology of Kash, Kash 844000, China
| |
Collapse
|
7
|
Luo H, Sun Z, Zhang J, Xie H, Yao Y, Li T, Lou C, Zheng H, Wang N, Deng S, Zhu LF, Liu J, Neuefeind JC, Tucker MG, Tang M, Liu H, Chen J. Outstanding Energy-Storage Density Together with Efficiency of above 90% via Local Structure Design. J Am Chem Soc 2024; 146:460-467. [PMID: 38109256 DOI: 10.1021/jacs.3c09805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Dielectric ceramic capacitors with high recoverable energy density (Wrec) and efficiency (η) are of great significance in advanced electronic devices. However, it remains a challenge to achieve high Wrec and η parameters simultaneously. Herein, based on density functional theory calculations and local structure analysis, the feasibility of developing the aforementioned capacitors is demonstrated by considering Bi0.25Na0.25Ba0.5TiO3 (BNT-50BT) as a matrix material with large local polarization and structural distortion. Remarkable Wrec and η of 16.21 J/cm3 and 90.5% have been achieved in Bi0.25Na0.25Ba0.5Ti0.92Hf0.08O3 via simple chemical modification, which is the highest Wrec value among reported bulk ceramics with η greater than 90%. The examination results of local structures at lattice and atomic scales indicate that the disorderly polarization distribution and small nanoregion (∼3 nm) lead to low hysteresis and high efficiency. In turn, the drastic increase in local polarization activated via the ultrahigh electric field (80 kV/mm) leads to large polarization and superior energy storage density. Therefore, this study emphasizes that chemical design should be established on a clear understanding of the performance-related local structure to enable a targeted regulation of high-performance systems.
Collapse
Affiliation(s)
- Huajie Luo
- Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zheng Sun
- Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ji Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Hailong Xie
- Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yonghao Yao
- Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyu Li
- Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chenjie Lou
- Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China
| | - Huashan Zheng
- Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Na Wang
- Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shiqing Deng
- Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Li-Feng Zhu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jue Liu
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Joerg C Neuefeind
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Matthew G Tucker
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Mingxue Tang
- Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Liu
- Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Chen
- Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
8
|
Su Z, Wan L, Mo F, Li J, Liu B, Liang C, Xu J, Talwar DN, Li H, Yao H. Performance Optimization of Pb 0.97La 0.03Sc 0.45Ta 0.45Ti 0.1O 3 Ceramics by Annealing Process. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4479. [PMID: 37374662 DOI: 10.3390/ma16124479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
The annealing effects on Pb0.97La0.03Sc0.45Ta0.45Ti0.1O3 (PLSTT) ceramics prepared by the solid-state reaction method are systemically investigated using experimental and theoretical techniques. Comprehensive studies are performed on the PLSTT samples by varying annealing time (AT) from t (=0, 10, 20, 30, 40, 50 and 60) h. The properties involving ferroelectric polarization (FP), electrocaloric (EC) effect, energy harvesting performance (EHP) and energy storage performance (ESP) are reported, compared and contrasted. All these features are seen to gradually improve with the increase in AT, and they all reach the climaxed-shaped values and then decrease by further increasing the AT. For t = 40 h, the maximum FP (23.2 µC/cm2) is attained at an electric field of 50 kV/cm, while the high EHP effects (0.297 J/cm3) and positive EC are achieved (for ΔT~0.92 K and ΔS~0.92 J/(K·kg)) at 45 kV/cm. The EHP value of the PLSTT ceramics increased by 21.7% while the polarization value was enhanced by 33.3%. At t = 30 h, the ceramics have attained the best ESP value of 0.468 J/cm3 with an energy loss of 0.05 J/cm3. We strongly believe that the AT plays a crucial role in the optimization of different traits of the PLSTT ceramics.
Collapse
Affiliation(s)
- Zihan Su
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Lingyu Wan
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Fenglai Mo
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Jiayu Li
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Boxun Liu
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Chuangjian Liang
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Jinsong Xu
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Devki N Talwar
- Department of Physics, University of North Florida, Jacksonville, FL 32224, USA
| | - Hang Li
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Huilu Yao
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| |
Collapse
|
9
|
Liu H, Sun Z, Zhang J, Luo H, Zhang Q, Yao Y, Deng S, Qi H, Liu J, Gallington LC, Neuefeind JC, Chen J. Chemical Design of Pb-Free Relaxors for Giant Capacitive Energy Storage. J Am Chem Soc 2023; 145:11764-11772. [PMID: 37205832 DOI: 10.1021/jacs.3c02811] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dielectric capacitors have captured substantial attention for advanced electrical and electronic systems. Developing dielectrics with high energy density and high storage efficiency is challenging owing to the high compositional diversity and the lack of general guidelines. Herein, we propose a map that captures the structural distortion (δ) and tolerance factor (t) of perovskites to design Pb-free relaxors with extremely high capacitive energy storage. Our map shows how to select ferroelectric with large δ and paraelectric components to form relaxors with a t value close to 1 and thus obtaining eliminated hysteresis and large polarization under a high electric breakdown. Taking the Bi0.5Na0.5TiO3-based solid solution as an example, we demonstrate that composition-driven predominant order-disorder characteristic of local atomic polar displacements endows the relaxor with a slushlike structure and strong local polar fluctuations at several nanoscale. This leads to a giant recoverable energy density of 13.6 J cm-3, along with an ultrahigh efficiency of 94%, which is far beyond the current performance boundary reported in Pb-free bulk ceramics. Our work provides a solution through rational chemical design for obtaining Pb-free relaxors with outstanding energy-storage properties.
Collapse
Affiliation(s)
- Hui Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Zheng Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Ji Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Huajie Luo
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yonghao Yao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Shiqing Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - He Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jue Liu
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Leighanne C Gallington
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Joerg C Neuefeind
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
- Hainan University, Haikou 570228, Hainan Province, China
| |
Collapse
|