1
|
Cagna DR, Donovan TE, McKee JR, Metz JE, Marzola R, Murphy KG, Troeltzsch M. Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2024:S0022-3913(24)00704-2. [PMID: 39489673 DOI: 10.1016/j.prosdent.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The Scientific Investigation Committee of the American Academy of Restorative Dentistry offers this review of select 2023 dental literature to briefly touch on several topics of interest to modern restorative dentistry. Each committee member brings discipline-specific expertize in their subject areas that include (in order of appearance here): prosthodontics; periodontics, alveolar bone, and peri-implant tissues; dental materials and therapeutics; occlusion and temporomandibular disorders; sleep-related breathing disorders; oral medicine, oral and maxillofacial surgery, and oral radiology; and dental caries and cariology. The authors have focused their efforts on presenting information likely to influence the daily dental treatment decisions of the reader with an emphasis on current innovations, new materials and processes, emerging technology, and future trends in dentistry. With the overwhelming volume of literature published daily in dentistry and related disciplines, this review cannot be comprehensive. Instead, its purpose is to inform and update interested readers and provide valuable resource material for those willing to subsequently pursue greater detail on their own. Our intent remains to assist colleagues in navigating the tremendous volume of newly minted information produced annually. Finally, we hope readers find this work helpful in providing evidence-based care to patients seeking healthier and happier lives. (J Prosthet Dent 2024;132:■■■-■■■).
Collapse
Affiliation(s)
- David R Cagna
- Professor (adjunct) and Postdoctoral Program Consultant, Department of Prosthodontics, University of Tennessee Health Sciences Center College of Dentistry, Memphis, Tenn.
| | - Terence E Donovan
- Professor, Department of Comprehensive Oral Health, University of North Carolina School of Dentistry, Chapel Hill, NC
| | | | - James E Metz
- Private practice, Restorative Dentistry, Columbus, Ohio; Assistant Professor (adjunct), Department of Prosthodontics, University of Tennessee Health Science Center College of Dentistry, Memphis, Tenn.; Clinical Professor, Marshall University's Joan C. Edwards School of Medicine, Department of Dentistry & Oral Surgery, Huntington, WV
| | | | - Kevin G Murphy
- Associate Clinical Professor, Department of Periodontics, University of Maryland College of Dentistry, Baltimore, MD
| | - Matthias Troeltzsch
- Private practice, Oral, Maxillofacial, and Facial Plastic Surgery, Ansbach, Germany; and Department of Oral and Maxillofacial Surgery, Ludwig-Maximilian University of Munich, Munich, Germany
| |
Collapse
|
2
|
Zelasko S, Swaney MH, Suh WS, Sandstrom S, Carlson C, Cagnazzo J, Golfinos A, Fossen J, Andes D, Kalan LR, Safdar N, Currie CR. Altered oral microbiota of drug-resistant organism carriers exhibit impaired gram-negative pathogen inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614756. [PMID: 39386697 PMCID: PMC11463450 DOI: 10.1101/2024.09.24.614756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The oral microbiome has been understudied as a reservoir for clinical pathogens, including drug-resistant strains. Understanding how alterations in microbiome functioning render this site vulnerable to colonization is essential, as multidrug-resistant organisms (MDRO) carriage is a major risk factor for developing serious infections. To advance our knowledge of oral MDRO carriage and protection against pathogen colonization conferred by native microbiota, we examined microbiomes from individuals colonized by MDROs (n=33) and non-colonized age-matched controls (n=30). Shotgun metagenomic analyses of oral swabs from study participants revealed significant differences in microbial communities with depletion of Streptococcus spp. among those colonized by multidrug-resistant gram-negative bacilli (RGNB), compared to non-carriers. We utilized metagenomic sequencing to characterize the oral resistome and find antimicrobial resistance genes are present in higher abundance among RNGB carriers versus non-carriers. High-throughput co-culture screening revealed oral bacteria isolated from MDRO non-carriers demonstrate greater inhibition of gram-negative pathogens, compared to isolates from carriers. Moreover, biosynthetic gene clusters from streptococci are found in higher abundance from non-carrier microbiomes, compared to RGNB carrier microbiomes. Bioactivity-guided fractionation of extracts from Streptococcus isolate SID2657 demonstrated evidence of strong E. coli and A. baumannii inhibition in a murine model of infection. Together, this provides evidence that oral microbiota shape this dynamic microbial community and may serve as an untapped source for much-needed antimicrobial small-molecules.
Collapse
|
3
|
Iwan E, Grenda A, Bomba A, Bielińska K, Wasyl D, Kieszko R, Rolska-Kopińska A, Chmielewska I, Krawczyk P, Rybczyńska-Tkaczyk K, Olejnik M, Milanowski J. Gut resistome of NSCLC patients treated with immunotherapy. Front Genet 2024; 15:1378900. [PMID: 39170692 PMCID: PMC11335565 DOI: 10.3389/fgene.2024.1378900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Background The newest method of treatment for patients with NSCLC (non-small cell lung cancer) is immunotherapy directed at the immune checkpoints PD-1 (Programmed Cell Death 1) and PD-L1 (Programmed Cell Death Ligand 1). PD-L1 is the only validated predictor factor for immunotherapy efficacy, but it is imperfect. Some patients do not benefit from immunotherapy and may develop primary or secondary resistance. This study aimed to assess the intestinal resistome composition of non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors in the context of clinical features and potentially new prediction factors for assessing immunotherapy efficacy. Methods The study included 30 advanced NSCLC patients, 19 (57%) men and 11 (33%) women treated with first- or second-line immunotherapy (nivolumab, pembrolizumab or atezolizumab). We evaluated the patient's gut resistome composition using the high sensitivity of targeted metagenomics. Results Studies have shown that resistome richness is associated with clinical and demographic factors of NSCLC patients treated with immunotherapy. Smoking seems to be associated with an increased abundance of macrolides, lincosamides, streptogramins and vancomycin core resistome. The resistome of patients with progression disease appears to be more abundant and diverse, with significantly higher levels of genomic markers of resistance to lincosamides (lnuC). The resistance genes lnuC, msrD, ermG, aph(6), fosA were correlated with progression-free survival or/and overall survival, thus may be considered as factors potentially impacting the disease. Conclusion The results indicate that the intestinal resistome of NSCLC patients with immune checkpoint inhibitors treatment differs depending on the response to immunotherapy, with several distinguished markers. Since it might impact treatment efficacy, it must be examined more deeply.
Collapse
Affiliation(s)
- Ewelina Iwan
- Department of Omics Analyses, National Veterinary Research Institute, Pulawy, Poland
| | - Anna Grenda
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Pulawy, Poland
| | - Katarzyna Bielińska
- Department of Omics Analyses, National Veterinary Research Institute, Pulawy, Poland
| | - Dariusz Wasyl
- Department of Omics Analyses, National Veterinary Research Institute, Pulawy, Poland
| | - Robert Kieszko
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| | - Anna Rolska-Kopińska
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| | - Izabela Chmielewska
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| | | | - Małgorzata Olejnik
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Janusz Milanowski
- Department of Pneumology, Oncology and Allergology, Medical University in Lublin, Lublin, Poland
| |
Collapse
|
4
|
Sukumar S, Rahmanyar Z, El Jurf HQ, Akil WS, Hussain J, Martin FE, Ekanayake K, Martinez E. Mapping the oral resistome: a systematic review. J Med Microbiol 2024; 73:001866. [PMID: 39133536 PMCID: PMC11318793 DOI: 10.1099/jmm.0.001866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
Studying individual ecological niches within the oral cavity is a logical first step to understanding the distribution of antimicrobial resistance genes (ARGs); however, it is not representative of the whole oral resistome. The aim of our systematic review was to provide a map of the oral resistome by reviewing the composition of individual niches. A total of 580 papers were retrieved from a search of all English language publications investigating the presence of oral ARGs in five electronic databases between January 2015 and August 2023. Fifteen studies [10 PCR and 5 next-generation sequencing (NGS)] were included in this review. The heterogeneity of methods precluded meta-analysis. ARGs are present throughout the oral cavity with 158 unique ARGs identified across 6 locations - supra and sub-gingival biofilm, mucosa, oropharynx, root canal system (RCS) and saliva. The supragingival biofilm had the highest resistome richness, while the RCS had the least. Tetracycline was the dominant antimicrobial resistance (AMR) class found. Three core genes were identified - tet(M), tet(O) and ermB.This review highlights the necessity of NGS studies to comprehensively characterize the oral resistome in its entirety. This is the logical foundation for future 'omics studies to truly understand the scope of the resistome and its contribution to AMR.
Collapse
Affiliation(s)
- Smitha Sukumar
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Zalmay Rahmanyar
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Hagaar Q. El Jurf
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - William S. Akil
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Jafar Hussain
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - F. Elizabeth Martin
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Kanchana Ekanayake
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Elena Martinez
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2000, Australia
- Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, 2145, Australia
| |
Collapse
|
5
|
Tansirichaiya S, Songsomboon K, Chaianant N, Lertsivawinyu W, Al‐Haroni M. Impact of cell lysis treatment before saliva metagenomic DNA extraction on the oral microbiome and the associated resistome. Clin Exp Dent Res 2024; 10:e905. [PMID: 38938117 PMCID: PMC11211641 DOI: 10.1002/cre2.905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVES The human oral microbiome, a complex ecosystem linked to oral and systemic health, harbors a diverse array of microbial populations, including antimicrobial resistance genes (ARGs). As a critical component of the One Health approach to tackle antibiotic resistance, comprehending the oral resistome's composition and diversity is imperative. The objective of this study was to investigate the impact of chemical cell lysis treatment using MetaPolyzyme on the detectability of the oral microbiome, resistome, and DNA quality and quantity. MATERIALS AND METHODS Saliva samples were collected from five healthy individuals, and each of the samples was subjected to DNA extraction with and without the treatment with MetaPolyzyme. Through metagenomic sequencing, we analyzed, assessed, and compared the microbial composition, resistome, and DNA characteristics between both groups of extracted DNA. RESULTS Our study revealed that MetaPolyzyme treatment led to significant shifts in the detectability of microbial composition, favoring Gram-positive bacteria, notably Streptococcus, over Gram-negative counterparts. Moreover, the MetaPolyzyme treatment also resulted in a distinct change in ARG distribution. This shift was characterized by an elevated proportion of ARGs linked to fluoroquinolones and efflux pumps, coupled with a reduction in the prevalence of tetracycline and β-lactam resistance genes when compared with the nontreated group. Alpha diversity analysis demonstrated altered species and ARG distribution without affecting overall diversity, while beta diversity analysis confirmed significant differences in the taxonomical composition and oral resistome between treated and nontreated groups. CONCLUSIONS These findings underscore the critical role of cell lysis treatment in optimizing oral metagenomic studies and enhance our understanding of the oral resistome's dynamics in the context of antimicrobial resistance.
Collapse
Affiliation(s)
- Supathep Tansirichaiya
- Department of Microbiology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
- Department of Clinical Dentistry, Faculty of Health SciencesUiT the Arctic University of NorwayTromsøNorway
- Centre for New Antimicrobial StrategiesUiT the Arctic University of NorwayTromsøNorway
| | - Kittikun Songsomboon
- School of Life and Environmental SciencesThe University of SydneySydneyAustralia
| | - Nichamon Chaianant
- Faculty of Dentistry and Research Unit in Mineralized Tissue ReconstructionThammasat UniversityPathumthaniThailand
| | - Wasawat Lertsivawinyu
- Department of Microbiology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Mohammed Al‐Haroni
- Department of Clinical Dentistry, Faculty of Health SciencesUiT the Arctic University of NorwayTromsøNorway
- Centre for New Antimicrobial StrategiesUiT the Arctic University of NorwayTromsøNorway
| |
Collapse
|
6
|
Dhariwal A, Rajar P, Salvadori G, Åmdal HA, Berild D, Saugstad OD, Fugelseth D, Greisen G, Dahle U, Haaland K, Petersen FC. Prolonged hospitalization signature and early antibiotic effects on the nasopharyngeal resistome in preterm infants. Nat Commun 2024; 15:6024. [PMID: 39019886 PMCID: PMC11255206 DOI: 10.1038/s41467-024-50433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Respiratory pathogens, commonly colonizing nasopharynx, are among the leading causes of death due to antimicrobial resistance. Yet, antibiotic resistance determinants within nasopharyngeal microbial communities remain poorly understood. In this prospective cohort study, we investigate the nasopharynx resistome development in preterm infants, assess early antibiotic impact on its trajectory, and explore its association with clinical covariates using shotgun metagenomics. Our findings reveal widespread nasopharyngeal carriage of antibiotic resistance genes (ARGs) with resistomes undergoing transient changes, including increased ARG diversity, abundance, and composition alterations due to early antibiotic exposure. ARGs associated with the critical nosocomial pathogen Serratia marcescens persist up to 8-10 months of age, representing a long-lasting hospitalization signature. The nasopharyngeal resistome strongly correlates with microbiome composition, with inter-individual differences and postnatal age explaining most of the variation. Our report on the collateral effects of antibiotics and prolonged hospitalization underscores the urgency of further studies focused on this relatively unexplored reservoir of pathogens and ARGs.
Collapse
Affiliation(s)
- Achal Dhariwal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Polona Rajar
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Neonatal Intensive Care, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Gabriela Salvadori
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Heidi Aarø Åmdal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Dag Berild
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Drude Fugelseth
- Department of Neonatal Intensive Care, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gorm Greisen
- Department of Neonatology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ulf Dahle
- Centre for Antimicrobial Resistance, Norwegian Institute of Public Health, Oslo, Norway
| | - Kirsti Haaland
- Department of Neonatal Intensive Care, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
7
|
Shen X, Zhu X, Liu H, Yuan R, Guo Q, Zhao P. Leveraging genomic signatures of oral microbiome-associated antibiotic resistance genes for diagnosing pancreatic cancer. PLoS One 2024; 19:e0302361. [PMID: 38687802 PMCID: PMC11060577 DOI: 10.1371/journal.pone.0302361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Growing evidence has increasingly suggested a potential linkage between the oral microbiome and various diseases, including pancreatic ductal adenocarcinoma (PDAC). However, the utilization of gene-level information derived from the oral microbiome for diagnosing PDAC remains unexplored. In this study, we sought to investigate the novel potential of leveraging genomic signatures associated with antibiotic resistance genes (ARGs) within the oral microbiome for the diagnosis of PDAC. By conducting an analysis of oral microbiome samples obtained from PDAC patients, we successfully identified specific ARGs that displayed distinct sequence abundance profiles correlated with the presence of PDAC. In the healthy group, three ARGs were found to be enriched, whereas 21 ARGs were enriched in PDAC patients. Remarkably, these ARGs from oral microbiome exhibited promising diagnostic capabilities for PDAC (AUROC = 0.79), providing a non-invasive and early detection method. Our findings not only provide novel modal data for diagnosing PDAC but also shed light on the intricate interplay between the oral microbiome and PDAC.
Collapse
Affiliation(s)
- Xiaojing Shen
- Qingdao municipal hospital(group) Stomatology, Qingdao, Shandong, China
| | - Xiaolin Zhu
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Hairong Liu
- Qingdao municipal hospital(group) Stomatology, Qingdao, Shandong, China
| | - Rongtao Yuan
- Qingdao municipal hospital(group) Stomatology, Qingdao, Shandong, China
| | - Qingyuan Guo
- Qingdao municipal hospital(group) Stomatology, Qingdao, Shandong, China
| | - Peng Zhao
- Qingdao municipal hospital(group) Stomatology, Qingdao, Shandong, China
| |
Collapse
|
8
|
Jin MK, Zhang Q, Xu N, Zhang Z, Guo HQ, Li J, Ding K, Sun X, Yang XR, Zhu D, Su X, Qian H, Zhu YG. Lipid Metabolites as Potential Regulators of the Antibiotic Resistome in Tetramorium caespitum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4476-4486. [PMID: 38382547 DOI: 10.1021/acs.est.3c05741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Antibiotic resistance genes (ARGs) are ancient but have become a modern critical threat to health. Gut microbiota, a dynamic reservoir for ARGs, transfer resistance between individuals. Surveillance of the antibiotic resistome in the gut during different host growth phases is critical to understanding the dynamics of the resistome in this ecosystem. Herein, we disentangled the ARG profiles and the dynamic mechanism of ARGs in the egg and adult phases of Tetramorium caespitum. Experimental results showed a remarkable difference in both gut microbiota and gut resistome with the development of T. caespitum. Meta-based metagenomic results of gut microbiota indicated the generalizability of gut antibiotic resistome dynamics during host development. By using Raman spectroscopy and metabolomics, the metabolic phenotype and metabolites indicated that the biotic phase significantly changed lipid metabolism as T. caespitum aged. Lipid metabolites were demonstrated as the main factor driving the enrichment of ARGs in T. caespitum. Cuminaldehyde, the antibacterial lipid metabolite that displayed a remarkable increase in the adult phase, was demonstrated to strongly induce ARG abundance. Our findings show that the gut resistome is host developmental stage-dependent and likely modulated by metabolites, offering novel insights into possible steps to reduce ARG dissemination in the soil food chain.
Collapse
Affiliation(s)
- Ming-Kang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hong-Qin Guo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jian Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Kai Ding
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
9
|
Marcano-Ruiz M, Lima T, Tavares GM, Mesquita MTS, Kaingang LDS, Schüler-Faccini L, Bortolini MC. Oral microbiota, co-evolution, and implications for health and disease: The case of indigenous peoples. Genet Mol Biol 2024; 46:e20230129. [PMID: 38259033 PMCID: PMC10829892 DOI: 10.1590/1678-4685-gmb-2023-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
Evidence indicates that oral microbiota plays a crucial role in human health and disease. For instance, diseases with multifactorial etiology, such as periodontitis and caries, which cause a detrimental impact on human well-being and health, can be caused by alterations in the host-microbiota interactions, where non-pathogenic bacteria give way to pathogenic orange/red-complex bacterial species (a change from a eubiotic to dysbiotic state). In this scenario, where thousands of oral microorganisms, including fungi, archaea, and phage species, and their host are co-evolving, a set of phenomena, such as the arms race and Red or Black Queen dynamics, are expected to operate. We review concepts on the subject and revisit the nature of bacterial complexes linked to oral health and diseases, as well as the problem of the bacterial resistome in the face of the use of antibiotics and what is the impact of this on the evolutionary trajectory of the members of this symbiotic ecosystem. We constructed a 16SrRNA tree to show that adaptive consortia of oral bacterial complexes do not necessarily rescue phylogenetic relationships. Finally, we remember that oral health is not exempt from health disparity trends in some populations, such as Native Americans, when compared with non-Indigenous people.
Collapse
Affiliation(s)
- Mariana Marcano-Ruiz
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Thaynara Lima
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Gustavo Medina Tavares
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | | | - Luana da Silva Kaingang
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de Odontologia, Porto Alegre, RS, Brazil
| | - Lavínia Schüler-Faccini
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Instituto Nacional de Genética Médica Populacional, Serviço de Genética Médica, Porto Alegre, RS, Brazil
| | - Maria Cátira Bortolini
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Chu VT, Tsitsiklis A, Mick E, Ambroggio L, Kalantar KL, Glascock A, Osborne CM, Wagner BD, Matthay MA, DeRisi JL, Calfee CS, Mourani PM, Langelier CR. The antibiotic resistance reservoir of the lung microbiome expands with age in a population of critically ill patients. Nat Commun 2024; 15:92. [PMID: 38168095 PMCID: PMC10762195 DOI: 10.1038/s41467-023-44353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Antimicrobial resistant lower respiratory tract infections are an increasing public health threat and an important cause of global mortality. The lung microbiome can influence susceptibility of respiratory tract infections and represents an important reservoir for exchange of antimicrobial resistance genes. Studies of the gut microbiome have found an association between age and increasing antimicrobial resistance gene burden, however, corollary studies in the lung microbiome remain absent. We performed an observational study of children and adults with acute respiratory failure admitted to the intensive care unit. From tracheal aspirate RNA sequencing data, we evaluated age-related differences in detectable antimicrobial resistance gene expression in the lung microbiome. Using a multivariable logistic regression model, we find that detection of antimicrobial resistance gene expression was significantly higher in adults compared with children after adjusting for demographic and clinical characteristics. This association remained significant after additionally adjusting for lung bacterial microbiome characteristics, and when modeling age as a continuous variable. The proportion of adults expressing beta-lactam, aminoglycoside, and tetracycline antimicrobial resistance genes was higher compared to children. Together, these findings shape our understanding of the lung resistome in critically ill patients across the lifespan, which may have implications for clinical management and global public health.
Collapse
Affiliation(s)
- Victoria T Chu
- Division of Infectious Diseases & Global Health, University of California, San Francisco, CA, USA
- Division of Infectious Diseases, University of California, San Francisco, CA, USA
| | - Alexandra Tsitsiklis
- Division of Infectious Diseases, University of California, San Francisco, CA, USA
| | - Eran Mick
- Division of Infectious Diseases, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Division of Pulmonary and Critical Care Medicine, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Lilliam Ambroggio
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO, USA
| | | | | | - Christina M Osborne
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO, USA
| | - Brandie D Wagner
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - Michael A Matthay
- Division of Pulmonary and Critical Care Medicine, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Joseph L DeRisi
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Carolyn S Calfee
- Division of Pulmonary and Critical Care Medicine, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Peter M Mourani
- Arkansas Children's Research Institute, Arkansas Children's Hospital, Little Rock, AR, USA
| | - Charles R Langelier
- Division of Infectious Diseases, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
11
|
Clark JA, Curran MD, Gouliouris T, Conway Morris A, Bousfield R, Navapurkar V, Kean IRL, Daubney E, White D, Baker S, Pathan N. Rapid Detection of Antimicrobial Resistance Genes in Critically Ill Children Using a Custom TaqMan Array Card. Antibiotics (Basel) 2023; 12:1701. [PMID: 38136735 PMCID: PMC10740637 DOI: 10.3390/antibiotics12121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Bacteria are identified in only 22% of critically ill children with respiratory infections treated with antimicrobial therapy. Once an organism is isolated, antimicrobial susceptibility results (phenotypic testing) can take another day. A rapid diagnostic test identifying antimicrobial resistance (AMR) genes could help clinicians make earlier, informed antimicrobial decisions. Here we aimed to validate a custom AMR gene TaqMan Array Card (AMR-TAC) for the first time and assess its feasibility as a screening tool in critically ill children. An AMR-TAC was developed using a combination of commercial and bespoke targets capable of detecting 23 AMR genes. This was validated using isolates with known phenotypic resistance. The card was then tested on lower respiratory tract and faecal samples obtained from mechanically ventilated children in a single-centre observational study of respiratory infection. There were 82 children with samples available, with a median age of 1.2 years. Major comorbidity was present in 29 (35%) children. A bacterial respiratory pathogen was identified in 13/82 (16%) of children, of which 4/13 (31%) had phenotypic AMR. One AMR gene was detected in 49/82 (60%), and multiple AMR genes were detected in 14/82 (17%) children. Most AMR gene detections were not associated with the identification of phenotypic AMR. AMR genes are commonly detected in samples collected from mechanically ventilated children with suspected respiratory infections. AMR-TAC may have a role as an adjunct test in selected children in whom there is a high suspicion of antimicrobial treatment failure.
Collapse
Affiliation(s)
- John A. Clark
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK; (I.R.L.K.); (E.D.); (D.W.); (N.P.)
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK; (T.G.); (A.C.M.); (R.B.); (V.N.)
| | - Martin D. Curran
- Clinical Microbiology and Public Health Laboratory, United Kingdom Health Security Agency, Cambridge CB2 0QQ, UK;
| | - Theodore Gouliouris
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK; (T.G.); (A.C.M.); (R.B.); (V.N.)
- Clinical Microbiology and Public Health Laboratory, United Kingdom Health Security Agency, Cambridge CB2 0QQ, UK;
| | - Andrew Conway Morris
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK; (T.G.); (A.C.M.); (R.B.); (V.N.)
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Rachel Bousfield
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK; (T.G.); (A.C.M.); (R.B.); (V.N.)
- Clinical Microbiology and Public Health Laboratory, United Kingdom Health Security Agency, Cambridge CB2 0QQ, UK;
| | - Vilas Navapurkar
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK; (T.G.); (A.C.M.); (R.B.); (V.N.)
| | - Iain R. L. Kean
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK; (I.R.L.K.); (E.D.); (D.W.); (N.P.)
| | - Esther Daubney
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK; (I.R.L.K.); (E.D.); (D.W.); (N.P.)
| | - Deborah White
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK; (I.R.L.K.); (E.D.); (D.W.); (N.P.)
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK;
| | - Nazima Pathan
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK; (I.R.L.K.); (E.D.); (D.W.); (N.P.)
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK; (T.G.); (A.C.M.); (R.B.); (V.N.)
| |
Collapse
|
12
|
Chu VT, Tsitsiklis A, Mick E, Ambroggio L, Kalantar KL, Glascock A, Osborne CM, Wagner BD, Matthay MA, DeRisi JL, Calfee CS, Mourani PM, Langelier CR. The antibiotic resistance reservoir of the lung microbiome expands with age. RESEARCH SQUARE 2023:rs.3.rs-3283415. [PMID: 37790384 PMCID: PMC10543260 DOI: 10.21203/rs.3.rs-3283415/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Antimicrobial resistant lower respiratory tract infections (LRTI) are an increasing public health threat, and an important cause of global mortality. The lung microbiome influences LRTI susceptibility and represents an important reservoir for exchange of antimicrobial resistance genes (ARGs). Studies of the gut microbiome have found an association between age and increasing antimicrobial resistance gene (ARG) burden, however corollary studies in the lung microbiome remain absent, despite the respiratory tract representing one of the most clinically significant sites for drug resistant infections. We performed a prospective, multicenter observational study of 261 children and 88 adults with acute respiratory failure, ranging in age from 31 days to ≥ 89 years, admitted to intensive care units in the United States. We performed RNA sequencing on tracheal aspirates collected within 72 hours of intubation, and evaluated age-related differences in detectable ARG expression in the lung microbiome as a primary outcome. Secondary outcomes included number and classes of ARGs detected, proportion of patients with an ARG class, and composition of the lung microbiome. Multivariable logistic regression models (adults vs children) or continuous age (years) were adjusted for sex, race/ethnicity, LRTI status, and days from intubation to specimen collection. Detection of ARGs was significantly higher in adults compared with children after adjusting for sex, race/ethnicity, LRTI diagnosis, and days from intubation to specimen collection (adjusted odds ratio (aOR): 2.16, 95% confidence interval (CI): 1.10-4.22). A greater proportion of adults compared with children had beta-lactam ARGs (31% (CI: 21-41%) vs 13% (CI: 10-18%)), aminoglycoside ARGs (20% (CI: 13-30%) vs 2% (CI: 0.6-4%)), and tetracycline ARGs (14% (CI: 7-23%) vs 3% (CI: 1-5%)). Adults ≥70 years old had the highest proportion of these three ARG classes. The total bacterial abundance of the lung microbiome increased with age, and microbiome alpha diversity varied with age. Taxonomic composition of the lung microbiome, measured by Bray Curtis dissimilarity index, differed between adults and children (p = 0.003). The association between age and increased ARG detection remained significant after additionally including lung microbiome total bacterial abundance and alpha diversity in the multivariable logistic regression model (aOR: 2.38, (CI: 1.25-4.54)). Furthermore, this association remained robust when modeling age as a continuous variable (aOR: 1.02, (CI: 1.01-1.03) per year of age). Taken together, our results demonstrate that age is an independent risk factor for ARG detection in the lower respiratory tract microbiome. These data shape our understanding of the lung resistome in critically ill patients across the lifespan, which may have implications for clinical management and global public health.
Collapse
Affiliation(s)
- Victoria T. Chu
- Division of Infectious Diseases, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Alexandra Tsitsiklis
- Division of Infectious Diseases, University of California, San Francisco, CA, USA
| | - Eran Mick
- Division of Infectious Diseases, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Division of Pulmonary and Critical Care Medicine, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Lilliam Ambroggio
- Department of Pediatrics, University of Colorado and Children’s Hospital Colorado, Aurora, CO, USA
| | | | | | - Christina M. Osborne
- Department of Pediatrics, University of Colorado and Children’s Hospital Colorado, Aurora, CO, USA
| | - Brandie D. Wagner
- Department of Pediatrics, University of Colorado and Children’s Hospital Colorado, Aurora, CO, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - Michael A. Matthay
- Division of Pulmonary and Critical Care Medicine, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Joseph L. DeRisi
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Carolyn S. Calfee
- Division of Pulmonary and Critical Care Medicine, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Peter M. Mourani
- Arkansas Children’s Research Institute, Arkansas Children’s Hospital, Little Rock, AR, USA
| | - Charles R. Langelier
- Division of Infectious Diseases, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
13
|
Fredriksen S, de Warle S, van Baarlen P, Boekhorst J, Wells JM. Resistome expansion in disease-associated human gut microbiomes. MICROBIOME 2023; 11:166. [PMID: 37507809 PMCID: PMC10386251 DOI: 10.1186/s40168-023-01610-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND The resistome, the collection of antibiotic resistance genes (ARGs) in a microbiome, is increasingly recognised as relevant to the development of clinically relevant antibiotic resistance. Many metagenomic studies have reported resistome differences between groups, often in connection with disease and/or antibiotic treatment. However, the consistency of resistome associations with antibiotic- and non-antibiotic-treated diseases has not been established. In this study, we re-analysed human gut microbiome data from 26 case-control studies to assess the link between disease and the resistome. RESULTS The human gut resistome is highly variable between individuals both within and between studies, but may also vary significantly between case and control groups even in the absence of large taxonomic differences. We found that for diseases commonly treated with antibiotics, namely cystic fibrosis and diarrhoea, patient microbiomes had significantly elevated ARG abundances compared to controls. Disease-associated resistome expansion was found even when ARG abundance was high in controls, suggesting ongoing and additive ARG acquisition in disease-associated strains. We also found a trend for increased ARG abundance in cases from some studies on diseases that are not treated with antibiotics, such as colorectal cancer. CONCLUSIONS Diseases commonly treated with antibiotics are associated with expanded gut resistomes, suggesting that historical exposure to antibiotics has exerted considerable selective pressure for ARG acquisition in disease-associated strains. Video Abstract.
Collapse
Affiliation(s)
- Simen Fredriksen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands.
| | - Stef de Warle
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands
| | - Jos Boekhorst
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
14
|
Fu G, Ma G, Dou S, Wang Q, Fu L, Zhang X, Lu C, Cong B, Li S. Feature selection with a genetic algorithm can help improve the distinguishing power of microbiota information in monozygotic twins' identification. Front Microbiol 2023; 14:1210638. [PMID: 37555059 PMCID: PMC10406218 DOI: 10.3389/fmicb.2023.1210638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
INTRODUCTION Personal identification of monozygotic twins (MZT) has been challenging in forensic genetics. Previous research has demonstrated that microbial markers have potential value due to their specificity and long-term stability. However, those studies would use the complete information of detected microbial communities, and low-value species would limit the performance of previous models. METHODS To address this issue, we collected 80 saliva samples from 10 pairs of MZTs at four different time points and used 16s rRNA V3-V4 region sequencing to obtain microbiota information. The data formed 280 inner-individual (Self) or MZT sample pairs, divided into four groups based on the individual relationship and time interval, and then randomly divided into training and testing sets with an 8:2 ratio. We built 12 identification models based on the time interval ( ≤ 1 year or ≥ 2 months), data basis (Amplicon sequence variants, ASVs or Operational taxonomic unit, OTUs), and distance parameter selection (Jaccard distance, Bray-Curist distance, or Hellinger distance) and then improved their identification power through genetic algorithm processes. The best combination of databases with distance parameters was selected as the final model for the two types of time intervals. Bayes theory was introduced to provide a numerical indicator of the evidence's effectiveness in practical cases. RESULTS From the 80 saliva samples, 369 OTUs and 1130 ASVs were detected. After the feature selection process, ASV-Jaccard distance models were selected as the final models for the two types of time intervals. For short interval samples, the final model can completely distinguish MZT pairs from Self ones in both training and test sets. DISCUSSION Our findings support the microbiota solution to the challenging MZT identification problem and highlight the importance of feature selection in improving model performance.
Collapse
Affiliation(s)
- Guangping Fu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Guanju Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Shujie Dou
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Qian Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Lihong Fu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Xiaojing Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Chaolong Lu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
- Hainan Tropical Forensic Medicine Academician Workstation, Haikou, China
| | - Shujin Li
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| |
Collapse
|
15
|
Cai P, Chen Q, Du W, Yang S, Li J, Cai H, Zhao X, Sun W, Xu N, Wang J. Deciphering the dynamics of metal and antibiotic resistome profiles under different metal(loid) contamination levels. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131567. [PMID: 37167868 DOI: 10.1016/j.jhazmat.2023.131567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Metal(loid) contaminations pose considerable threats to ecological security and public health, yet little is known about the dynamics of metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) under different metal(loid) contamination levels. Here, we provided a systematic investigation of MRGs and ARGs in three zones (Zones I, II, and III) with different metal(loid) contamination levels across an abandoned sewage reservoir. More diverse MRGs and ARGs were detected from the high-contaminated Zone I and the moderate-contaminated Zone II, while the abundant MGEs (mobile genetic elements) potentially enhanced the horizontal gene transfer potential and the resistome diversity in Zone I. Particularly, resistome hosts represented by Thiobacillus, Ramlibacter, and Dyella were prevalent in Zone II, promoting the vertical gene transfer of MRGs and ARGs. The highest health risk of ARGs was predicted for Zone I (about 7.58% and 0.48% of ARGs classified into Rank I and Rank II, respectively), followed by Zone II (2.11% and 0%) and Zone III (0% and 0%). However, the ARGs co-occurring with MRGs might exhibit low proportions and low health risks (all were Rank IV) in the three zones. Overall, these findings uncovered the dynamic responses of resistomes and their hosts to different metal(loid) contamination levels, contributing to formulating accurate management and bioremediation countermeasures for various metal(loid) contaminated environments.
Collapse
Affiliation(s)
- Pinggui Cai
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Wenran Du
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Shanqing Yang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Jiarui Li
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Hetong Cai
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Xiaohui Zhao
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; School of Water Resources and Hydropower Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Nan Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Jiawen Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China.
| |
Collapse
|