1
|
Wafflard A, Opsomer E, Vandewalle N. Dipolar gels formed by aggregation of magnetized beads. Phys Rev E 2024; 110:054608. [PMID: 39690658 DOI: 10.1103/physreve.110.054608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/29/2024] [Indexed: 12/19/2024]
Abstract
The out-of-equilibrium aggregation of dipolar particles, such as magnetized beads, leads to the formation of large structures composed of chains, loops, and eventually ribbons. In the present study, we focus on the evolution of these different substructures in a two-dimensional system confined within progressively shrinking environments. Using numerical simulations, we identify structural events as a function of the packing fraction. At low density, a percolation threshold ϕ_{p}≈0.15 is evidenced, where chainlike structures merge into a single large aggregate with significant voids. This gel-like structure then densifies as ϕ increases. At large ϕ values, crystallites of both square and hexagonal order phase appear, but they are far from extending over the whole system.
Collapse
|
2
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
3
|
Seong M, Sun K, Kim S, Kwon H, Lee SW, Veerla SC, Kang DK, Kim J, Kondaveeti S, Tawfik SM, Park HW, Jeong HE. Multifunctional Magnetic Muscles for Soft Robotics. Nat Commun 2024; 15:7929. [PMID: 39256389 PMCID: PMC11387479 DOI: 10.1038/s41467-024-52347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
Despite recent advancements, artificial muscles have not yet been able to strike the right balance between exceptional mechanical properties and dexterous actuation abilities that are found in biological systems. Here, we present an artificial magnetic muscle that exhibits multiple remarkable mechanical properties and demonstrates comprehensive actuating performance, surpassing those of biological muscles. This artificial muscle utilizes a composite configuration, integrating a phase-change polymer and ferromagnetic particles, enabling active control over mechanical properties and complex actuating motions through remote laser heating and magnetic field manipulation. Consequently, the magnetic composite muscle can dynamically adjust its stiffness as needed, achieving a switching ratio exceeding 2.7 × 10³. This remarkable adaptability facilitates substantial load-bearing capacity, with specific load capacities of up to 1000 and 3690 for tensile and compressive stresses, respectively. Moreover, it demonstrates reversible extension, contraction, bending, and twisting, with stretchability exceeding 800%. We leverage these distinctive attributes to showcase the versatility of this composite muscle as a soft continuum robotic manipulator. It adeptly executes various programmable responses and performs complex tasks while minimizing mechanical vibrations. Furthermore, we demonstrate that this composite muscle excels across multiple mechanical and actuation aspects compared to existing actuators.
Collapse
Affiliation(s)
- Minho Seong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Kahyun Sun
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Somi Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hyukjoo Kwon
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sang-Woo Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sarath Chandra Veerla
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Dong Kwan Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jaeil Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Stalin Kondaveeti
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
| | - Salah M Tawfik
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Egypt
| | - Hyung Wook Park
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| |
Collapse
|
4
|
Xu H, Liang H, Yang Y, Liu Y, He E, Yang Z, Wang Y, Wei Y, Ji Y. Rejuvenating liquid crystal elastomers for self-growth. Nat Commun 2024; 15:7381. [PMID: 39191791 DOI: 10.1038/s41467-024-51544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
To date, only one polymer can self-grow to an extended length beyond its original size at room temperature without external stimuli or energy input. This breakthrough paves the way for significant advancements in untethered autonomous soft robotics, eliminating the need for the energy input or external stimuli required by all existing soft robotics systems. However, only freshly prepared samples in an initial state can self-grow, while non-fresh ones cannot. The necessity of synthesizing from monomers for each use imposes significant limitations on practical applications. Here, we propose a strategy to rejuvenate non-fresh samples to their initial state for on-demand self-growth through the synergistic effects of solvents and dynamic covalent bonds during swelling. The solvent used for swelling physically transforms the non-fresh LCEs from the liquid crystal phase to the isotropic phase. Simultaneously, the introduction of the transesterification catalyst through swelling facilitates topological rearrangements through exchange reactions of dynamic covalent bonds. The rejuvenation process can also erase growth history, be repeated several times, and be regulated by selective swelling. This strategy provides a post-modulation method for the rejuvenation and reuse of self-growing LCEs, promising to offer high-performance materials for cutting-edge soft growing robotics.
Collapse
Affiliation(s)
- Hongtu Xu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| | - Yawen Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Enjian He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhijun Yang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yixuan Wang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Taiwan, China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Chen A, Wang W, Mao Z, He Y, Chen S, Liu G, Su J, Feng P, Shi Y, Yan C, Lu J. Multimaterial 3D and 4D Bioprinting of Heterogenous Constructs for Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307686. [PMID: 37737521 DOI: 10.1002/adma.202307686] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Indexed: 09/23/2023]
Abstract
Additive manufacturing (AM), which is based on the principle of layer-by-layer shaping and stacking of discrete materials, has shown significant benefits in the fabrication of complicated implants for tissue engineering (TE). However, many native tissues exhibit anisotropic heterogenous constructs with diverse components and functions. Consequently, the replication of complicated biomimetic constructs using conventional AM processes based on a single material is challenging. Multimaterial 3D and 4D bioprinting (with time as the fourth dimension) has emerged as a promising solution for constructing multifunctional implants with heterogenous constructs that can mimic the host microenvironment better than single-material alternatives. Notably, 4D-printed multimaterial implants with biomimetic heterogenous architectures can provide a time-dependent programmable dynamic microenvironment that can promote cell activity and tissue regeneration in response to external stimuli. This paper first presents the typical design strategies of biomimetic heterogenous constructs in TE applications. Subsequently, the latest processes in the multimaterial 3D and 4D bioprinting of heterogenous tissue constructs are discussed, along with their advantages and challenges. In particular, the potential of multimaterial 4D bioprinting of smart multifunctional tissue constructs is highlighted. Furthermore, this review provides insights into how multimaterial 3D and 4D bioprinting can facilitate the realization of next-generation TE applications.
Collapse
Affiliation(s)
- Annan Chen
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Wanying Wang
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Zhengyi Mao
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
| | - Yunhu He
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
| | - Shiting Chen
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
| | - Guo Liu
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
| | - Jin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Pei Feng
- State Key Laboratory of High-Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Jian Lu
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research, Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
6
|
Li W, Liu B, Ou L, Li G, Lei D, Xiong Z, Xu H, Wang J, Tang J, Li D. Arbitrary Construction of Versatile NIR-Driven Microrobots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402482. [PMID: 38940072 DOI: 10.1002/adma.202402482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Emerging light-driven micro/nanorobots (LMNRs) showcase profound potential for sophisticated manipulation and various applications. However, the realization of a versatile and straightforward fabrication technique remains a challenging pursuit. This study introduces an innovative bulk heterojunction organic semiconductor solar cell (OSC)-based spin-coating approach, aiming to facilitate the arbitrary construction of LMNRs. Leveraging the distinctive properties of a near-infrared (NIR)-responsive organic semiconductor heterojunction solution, this technique enables uniform coating across various dimensional structures (0D, 1D, 2D, 3D) to be LMNRs, denoted as "motorization." The film, with a slender profile measuring ≈140 nm in thickness, effectively preserves the original morphology of objects while imparting actuation capabilities exceeding hundreds of times their own weight. The propelled motion of these microrobots is realized through NIR-driven photoelectrochemical reaction-induced self-diffusiophoresis, showcasing a versatile array of controllable motion profiles. The strategic customization of arbitrary microrobot construction addresses specific applications, ranging from 0D microrobots inducing living crystal formation to intricate, multidimensional structures designed for tasks such as microplastic extraction, cargo delivery, and phototactic precise maneuvers. This study advances user-friendly and versatile LMNR technologies, unlocking new possibilities for various applications, signaling a transformative era in multifunctional micro/nanorobot technologies.
Collapse
Affiliation(s)
- Wanyuan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Baiyao Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Leyan Ou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Gangzhou Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Dapeng Lei
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Ze Xiong
- Wireless and Smart Bioelectronics Lab, School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Huihua Xu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Jizhuang Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
7
|
Mao L, Yang P, Tian C, Shen X, Wang F, Zhang H, Meng X, Xie H. Magnetic steering continuum robot for transluminal procedures with programmable shape and functionalities. Nat Commun 2024; 15:3759. [PMID: 38704384 PMCID: PMC11069526 DOI: 10.1038/s41467-024-48058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Millimeter-scale soft continuum robots offer safety and adaptability in transluminal procedures due to their passive compliance, but this feature necessitates interactions with surrounding lumina, leading to potential medical risks and restricted mobility. Here, we introduce a millimeter-scale continuum robot, enabling apical extension while maintaining structural stability. Utilizing phase transition components, the robot executes cycles of tip-based elongation, steered accurately through programmable magnetic fields. Each motion cycle features a solid-like backbone for stability, and a liquid-like component for advancement, thereby enabling autonomous shaping without reliance on environmental interactions. Together with clinical imaging technologies, we demonstrate the capability of navigating through tortuous and fragile lumina to transport microsurgical tools. Once it reaches larger anatomical spaces such as stomach, it can morph into functional 3D structures that serve as surgical tools or sensing units, overcoming the constraints of initially narrow pathways. By leveraging this design paradigm, we anticipate enhanced safety, multi-functionality, and cooperative capabilities among millimeter-scale continuum robots, opening new avenues for transluminal robotic surgery.
Collapse
Affiliation(s)
- Liyang Mao
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin, 150001, China
| | - Peng Yang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin, 150001, China
| | - Chenyao Tian
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin, 150001, China
| | - Xingjian Shen
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin, 150001, China
| | - Feihao Wang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin, 150001, China
| | - Hao Zhang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin, 150001, China.
| | - Xianghe Meng
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin, 150001, China.
| | - Hui Xie
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin, 150001, China.
| |
Collapse
|
8
|
Qiu Y, Ashok A, Nguyen CC, Yamauchi Y, Do TN, Phan HP. Integrated Sensors for Soft Medical Robotics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308805. [PMID: 38185733 DOI: 10.1002/smll.202308805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Indexed: 01/09/2024]
Abstract
Minimally invasive procedures assisted by soft robots for surgery, diagnostics, and drug delivery have unprecedented benefits over traditional solutions from both patient and surgeon perspectives. However, the translation of such technology into commercialization remains challenging. The lack of perception abilities is one of the obstructive factors paramount for a safe, accurate and efficient robot-assisted intervention. Integrating different types of miniature sensors onto robotic end-effectors is a promising trend to compensate for the perceptual deficiencies in soft robots. For example, haptic feedback with force sensors helps surgeons to control the interaction force at the tool-tissue interface, impedance sensing of tissue electrical properties can be used for tumor detection. The last decade has witnessed significant progress in the development of multimodal sensors built on the advancement in engineering, material science and scalable micromachining technologies. This review article provides a snapshot on common types of integrated sensors for soft medical robots. It covers various sensing mechanisms, examples for practical and clinical applications, standard manufacturing processes, as well as insights on emerging engineering routes for the fabrication of novel and high-performing sensing devices.
Collapse
Affiliation(s)
- Yulin Qiu
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Aditya Ashok
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yusuke Yamauchi
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, 4067, Australia
- Department of Materials Science and Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
9
|
Gao Y, Wang X, Chen Y. Light-driven soft microrobots based on hydrogels and LCEs: development and prospects. RSC Adv 2024; 14:14278-14288. [PMID: 38694551 PMCID: PMC11062240 DOI: 10.1039/d4ra00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
In the daily life of mankind, microrobots can respond to stimulations received and perform different functions, which can be used to complete repetitive or dangerous tasks. Magnetic driving works well in robots that are tens or hundreds of microns in size, but there are big challenges in driving microrobots that are just a few microns in size. Therefore, it is impossible to guarantee the precise drive of microrobots to perform tasks. Acoustic driven micro-nano robot can achieve non-invasive and on-demand movement, and the drive has good biological compatibility, but the drive mode has low resolution and requires expensive experimental equipment. Light-driven robots move by converting light energy into other forms of energy. Light is a renewable, powerful energy source that can be used to transmit energy. Due to the gradual maturity of beam modulation and optical microscope technology, the application of light-driven microrobots has gradually become widespread. Light as a kind of electromagnetic wave, we can change the energy of light by controlling the wavelength and intensity of light. Therefore, the light-driven robot has the advantages of programmable, wireless, high resolution and accurate spatio-temporal control. According to the types of robots, light-driven robots are subdivided into three categories, namely light-driven soft microrobots, photochemical microrobots and 3D printed hard polymer microrobots. In this paper, the driving materials, driving mechanisms and application scenarios of light-driven soft microrobots are reviewed, and their advantages and limitations are discussed. Finally, we prospected the field, pointed out the challenges faced by light-driven soft micro robots and proposed corresponding solutions.
Collapse
Affiliation(s)
- Yingnan Gao
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| | - Xiaowen Wang
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| | - Yibao Chen
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| |
Collapse
|
10
|
Jung Y, Kwon K, Lee J, Ko SH. Untethered soft actuators for soft standalone robotics. Nat Commun 2024; 15:3510. [PMID: 38664373 PMCID: PMC11045848 DOI: 10.1038/s41467-024-47639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Soft actuators produce the mechanical force needed for the functional movements of soft robots, but they suffer from critical drawbacks since previously reported soft actuators often rely on electrical wires or pneumatic tubes for the power supply, which would limit the potential usage of soft robots in various practical applications. In this article, we review the new types of untethered soft actuators that represent breakthroughs and discuss the future perspective of soft actuators. We discuss the functional materials and innovative strategies that gave rise to untethered soft actuators and deliver our perspective on challenges and opportunities for future-generation soft actuators.
Collapse
Affiliation(s)
- Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kangkyu Kwon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Engineering Research / Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
11
|
Zhao M, Tao Y, Guo W, Ge Z, Hu H, Yan Y, Zou C, Wang G, Ren Y. Multifunctional flexible magnetic drive gripper for target manipulation in complex constrained environments. LAB ON A CHIP 2024; 24:2122-2134. [PMID: 38456199 DOI: 10.1039/d3lc00945a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Soft actuators capable of remote-controlled guidance and manipulation within complex constrained spaces hold great promise in various fields, especially in medical fields such as minimally invasive surgery. However, most current magnetic drive soft actuators only have the functions of position control and guidance, and it is still challenging to achieve more flexible operations on different targets within constrained spaces. Herein, we propose a multifunctional flexible magnetic drive gripper that can be steered within complex constrained spaces and operate on targets of various shapes. On the one hand, changing the internal pressure of the magnetic gripper can achieve functions such as suction or injection of liquid and transportation of targets with smooth surfaces. On the other hand, with the help of slit structures in the constrained environment, by simply changing the position and orientation of the permanent magnet in the external environment, the magnetic gripper can be controlled to clamp and release targets of linear, flaked, and polyhedral shapes. The full flexibility and multifunctionality of the magnetic gripper suggest new possibilities for precise remote control and object transportation in constrained spaces, so it could serve as a direct contact operation tool for hazardous drugs in enclosed spaces or a surgical tool in human body cavities.
Collapse
Affiliation(s)
- Meiying Zhao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Ye Tao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Wenshang Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Zhenyou Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Hanqing Hu
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Ying Yan
- Department of Oncology, The First Hospital of Harbin, Harbin 150010, China
| | - Chaoxia Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Guiyu Wang
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
12
|
Zhang S, Xu Y, Li Z, Wang Q, Li Y, Chen X, Chen P, Lu Z, Su B. On-Demand 3D Spatial Distribution of Magnetic Permeability Based on Fe 3 O 4 Nanoparticle Liquid Toward Micro-Cavity Detectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306340. [PMID: 37940632 DOI: 10.1002/smll.202306340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/16/2023] [Indexed: 11/10/2023]
Abstract
The change of 3D spatial distribution of magnetic permeability can lead to the generation of introduced electrical signals. However, present studies can only achieve rough regulation by simple shape deformation of magnetic elastomers such as compression, bending, or stretching. Accurate control of the 3D spatial distribution of magnetic permeability is still an open question. In this study, an on-demand 3D spatial distribution of magnetic permeability by controlled flowing of Fe3 O4 nanoparticle liquid (FNL) is demonstrated. The flowing routes of FNL are tuned by a 3D-printed cage with pre-designed hollow structure, thus changing the 3D spatial distribution of magnetic permeability. Then, eight symmetrically distributed coils under cage are used to receive characteristic induction voltage signals. Maxwell numerical simulation reveals the working mechanism of signal generation. Notably, those eight coils can detect FNL flowing status in eight directions, allowing recognition of up to 255 different FNL flowing combinations. By introducing machine learning, the micro-cavity detector based on FNL can distinguish nine kinds of micro-cavity structures with an accuracy of 98.77%. This work provides a new strategy for the adjustment of the 3D spatial distribution of the magnetic permeability and expands the application of FNL in the field of space exploration.
Collapse
Affiliation(s)
- Shanfei Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yizhuo Xu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhuofan Li
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qi Wang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yike Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaojun Chen
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Peng Chen
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhongjiu Lu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Bin Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
13
|
Hui Z, Zhang Z, Wang Y, Zhang R, Liu X, Jiang M, Ju F, Hou W, Xia Z, Wang D, Wang P, Pei Y, Yan R, Zhang Y, Chen Q, Huang W, Sun G. Gradiently Foaming Ultrasoft Hydrogel with Stop Holes for Highly Deformable, Crack-Resistant and Sensitive Conformal Human-Machine Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314163. [PMID: 38423019 DOI: 10.1002/adma.202314163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Hydrogels are considered as promising materials for human-machine interfaces (HMIs) owing to their merits of tailorable mechanical and electrical properties; nevertheless, it remains challenging to simultaneously achieve ultrasoftness, good mechanical robustness and high sensitivity, which are the pre-requisite requirements for wearable sensing applications. Herein, for the first time, this work proposes a universal phase-transition-induced bubbling strategy to fabricate ultrasoft gradient foam-shaped hydrogels (FSHs) with stop holes for high deformability, crack-resistance and sensitive conformal HMIs. As a typical system, the FSH based on polyacrylamide/sodium alginate system shows an ultralow Young's modulus (1.68 kPa), increased sustainable strain (1411%), enhanced fracture toughness (915.6 J m-2 ), improved tensile sensitivity (21.77), and compressive sensitivity (65.23 kPa-1 ). The FSHs are used for precisely acquiring and identifying gesture commands of the operator to remotely control a surgical robot for endoscopy and an electric ship in a first-person perspective for cruising, feeding crabs and monitoring the environmental change in real-time.
Collapse
Affiliation(s)
- Zengyu Hui
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Zhao Zhang
- College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing, 211199, P. R. China
| | - Yurong Wang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Runrun Zhang
- College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing, 211199, P. R. China
| | - Xin Liu
- College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing, 211199, P. R. China
| | - Mingjie Jiang
- School of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Feng Ju
- School of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Wenteng Hou
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Zhongming Xia
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Deya Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Pengfei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Yangyang Pei
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Ren Yan
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Yan Zhang
- College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing, 211199, P. R. China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Gengzhi Sun
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
14
|
Sun Y, Zhang W, Gu J, Xia L, Cao Y, Zhu X, Wen H, Ouyang S, Liu R, Li J, Jiang Z, Cheng D, Lv Y, Han X, Qiu W, Cai K, Song E, Cao Q, Li L. Magnetically driven capsules with multimodal response and multifunctionality for biomedical applications. Nat Commun 2024; 15:1839. [PMID: 38424039 PMCID: PMC10904804 DOI: 10.1038/s41467-024-46046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Untethered capsules hold clinical potential for the diagnosis and treatment of gastrointestinal diseases. Although considerable progress has been achieved recently in this field, the constraints imposed by the narrow spatial structure of the capsule and complex gastrointestinal tract environment cause many open-ended problems, such as poor active motion and limited medical functions. In this work, we describe the development of small-scale magnetically driven capsules with a distinct magnetic soft valve made of dual-layer ferromagnetic soft composite films. A core technological advancement achieved is the flexible opening and closing of the magnetic soft valve by using the competitive interactions between magnetic gradient force and magnetic torque, laying the foundation for the functional integration of both drug release and sampling. Meanwhile, we propose a magnetic actuation strategy based on multi-frequency response control and demonstrate that it can achieve effective decoupled regulation of the capsule's global motion and local responses. Finally, through a comprehensive approach encompassing ideal models, animal ex vivo models, and in vivo assessment, we demonstrate the versatility of the developed magnetic capsules and their multiple potential applications in the biomedical field, such as targeted drug delivery and sampling, selective dual-drug release, and light/thermal-assisted therapy.
Collapse
Affiliation(s)
- Yuxuan Sun
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wang Zhang
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junnan Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liangyu Xia
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yinghao Cao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinhui Zhu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Wen
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shaowei Ouyang
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruiqi Liu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jialong Li
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenxing Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Denglong Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiliang Lv
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaotao Han
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wu Qiu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Enmin Song
- School of Computer and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Quanliang Cao
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China.
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Liang Li
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China.
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
15
|
Chen Z, Wang Y, Chen H, Law J, Pu H, Xie S, Duan F, Sun Y, Liu N, Yu J. A magnetic multi-layer soft robot for on-demand targeted adhesion. Nat Commun 2024; 15:644. [PMID: 38245517 PMCID: PMC10799857 DOI: 10.1038/s41467-024-44995-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Magnetic soft robots have shown great potential for biomedical applications due to their high shape reconfigurability, motion agility, and multi-functionality in physiological environments. Magnetic soft robots with multi-layer structures can enhance the loading capacity and function complexity for targeted delivery. However, the interactions between soft entities have yet to be fully investigated, and thus the assembly of magnetic soft robots with on-demand motion modes from multiple film-like layers is still challenging. Herein, we model and tailor the magnetic interaction between soft film-like layers with distinct in-plane structures, and then realize multi-layer soft robots that are capable of performing agile motions and targeted adhesion. Each layer of the robot consists of a soft magnetic substrate and an adhesive film. The mechanical properties and adhesion performance of the adhesive films are systematically characterized. The robot is capable of performing two locomotion modes, i.e., translational motion and tumbling motion, and also the on-demand separation with one side layer adhered to tissues. Simulation results are presented, which have a good qualitative agreement with the experimental results. The feasibility of using the robot to perform multi-target adhesion in a stomach is validated in both ex-vivo and in-vivo experiments.
Collapse
Affiliation(s)
- Ziheng Chen
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Yibin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Hui Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Junhui Law
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Huayan Pu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Shaorong Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Feng Duan
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Na Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China.
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
16
|
Wang L, Chang Y, Wu S, Zhao RR, Chen W. Physics-aware differentiable design of magnetically actuated kirigami for shape morphing. Nat Commun 2023; 14:8516. [PMID: 38129420 PMCID: PMC10739944 DOI: 10.1038/s41467-023-44303-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Shape morphing that transforms morphologies in response to stimuli is crucial for future multifunctional systems. While kirigami holds great promise in enhancing shape-morphing, existing designs primarily focus on kinematics and overlook the underlying physics. This study introduces a differentiable inverse design framework that considers the physical interplay between geometry, materials, and stimuli of active kirigami, made by soft material embedded with magnetic particles, to realize target shape-morphing upon magnetic excitation. We achieve this by combining differentiable kinematics and energy models into a constrained optimization, simultaneously designing the cuts and magnetization orientations to ensure kinematic and physical feasibility. Complex kirigami designs are obtained automatically with unparalleled efficiency, which can be remotely controlled to morph into intricate target shapes and even multiple states. The proposed framework can be extended to accommodate various active systems, bridging geometry and physics to push the frontiers in shape-morphing applications, like flexible electronics and minimally invasive surgery.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yilong Chang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Wei Chen
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
17
|
Mazeeva A, Masaylo D, Razumov N, Konov G, Popovich A. 3D Printing Technologies for Fabrication of Magnetic Materials Based on Metal-Polymer Composites: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6928. [PMID: 37959525 PMCID: PMC10648652 DOI: 10.3390/ma16216928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Additive manufacturing is a very rapidly developing industrial field. It opens many possibilities for the fast fabrication of complex-shaped products and devices, including functional materials and smart structures. This paper presents an overview of polymer 3D printing technologies currently used to produce magnetic materials and devices based on them. Technologies such as filament-fused modeling (FDM), direct ink writing (DIW), stereolithography (SLA), and binder jetting (BJ) are discussed. Their technological features, such as the optimal concentration of the filler, the shape and size of the filler particles, printing modes, etc., are considered to obtain bulk products with a high degree of detail and with a high level of magnetic properties. The polymer 3D technologies are compared with conventional technologies for manufacturing polymer-bonded magnets and with metal 3D technologies. This paper shows prospective areas of application of 3D polymer technologies for fabricating the magnetic elements of complex shapes, such as shim elements with an optimized shape and topology; advanced transformer cores; sensors; and, in particular, the fabrication of soft robots with a fast response to magnetic stimuli and composites based on smart fillers.
Collapse
Affiliation(s)
- Alina Mazeeva
- Institute of Machinery, Materials and Transport, Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya Str., 195251 Saint Petersburg, Russia; (D.M.); (N.R.); (G.K.); (A.P.)
| | | | | | | | | |
Collapse
|
18
|
Liu Y, Lin G, Medina-Sánchez M, Guix M, Makarov D, Jin D. Responsive Magnetic Nanocomposites for Intelligent Shape-Morphing Microrobots. ACS NANO 2023; 17:8899-8917. [PMID: 37141496 DOI: 10.1021/acsnano.3c01609] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
With the development of advanced biomedical theragnosis and bioengineering tools, smart and soft responsive microstructures and nanostructures have emerged. These structures can transform their body shape on demand and convert external power into mechanical actions. Here, we survey the key advances in the design of responsive polymer-particle nanocomposites that led to the development of smart shape-morphing microscale robotic devices. We overview the technological roadmap of the field and highlight the emerging opportunities in programming magnetically responsive nanomaterials in polymeric matrixes, as magnetic materials offer a rich spectrum of properties that can be encoded with various magnetization information. The use of magnetic fields as a tether-free control can easily penetrate biological tissues. With the advances in nanotechnology and manufacturing techniques, microrobotic devices can be realized with the desired magnetic reconfigurability. We emphasize that future fabrication techniques will be the key to bridging the gaps between integrating sophisticated functionalities of nanoscale materials and reducing the complexity and footprints of microscale intelligent robots.
Collapse
Affiliation(s)
- Yuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055 Guangdong Province, P. R. China
| | - Gungun Lin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Mariana Medina-Sánchez
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069 Dresden, Germany
- Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062 Dresden, Germany
| | - Maria Guix
- Universitat de Barcelona, Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional Barcelona, 08028 Barcelona, Spain
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|