1
|
Jung H, Dong S, Zahn D, Vasileiadis T, Seiler H, Schneider R, Michaelis de Vasconcellos S, Taylor VCA, Bratschitsch R, Ernstorfer R, Windsor YW. Element-Specific Ultrafast Lattice Dynamics in Monolayer WSe 2. NANO LETTERS 2024; 24:13671-13677. [PMID: 39431642 PMCID: PMC11528438 DOI: 10.1021/acs.nanolett.4c03611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
We study monolayer WSe2 using ultrafast electron diffraction. We introduce an approach to quantitatively extract atomic-site-specific information, providing an element-specific view of incoherent atomic vibrations following femtosecond excitation. Via differences between W and Se vibrations, we identify stages in the nonthermal evolution of the phonon population. Combined with a calculated phonon dispersion, this element specificity enables us to identify a long-lasting overpopulation of specific optical phonons and to interpret the stages as energy transfer processes between specific phonon groups. These results demonstrate the appeal of resolving element-specific vibrational information in the ultrafast time domain.
Collapse
Affiliation(s)
- Hyein Jung
- Institute
for Optics and Atomic Physics, Technical
University Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Shuo Dong
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Daniela Zahn
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Thomas Vasileiadis
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Helene Seiler
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Robert Schneider
- Institute
of Physics and Center for Nanotechnology, University of Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | | | - Victoria C. A. Taylor
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Rudolf Bratschitsch
- Institute
of Physics and Center for Nanotechnology, University of Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - Ralph Ernstorfer
- Institute
for Optics and Atomic Physics, Technical
University Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Yoav William Windsor
- Institute
for Optics and Atomic Physics, Technical
University Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
2
|
Zhao J, Fieramosca A, Bao R, Dini K, Su R, Sanvitto D, Xiong Q, Liew TCH. Room temperature polariton spin switches based on Van der Waals superlattices. Nat Commun 2024; 15:7601. [PMID: 39217138 PMCID: PMC11366025 DOI: 10.1038/s41467-024-51612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Transition-metal dichalcogenide monolayers possess large exciton binding energy and a robust valley degree of freedom, making them a viable platform for the development of spintronic devices capable of operating at room temperature. The development of such monolayer TMD-based spintronic devices requires strong spin-dependent interactions and effective spin transport. This can be achieved by employing exciton-polaritons. These hybrid light-matter states arising from the strong coupling of excitons and photons allow high-speed in-plane propagation and strong nonlinear interactions. Here, we demonstrate the operation of all-optical polariton spin switches by incorporating a WS2 superlattice into a planar microcavity. We demonstrate spin-anisotropic polariton nonlinear interactions in a WS2 superlattice at room temperature. As a proof-of-concept, we utilize these spin-dependent interactions to implement different spin switch geometries at ambient conditions, which show intrinsic sub-picosecond switching time and small footprint. Our findings offer new perspectives on manipulations of the polarization state in polaritonic systems and highlight the potential of atomically thin semiconductors for the development of next generation information processing devices.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Ruiqi Bao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kevin Dini
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rui Su
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Daniele Sanvitto
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, Lecce, Italy
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, P.R. China.
- Frontier Science Center for Quantum Information, Beijing, P.R. China.
- Beijing Academy of Quantum Information Sciences, Beijing, P.R. China.
- Beijing Innovation Center for Future Chips, Tsinghua University, Beijing, P.R. China.
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
3
|
Luo Y, Zhao J, Fieramosca A, Guo Q, Kang H, Liu X, Liew TCH, Sanvitto D, An Z, Ghosh S, Wang Z, Xu H, Xiong Q. Strong light-matter coupling in van der Waals materials. LIGHT, SCIENCE & APPLICATIONS 2024; 13:203. [PMID: 39168973 PMCID: PMC11339464 DOI: 10.1038/s41377-024-01523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/27/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
In recent years, two-dimensional (2D) van der Waals materials have emerged as a focal point in materials research, drawing increasing attention due to their potential for isolating and synergistically combining diverse atomic layers. Atomically thin transition metal dichalcogenides (TMDs) are one of the most alluring van der Waals materials owing to their exceptional electronic and optical properties. The tightly bound excitons with giant oscillator strength render TMDs an ideal platform to investigate strong light-matter coupling when they are integrated with optical cavities, providing a wide range of possibilities for exploring novel polaritonic physics and devices. In this review, we focused on recent advances in TMD-based strong light-matter coupling. In the foremost position, we discuss the various optical structures strongly coupled to TMD materials, such as Fabry-Perot cavities, photonic crystals, and plasmonic nanocavities. We then present several intriguing properties and relevant device applications of TMD polaritons. In the end, we delineate promising future directions for the study of strong light-matter coupling in van der Waals materials.
Collapse
Affiliation(s)
- Yuan Luo
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Jiaxin Zhao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Antonio Fieramosca
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Quanbing Guo
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| | - Haifeng Kang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Xiaoze Liu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Daniele Sanvitto
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
- INFN National Institute of Nuclear Physics, Lecce, 73100, Italy
| | - Zhiyuan An
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
| | - Sanjib Ghosh
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
| | - Ziyu Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Hongxing Xu
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China.
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China.
- Frontier Science Center for Quantum Information, Beijing, 100084, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, China.
| |
Collapse
|
4
|
Elrafei SA, Heijnen LM, Godiksen RH, Curto AG. Monolayer Semiconductor Superlattices with High Optical Absorption. ACS PHOTONICS 2024; 11:2587-2594. [PMID: 39036064 PMCID: PMC11258785 DOI: 10.1021/acsphotonics.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024]
Abstract
Optical absorption plays a central role in optoelectronic and photonic technologies. Strongly absorbing materials are thus needed for efficient and miniaturized devices. A uniform film much thinner than the wavelength can only absorb up to 50% of the incident light when embedded in a symmetric and homogeneous environment. Although deviating from these conditions allows higher absorption, finding the thinnest possible material with the highest intrinsic absorption is still desirable. Here, we demonstrate strong absorption by artificially stacking WS2 monolayers into superlattices. We compare three simple approaches based on different spacer materials to surpass the peak absorptance of a single WS2 monolayer, which stands at 16% on ideal substrates. Through direct monolayer stacking without an intentional spacer, we reach an absorptance of 27% for an artificial bilayer, although with limited control over interlayer distance. Using a molecular spacer via spin coating, we demonstrate controllable spacer thickness in a bilayer with 25% absorptance while increasing photoluminescence thanks to doping. Finally, we exploit the atomic layer deposition of alumina spacers to boost the absorptance to 31% for a 4-monolayer superlattice. Our results demonstrate that monolayer superlattices are a powerful platform directly applicable to improve strong light-matter coupling and enhance the performance of nanophotonic devices such as modulators and photodetectors.
Collapse
Affiliation(s)
- Sara A. Elrafei
- Department
of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, 5600 MBEindhoven, The Netherlands
| | - Lennart M. Heijnen
- Department
of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, 5600 MBEindhoven, The Netherlands
| | - Rasmus H. Godiksen
- Department
of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, 5600 MBEindhoven, The Netherlands
| | - Alberto G. Curto
- Department
of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, 5600 MBEindhoven, The Netherlands
- Photonics
Research Group, Ghent University-imec, 9000Ghent, Belgium
- Center
for Nano- and Biophotonics, Ghent University, 9000Ghent, Belgium
| |
Collapse
|
5
|
Fan Y, Wan Q, Yao Q, Chen X, Guan Y, Alnatah H, Vaz D, Beaumariage J, Watanabe K, Taniguchi T, Wu J, Sun Z, Snoke D. High Efficiency of Exciton-Polariton Lasing in a 2D Multilayer Structure. ACS PHOTONICS 2024; 11:2722-2728. [PMID: 39036061 PMCID: PMC11258782 DOI: 10.1021/acsphotonics.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024]
Abstract
We have placed a van der Waals homostructure, formed by stacking three two-dimensional layers of WS2 separated by insulating hBN, similar to a multiple-quantum well structure, inside a microcavity, which facilitates the formation of quasiparticles known as exciton-polaritons. The polaritons are a combination of light and matter, allowing laser emission to be enhanced by nonlinear scattering, as seen in prior polariton lasers. In the experiments reported here, we have observed laser emission with an ultralow threshold. The threshold was approximately 59 nW/μm2, with a lasing efficiency of 3.82%. These findings suggest a potential for efficient laser operations using such homostructures.
Collapse
Affiliation(s)
- Yuening Fan
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Qiaochu Wan
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Qi Yao
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xingzhou Chen
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Yuanjun Guan
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Hassan Alnatah
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Daniel Vaz
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jonathan Beaumariage
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kenji Watanabe
- Research
Center for Electronic and Optical Materials, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research
Center for Materials Nanoarchitectonics, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jian Wu
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative
Innovation Center of Extreme Optics, Taiyuan, Shanxi 030006, China
- Chongqing
Key Laboratory of Precision Optics, Chongqing 401121, China
| | - Zheng Sun
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative
Innovation Center of Extreme Optics, Taiyuan, Shanxi 030006, China
| | - David Snoke
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
6
|
Fieramosca A, Mastria R, Dini K, Dominici L, Polimeno L, Pugliese M, Prontera CT, De Marco L, Maiorano V, Todisco F, Ballarini D, De Giorgi M, Gigli G, Liew TCH, Sanvitto D. Origin of Exciton-Polariton Interactions and Decoupled Dark States Dynamics in 2D Hybrid Perovskite Quantum Wells. NANO LETTERS 2024; 24:8240-8247. [PMID: 38925628 PMCID: PMC11247545 DOI: 10.1021/acs.nanolett.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The realization of efficient optical devices depends on the ability to harness strong nonlinearities, which are challenging to achieve with standard photonic systems. Exciton-polaritons formed in hybrid organic-inorganic perovskites offer a promising alternative, exhibiting strong interactions at room temperature (RT). Despite recent demonstrations showcasing a robust nonlinear response, further progress is hindered by an incomplete understanding of the microscopic mechanisms governing polariton interactions in perovskite-based strongly coupled systems. Here, we investigate the nonlinear properties of quasi-2D dodecylammonium lead iodide perovskite (n3-C12) crystals embedded in a planar microcavity. Polarization-resolved pump-probe measurements reveal the contribution of indirect exchange interactions assisted by dark states formation. Additionally, we identify a strong dependence of the unique spin-dependent interaction of polaritons on sample detuning. The results are pivotal for the advancement of polaritonics, and the tunability of the robust spin-dependent anisotropic interaction in n3-C12 perovskites makes this material a powerful choice for the realization of polaritonic circuits.
Collapse
Affiliation(s)
- Antonio Fieramosca
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Rosanna Mastria
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Kevin Dini
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Lorenzo Dominici
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Laura Polimeno
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Marco Pugliese
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | | | - Luisa De Marco
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Vincenzo Maiorano
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Francesco Todisco
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Dario Ballarini
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Milena De Giorgi
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Giuseppe Gigli
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
- Department of Mathematics and Physics Ennio De Giorgi, University of Salento, Via Arnesano, Lecce 73100, Italy
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Daniele Sanvitto
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| |
Collapse
|
7
|
Trallero-Giner C, Santiago-Pérez DG, Tkachenko DV, Marques GE, Fomin VM. Raman scattering owing to magneto-polaron states in monolayer transition metal dichalcogenides. Sci Rep 2024; 14:12857. [PMID: 38834720 DOI: 10.1038/s41598-024-63179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Magneto-optical measurements are fundamental research tools that allow for studying the hitherto unexplored optical transitions and the related applications of topological two-dimensional (2D) transition metal dichalcogenides (TMDs). A theoretical model is developed for the first-order magneto-resonant Raman scattering in a monolayer of TMD. A significant number of avoided crossing points involving optical phonons in the magneto-polaron (MP) spectrum, a superposition of the electron and hole states in the excitation branches, and their manifestations in optical transitions at various light scattering configurations are unique features for these 2D structures. The Raman intensity reveals three resonant splittings of double avoided-crossing levels. The three excitation branches are present in the MP spectrum provoked by the coupling of the Landau levels in the conduction and valence bands via an out-of-plane A 1 -optical phonon mode. The energy gaps at the anticrossing points in the MP scattering spectrum are revealed as a function of the electron and hole optical deformation potential constants. The resonant MP Raman scattering efficiency profile allows for quantifying the relative contribution of the conduction and valence bands in the formation of MPs. The results obtained are a guideline for controlling MP effects on the magneto-optical properties of TMD semiconductors, which open pathways to novel optoelectronic devices based on 2D TMDs.
Collapse
Affiliation(s)
- C Trallero-Giner
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo, 13.565-905, Brazil
| | - D G Santiago-Pérez
- Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, 62209, Cuernavaca, Morelos, Mexico
| | - D V Tkachenko
- Pridnestrovian State University, 25 October Str., 128, 3300, Tiraspol, Republic of Moldova
| | - G E Marques
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo, 13.565-905, Brazil
| | - V M Fomin
- Institute for Emerging Electronic Technologies (IET), Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraβe 20, 01069, Dresden, Germany.
- Faculty of Physics and Engineering, Moldova State University, Str. A. Mateevici 60, 2009, Chişinău, Republic of Moldova.
| |
Collapse
|
8
|
Hu Z, Krisnanda T, Fieramosca A, Zhao J, Sun Q, Chen Y, Liu H, Luo Y, Su R, Wang J, Watanabe K, Taniguchi T, Eda G, Wang XR, Ghosh S, Dini K, Sanvitto D, Liew TCH, Xiong Q. Energy transfer driven brightening of MoS 2 by ultrafast polariton relaxation in microcavity MoS 2/hBN/WS 2 heterostructures. Nat Commun 2024; 15:1747. [PMID: 38409100 PMCID: PMC10897444 DOI: 10.1038/s41467-024-45554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Energy transfer is a ubiquitous phenomenon that delivers energy from a blue-shifted emitter to a red-shifted absorber, facilitating wide photonic applications. Two-dimensional (2D) semiconductors provide unique opportunities for exploring novel energy transfer mechanisms in the atomic-scale limit. Herein, we have designed a planar optical microcavity-confined MoS2/hBN/WS2 heterojunction, which realizes the strong coupling among donor exciton, acceptor exciton, and cavity photon mode. This configuration demonstrates an unconventional energy transfer via polariton relaxation, brightening MoS2 with a record-high enhancement factor of ~440, i.e., two-order-of-magnitude higher than the data reported to date. The polariton relaxation features a short characteristic time of ~1.3 ps, resulting from the significantly enhanced intra- and inter-branch exciton-exciton scattering. The polariton relaxation dynamics is associated with Rabi energies in a phase diagram by combining experimental and theoretical results. This study opens a new direction of microcavity 2D semiconductor heterojunctions for high-brightness polaritonic light sources and ultrafast polariton carrier dynamics.
Collapse
Affiliation(s)
- Zehua Hu
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
| | - Tanjung Krisnanda
- Centre for Quantum Technologies, National University of Singapore, Singapore, 117543, Singapore
| | | | - Jiaxin Zhao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Qianlu Sun
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yuzhong Chen
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P.R. China
| | - Haiyun Liu
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P.R. China
| | - Yuan Luo
- State Key Laboratory of Low-Dimensional Quantum, Department of Physics Physics, Tsinghua University, Beijing, 100084, P.R. China
| | - Rui Su
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Junyong Wang
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Goki Eda
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Xiao Renshaw Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Sanjib Ghosh
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P.R. China
| | - Kevin Dini
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
| | | | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Qihua Xiong
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P.R. China.
- State Key Laboratory of Low-Dimensional Quantum, Department of Physics Physics, Tsinghua University, Beijing, 100084, P.R. China.
- Frontier Science Center for Quantum Information, Beijing, 100084, P.R. China.
- Collaborative Innovation Center of Quantum Matter, Beijing, P.R. China.
| |
Collapse
|
9
|
Kang H, Ma J, Li J, Zhang X, Liu X. Exciton Polaritons in Emergent Two-Dimensional Semiconductors. ACS NANO 2023; 17:24449-24467. [PMID: 38051774 DOI: 10.1021/acsnano.3c07993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The "marriage" of light (i.e., photon) and matter (i.e., exciton) in semiconductors leads to the formation of hybrid quasiparticles called exciton polaritons with fascinating quantum phenomena such as Bose-Einstein condensation (BEC) and photon blockade. The research of exciton polaritons has been evolving into an era with emergent two-dimensional (2D) semiconductors and photonic structures for their tremendous potential to break the current limitations of quantum fundamental study and photonic applications. In this Perspective, the basic concepts of 2D excitons, optical resonators, and the strong coupling regime are introduced. The research progress of exciton polaritons is reviewed, and important discoveries (especially the recent ones of 2D exciton polaritons) are highlighted. Subsequently, the emergent 2D exciton polaritons are discussed in detail, ranging from the realization of the strong coupling regime in various photonic systems to the discoveries of attractive phenomena with interesting physics and extensive applications. Moreover, emerging 2D semiconductors, such as 2D perovskites (2DPK) and 2D antiferromagnetic (AFM) semiconductors, are surveyed for the manipulation of exciton polaritons with distinct control degrees of freedom (DOFs). Finally, the outlook on the 2D exciton polaritons and their nonlinear interactions is presented with our initial numerical simulations. This Perspective not only aims to provide an in-depth overview of the latest fundamental findings in 2D exciton polaritons but also attempts to serve as a valuable resource to prospect explorations of quantum optics and topological photonic applications.
Collapse
Affiliation(s)
- Haifeng Kang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jingwen Ma
- Faculty of Science and Engineering, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Junyu Li
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiang Zhang
- Faculty of Science and Engineering, The University of Hong Kong, Hong Kong, SAR, P. R. China
- Department of Physics, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Xiaoze Liu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
10
|
Lee H, Kim YB, Ryu JW, Kim S, Bae J, Koo Y, Jang D, Park KD. Recent progress of exciton transport in two-dimensional semiconductors. NANO CONVERGENCE 2023; 10:57. [PMID: 38102309 PMCID: PMC10724105 DOI: 10.1186/s40580-023-00404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
Spatial manipulation of excitonic quasiparticles, such as neutral excitons, charged excitons, and interlayer excitons, in two-dimensional semiconductors offers unique capabilities for a broad range of optoelectronic applications, encompassing photovoltaics, exciton-integrated circuits, and quantum light-emitting systems. Nonetheless, their practical implementation is significantly restricted by the absence of electrical controllability for neutral excitons, short lifetime of charged excitons, and low exciton funneling efficiency at room temperature, which remain a challenge in exciton transport. In this comprehensive review, we present the latest advancements in controlling exciton currents by harnessing the advanced techniques and the unique properties of various excitonic quasiparticles. We primarily focus on four distinct control parameters inducing the exciton current: electric fields, strain gradients, surface plasmon polaritons, and photonic cavities. For each approach, the underlying principles are introduced in conjunction with its progression through recent studies, gradually expanding their accessibility, efficiency, and functionality. Finally, we outline the prevailing challenges to fully harness the potential of excitonic quasiparticles and implement practical exciton-based optoelectronic devices.
Collapse
Affiliation(s)
- Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yong Bin Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jae Won Ryu
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sujeong Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jinhyuk Bae
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Donghoon Jang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
11
|
Chen X, Alnatah H, Mao D, Xu M, Fan Y, Wan Q, Beaumariage J, Xie W, Xu H, Shi ZY, Snoke D, Sun Z, Wu J. Bose Condensation of Upper-Branch Exciton-Polaritons in a Transferable Microcavity. NANO LETTERS 2023; 23:9538-9546. [PMID: 37818838 PMCID: PMC10603810 DOI: 10.1021/acs.nanolett.3c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Exciton-polaritons are composite quasiparticles that result from the coupling of excitonic transitions and optical modes. They have been extensively studied because of their quantum phenomena and potential applications in unconventional coherent light sources and all-optical control elements. In this work, we report the observation of Bose-Einstein condensation of the upper polariton branch in a transferable WS2 monolayer microcavity. Near the condensation threshold, we observe a nonlinear increase in upper polariton intensity accompanied by a decrease in line width and an increase in temporal coherence, all of which are hallmarks of Bose-Einstein condensation. Simulations show that this condensation occurs within a specific particle density range, depending on the excitonic properties and pumping conditions. The manifestation of upper polariton condensation unlocks new possibilities for studying the condensate competition while linking it to practical realizations in polaritonic lasers. Our findings contribute to the understanding of bosonic systems and offer potential for the development of polaritonic devices.
Collapse
Affiliation(s)
- Xingzhou Chen
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Hassan Alnatah
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Danqun Mao
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Mengyao Xu
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Yuening Fan
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Qiaochu Wan
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jonathan Beaumariage
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wei Xie
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Hongxing Xu
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Zhe-Yu Shi
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - David Snoke
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zheng Sun
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative
Innovation Center of Extreme Optics, Shanxi
University, Taiyuan, Shanxi 030006, China
| | - Jian Wu
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative
Innovation Center of Extreme Optics, Shanxi
University, Taiyuan, Shanxi 030006, China
- Chongqing
Key Laboratory of Precision Optics, Chongqing
Institute of East China Normal University, Chongqing 401121, China
- CAS
Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| |
Collapse
|
12
|
Chen Y, Shi Y, Gan Y, Liu H, Li T, Ghosh S, Xiong Q. Unraveling the Ultrafast Coherent Dynamics of Exciton Polariton Propagation at Room Temperature. NANO LETTERS 2023; 23:8704-8711. [PMID: 37681647 DOI: 10.1021/acs.nanolett.3c02547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Exciton polaritons are widely considered as promising platforms for developing room-temperature polaritonic devices, owing to the high-speed propagation and nonlinear interactions. However, it remains challenging to explore the dynamics of exciton polaritons specifically at room temperature, where the lifetime could be as small as a few picoseconds and the prevailing time-averaged measurement cannot give access to the true nature of it. Herein, by using the time-resolved photoluminescence, we have successfully traced the ultrafast coherent dynamics of a moving exciton polariton condensate in a one-dimensional perovskite microcavity. The propagation speed is directly measured to be ∼12.2 ± 0.8 μm/ps. Moreover, we have developed a time-resolved Michelson interferometry to quantify the time-dependent phase coherence, which reveals that the actual coherence time of exciton polaritons could be much longer (nearly 100%) than what was believed before. Our work sheds new light on the ultrafast coherent propagation of exciton polaritons at room temperature.
Collapse
Affiliation(s)
- Yuzhong Chen
- Beijing Academy of Quantum Information Sciences, Beijing 100193, People's Republic of China
| | - Ying Shi
- Beijing Academy of Quantum Information Sciences, Beijing 100193, People's Republic of China
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yusong Gan
- Beijing Academy of Quantum Information Sciences, Beijing 100193, People's Republic of China
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Haiyun Liu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, People's Republic of China
| | - Tengfei Li
- Beijing Academy of Quantum Information Sciences, Beijing 100193, People's Republic of China
| | - Sanjib Ghosh
- Beijing Academy of Quantum Information Sciences, Beijing 100193, People's Republic of China
| | - Qihua Xiong
- Beijing Academy of Quantum Information Sciences, Beijing 100193, People's Republic of China
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China
- Frontier Science Center for Quantum Information, Beijing 100084, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, People's Republic of China
| |
Collapse
|