1
|
Yang Y, Lu X, Liu N, Ma S, Zhang H, Zhang Z, Yang K, Jiang M, Zheng Z, Qiao Y, Hu Q, Huang Y, Zhang Y, Xiong M, Liu L, Jiang X, Reddy P, Dong X, Xu F, Wang Q, Zhao Q, Lei J, Sun S, Jing Y, Li J, Cai Y, Fan Y, Yan K, Jing Y, Haghani A, Xing M, Zhang X, Zhu G, Song W, Horvath S, Rodriguez Esteban C, Song M, Wang S, Zhao G, Li W, Izpisua Belmonte JC, Qu J, Zhang W, Liu GH. Metformin decelerates aging clock in male monkeys. Cell 2024; 187:6358-6378.e29. [PMID: 39270656 DOI: 10.1016/j.cell.2024.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024]
Abstract
In a rigorous 40-month study, we evaluated the geroprotective effects of metformin on adult male cynomolgus monkeys, addressing a gap in primate aging research. The study encompassed a comprehensive suite of physiological, imaging, histological, and molecular evaluations, substantiating metformin's influence on delaying age-related phenotypes at the organismal level. Specifically, we leveraged pan-tissue transcriptomics, DNA methylomics, plasma proteomics, and metabolomics to develop innovative monkey aging clocks and applied these to gauge metformin's effects on aging. The results highlighted a significant slowing of aging indicators, notably a roughly 6-year regression in brain aging. Metformin exerts a substantial neuroprotective effect, preserving brain structure and enhancing cognitive ability. The geroprotective effects on primate neurons were partially mediated by the activation of Nrf2, a transcription factor with anti-oxidative capabilities. Our research pioneers the systemic reduction of multi-dimensional biological age in primates through metformin, paving the way for advancing pharmaceutical strategies against human aging.
Collapse
Affiliation(s)
- Yuanhan Yang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyong Lu
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zhiyi Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kuan Yang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Jiang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zikai Zheng
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yicheng Qiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinchao Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510060, China
| | - Ying Huang
- Chongqing Fifth People's Hospital, Chongqing 400060, China
| | - Yiyuan Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Muzhao Xiong
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixiao Liu
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jiang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pradeep Reddy
- Altos Labs San Diego Institute of Science, San Diego, CA, USA
| | - Xueda Dong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanshu Xu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoran Wang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhao
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jinghui Lei
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Shuhui Sun
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Ying Jing
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jingyi Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Yusheng Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanling Fan
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Kaowen Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yaobin Jing
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; International Center for Aging and Cancer, Hainan Medical University, Haikou 571199, China
| | - Amin Haghani
- Altos Labs San Diego Institute of Science, San Diego, CA, USA
| | - Mengen Xing
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guodong Zhu
- Institute of Gerontology, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weihong Song
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Steve Horvath
- Altos Labs San Diego Institute of Science, San Diego, CA, USA
| | | | - Moshi Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China; National Medical Center for Neurological Diseases, Beijing 100053, China; Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jing Qu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| |
Collapse
|
2
|
Xinyue Z, Li S, Yujie W, Yingcai D, Changhao B, Xueli Z. Engineering of HEK293T Cell Factory for Lentiviral Production by High-Throughput Selected Genes. CRISPR J 2024; 7:272-282. [PMID: 39387256 DOI: 10.1089/crispr.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Lentiviral vectors (LVs) are crucial tools in gene therapy and bioproduction, but high-yield LV production systems are urgently needed. Using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 high-throughput screening, we identified nine critical genes (LDAH, GBP3, BPIFC, NHLRC1, NHLRC3, ZNF425, TTC37, LRRC4B, and SPINK6) from 17,501 genes that limit LV packaging and formation. Knocking out these genes in HEK293T cells significantly increased virus production, with LDAH knockout exhibiting a 6.63-fold increase. Studies on multigene knockouts demonstrated that the cumulative effects of different gene knockouts can significantly enhance lentivirus production in HEK293T cells. Triple knockout of GBP3, BPIFC, and LDAH increased LV titer by ∼8.33-fold, and knockout (or knockdown) of GBP3, NHLRC1, and NHLRC3 increased LV titer by ∼6.53-fold. This study established HEK293T cell lines with multiple genes knockout for efficient LV production, providing reliable technical support for LV production and application and offering new perspectives for studying LV packaging mechanisms and related virus research.
Collapse
Affiliation(s)
- Zhang Xinyue
- Tianjin University of Science and Technology, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wang Yujie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Binzhou Medical University, Shandong, China
| | - Dai Yingcai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Shanghai Jiao Tong University, Shanghai, China
| | - Bi Changhao
- Tianjin University of Science and Technology, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhang Xueli
- Tianjin University of Science and Technology, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
3
|
Rosoff DB, Hamandi AM, Bell AS, Mavromatis LA, Park LM, Jung J, Wagner J, Lohoff FW. Major Psychiatric Disorders, Substance Use Behaviors, and Longevity. JAMA Psychiatry 2024; 81:889-901. [PMID: 38888899 PMCID: PMC11195603 DOI: 10.1001/jamapsychiatry.2024.1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/04/2024] [Indexed: 06/20/2024]
Abstract
Importance Observational studies suggest that major psychiatric disorders and substance use behaviors reduce longevity, making it difficult to disentangle their relationships with aging-related outcomes. Objective To evaluate the associations between the genetic liabilities for major psychiatric disorders, substance use behaviors (smoking and alcohol consumption), and longevity. Design, Settings, and Participants This 2-sample mendelian randomization (MR) study assessed associations between psychiatric disorders, substance use behaviors, and longevity using single-variable and multivariable models. Multiomics analyses were performed elucidating transcriptomic underpinnings of the MR associations and identifying potential proteomic therapeutic targets. This study sourced summary-level genome-wide association study (GWAS) data, gene expression, and proteomic data from cohorts of European ancestry. Analyses were performed from May 2022 to November 2023. Exposures Genetic susceptibility for major depression (n = 500 199), bipolar disorder (n = 413 466), schizophrenia (n = 127 906), problematic alcohol use (n = 435 563), weekly alcohol consumption (n = 666 978), and lifetime smoking index (n = 462 690). Main Outcomes and Measures The main outcome encompassed aspects of health span, lifespan, and exceptional longevity. Additional outcomes were epigenetic age acceleration (EAA) clocks. Results Findings from multivariable MR models simultaneously assessing psychiatric disorders and substance use behaviorsm suggest a negative association between smoking and longevity in cohorts of European ancestry (n = 709 709; 431 503 [60.8%] female; β, -0.33; 95% CI, -0.38 to -0.28; P = 4.59 × 10-34) and with increased EAA (n = 34 449; 18 017 [52.3%] female; eg, PhenoAge: β, 1.76; 95% CI, 0.72 to 2.79; P = 8.83 × 10-4). Transcriptomic imputation and colocalization identified 249 genes associated with smoking, including 36 novel genes not captured by the original smoking GWAS. Enriched pathways included chromatin remodeling and telomere assembly and maintenance. The transcriptome-wide signature of smoking was inversely associated with longevity, and estimates of individual smoking-associated genes, eg, XRCC3 and PRMT6, aligned with the smoking-longevity MR analyses, suggesting underlying transcriptomic mediators. Cis-instrument MR prioritized brain proteins associated with smoking behavior, including LY6H (β, 0.02; 95% CI, 0.01 to 0.03; P = 2.37 × 10-6) and RIT2 (β, 0.02; 95% CI, 0.01 to 0.03; P = 1.05 × 10-5), which had favorable adverse-effect profiles across 367 traits evaluated in phenome-wide MR. Conclusions The findings suggest that the genetic liability of smoking, but not of psychiatric disorders, is associated with longevity. Transcriptomic associations offer insights into smoking-related pathways, and identified proteomic targets may inform therapeutic development for smoking cessation strategies.
Collapse
Affiliation(s)
- Daniel B. Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
- Radcliffe Department of Medicine, NIH-Oxford-Cambridge Scholars Program, University of Oxford, United Kingdom
| | - Ali M. Hamandi
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Andrew S. Bell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Lucas A. Mavromatis
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Lauren M. Park
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Josephin Wagner
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Biomarkers of Cellular Senescence and Aging: Current State-of-the-Art, Challenges and Future Perspectives. Adv Biol (Weinh) 2024; 8:e2400079. [PMID: 38935557 DOI: 10.1002/adbi.202400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Population aging has increased the global prevalence of aging-related diseases, including cancer, sarcopenia, neurological disease, arthritis, and heart disease. Understanding aging, a fundamental biological process, has led to breakthroughs in several fields. Cellular senescence, evinced by flattened cell bodies, vacuole formation, and cytoplasmic granules, ubiquitously plays crucial roles in tissue remodeling, embryogenesis, and wound repair as well as in cancer therapy and aging. The lack of universal biomarkers for detecting and quantifying senescent cells, in vitro and in vivo, constitutes a major limitation. The applications and limitations of major senescence biomarkers, including senescence-associated β-galactosidase staining, telomere shortening, cell-cycle arrest, DNA methylation, and senescence-associated secreted phenotypes are discussed. Furthermore, explore senotherapeutic approaches for aging-associated diseases and cancer. In addition to the conventional biomarkers, this review highlighted the in vitro, in vivo, and disease models used for aging studies. Further, technologies from the current decade including multi-omics and computational methods used in the fields of senescence and aging are also discussed in this review. Understanding aging-associated biological processes by using cellular senescence biomarkers can enable therapeutic innovation and interventions to improve the quality of life of older adults.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, 41062, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
- Korean Convergence Medicine Major, University of Science & Technology (UST), KIOM Campus, Daejeon, 34054, Republic of Korea
| |
Collapse
|
5
|
Sun M, Yang H, Hu Y, Fan J, Duan M, Ruan J, Li S, Xu Y, Han Y. Differential white blood cell count and epigenetic clocks: a bidirectional Mendelian randomization study. Clin Epigenetics 2024; 16:118. [PMID: 39192327 DOI: 10.1186/s13148-024-01717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Human aging and white blood cell (WBC) count are complex traits influenced by multiple genetic factors. Predictors of chronological age have been developed using epigenetic clocks. However, the bidirectional causal effects between epigenetic clocks and WBC count have not been fully examined. METHODS This study employed Mendelian randomization (MR) to analyze summary statistics from four epigenetic clocks involving 34,710 participants, alongside data from the Blood Cell Consortium encompassing 563,946 individuals. We primarily explored bidirectional causal relationships using the random-effects inverse-variance weighted method, supplemented by additional MR methods for comprehensive analysis. Additionally, multivariate MR was applied to investigate independent effects of WBC count on epigenetic age acceleration. RESULTS In the two-sample univariate MR (UVMR) analysis, we observed that a decrease in lymphocyte count markedly accelerated aging according to the PhenoAge, GrimAge, and HannumAge metrics (all P < 0.01, β < 0), though it did not affect Intrinsic Epigenetic Age Acceleration (IEAA). Conversely, an increase in neutrophil count significantly elevated PhenoAge levels (β: 0.38; 95% CI 0.14, 0.61; P = 1.65E-03 < 0.01). Reverse MR revealed no significant causal impacts of epigenetic clocks on overall WBC counts. Furthermore, in multivariate MR, the impact of lymphocyte counts on epigenetic aging metrics remained statistically significant. We also identified a marked causal association between neutrophil counts and PhenoAge, GrimAge, and HannumAge, with respective results showing strong associations (PhenoAge β: 0.78; 95% CI 0.47, 1.09; P = 8.26E-07; GrimAge β: 0.55; 95% CI 0.31, 0.79; P = 5.50E-06; HannumAge β: 0.42; 95% CI 0.18, 0.67; P = 6.30E-04). Likewise, eosinophil cell count demonstrated significant association with HannumAge (β: 0.33; 95% CI 0.13, 0.53; P = 1.43E-03 < 0.01). CONCLUSION These findings demonstrated that within WBCs, lymphocyte and neutrophil counts exert irreversible and independent causal effects on the acceleration of PhenoAge, GrimAge, and HannumAge. Our findings highlight the critical role of WBCs in influencing epigenetic clocks and underscore the importance of considering immune parameters when interpreting epigenetic age.
Collapse
Affiliation(s)
- Manli Sun
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Huan Yang
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Yang Hu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jiaqi Fan
- College of Public Health, Harbin Medical University, Harbin, China
| | - Mingjing Duan
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Jingqi Ruan
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Shichang Li
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Yang Xu
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Yue Han
- The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China.
| |
Collapse
|
6
|
Llewellyn J, Hubbard SJ, Swift J. Translation is an emerging constraint on protein homeostasis in ageing. Trends Cell Biol 2024; 34:646-656. [PMID: 38423854 DOI: 10.1016/j.tcb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Proteins are molecular machines that provide structure and perform vital transport, signalling and enzymatic roles. Proteins expressed by cells require tight regulation of their concentration, folding, localisation, and modifications; however, this state of protein homeostasis is continuously perturbed by tissue-level stresses. While cells in healthy tissues are able to buffer against these perturbations, for example, by expression of chaperone proteins, protein homeostasis is lost in ageing, and can lead to protein aggregation characteristic of protein folding diseases. Here, we review reports of a progressive disconnect between transcriptomic and proteomic regulation during cellular ageing. We discuss how age-associated changes to cellular responses to specific stressors in the tissue microenvironment are exacerbated by loss of ribosomal proteins, ribosomal pausing, and mistranslation.
Collapse
Affiliation(s)
- Jack Llewellyn
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Simon J Hubbard
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
| | - Joe Swift
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
7
|
Li X, Guo Y, Liang H, Wang J, Qi L. Genome-wide association analysis of hypertension and epigenetic aging reveals shared genetic architecture and identifies novel risk loci. Sci Rep 2024; 14:17792. [PMID: 39090212 PMCID: PMC11294447 DOI: 10.1038/s41598-024-68751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Hypertension is a disease associated with epigenetic aging. However, the pathogenic mechanism underlying this relationship remains unclear. We aimed to characterize the shared genetic architecture of hypertension and epigenetic aging, and identify novel risk loci. Leveraging genome-wide association studies (GWAS) summary statistics of hypertension (129,909 cases and 354,689 controls) and four epigenetic clocks (N = 34,710), we investigated genetic architectures and genetic overlap using bivariate casual mixture model and conditional/conjunctional false discovery rate methods. Functional gene-sets pathway analyses were performed by functional mapping and gene annotation (FUMA) protocol. Hypertension was polygenic with 2.8 K trait-influencing genetic variants. We observed cross-trait genetic enrichment and genetic overlap between hypertension and all four measures of epigenetic aging. Further, we identified 32 distinct genomic loci jointly associated with hypertension and epigenetic aging. Notably, rs1849209 was shared between hypertension and three epigenetic clocks (HannumAge, IEAA, and PhenoAge). The shared loci exhibited a combination of concordant and discordant allelic effects. Functional gene-set analyses revealed significant enrichment in biological pathways related to sensory perception of smell and nervous system processes. We observed genetic overlaps with mixed effect directions between hypertension and all four epigenetic aging measures, and identified 32 shared distinct loci with mixed effect directions, 25 of which were novel for hypertension. Shared genes enriched in biological pathways related to olfaction.
Collapse
Affiliation(s)
- Xin Li
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, 511436, China
| | - Yu Guo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150086, China
| | - Haihai Liang
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, 511436, China.
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, China.
| | - Jinghao Wang
- Department of Pharmacy, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Lishuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
8
|
Qi W, Wang D, Hong Y, Yao J, Wang H, Zhu L, Pan H. Investigating the causal relationship between thyroid dysfunction diseases and osteoporosis: a two-sample Mendelian randomization analysis. Sci Rep 2024; 14:12784. [PMID: 38834708 DOI: 10.1038/s41598-024-62854-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
The prevalence of thyroid dysfunction diseases (TDFDs) and osteoporosis (OP) is high. Previous studies have indicated a potential association between TDFDs and OP, yet the causal direction remains unclear. This study aimed to investigate the potential causal relationship between TDFDs and the risk of developing OP and related fractures. We obtained pooled data from genome-wide association studies (GWASs) conducted on TDFDs and OP in European populations and identified single-nucleotide polymorphisms (SNPs) with genome-wide significance levels associated with exposure to TDFDs as instrumental variables. Inverse variance weighted (IVW) was employed as the primary method for Mendelian randomization (MR) analysis, supplemented by MR‒Egger, weighted median, simple mode and weighted mode methods. Sensitivity analyses were conducted to evaluate the robustness of the findings. The IVW method demonstrated an increased risk of OP in patients with TDFDs, including hyperthyroidism and hypothyroidism (TDFDs: OR = 1.11; 95% CI 1.09, 1.13; hypothyroidism: OR = 1.14; 95% CI 1.10, 1.17; hyperthyroidism: OR = 1.09; 95% CI 1.06, 1.12). These findings were supported by supplementary analysis, which revealed a positive correlation between TDFDs and the risk of OP. Multiple sensitivity analyses confirmed the absence of horizontal pleiotropy in the study, thus indicating the robustness of our results. The causal relationship between TDFDs and increased risk of OP implies the need for early bone mineral density (BMD) screening and proactive prevention and treatment strategies for individuals with TDFDs.
Collapse
Affiliation(s)
- Weihui Qi
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Hangzhou Ding Qiao Hospital, Hangzhou, China
| | - Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Hangzhou Ding Qiao Hospital, Hangzhou, China
| | - Yihu Hong
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Hangzhou Ding Qiao Hospital, Hangzhou, China
| | - Jun Yao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Hangzhou Ding Qiao Hospital, Hangzhou, China
| | - Huang Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Hangzhou Ding Qiao Hospital, Hangzhou, China
| | - Li Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Orthopaedics, Hangzhou Ding Qiao Hospital, Hangzhou, China.
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Orthopaedics, Hangzhou Ding Qiao Hospital, Hangzhou, China.
| |
Collapse
|
9
|
Lu YQ, Wang Y. Multi-Omic Analysis Reveals Genetic Determinants and Therapeutic Targets of Chronic Kidney Disease and Kidney Function. Int J Mol Sci 2024; 25:6033. [PMID: 38892221 PMCID: PMC11172763 DOI: 10.3390/ijms25116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic kidney disease (CKD) presents a significant global health challenge, characterized by complex pathophysiology. This study utilized a multi-omic approach, integrating genomic data from the CKDGen consortium alongside transcriptomic, metabolomic, and proteomic data to elucidate the genetic underpinnings and identify therapeutic targets for CKD and kidney function. We employed a range of analytical methods including cross-tissue transcriptome-wide association studies (TWASs), Mendelian randomization (MR), summary-based MR (SMR), and molecular docking. These analyses collectively identified 146 cross-tissue genetic associations with CKD and kidney function. Key Golgi apparatus-related genes (GARGs) and 41 potential drug targets were highlighted, with MAP3K11 emerging as a significant gene from the TWAS and MR data, underscoring its potential as a therapeutic target. Capsaicin displayed promising drug-target interactions in molecular docking analyses. Additionally, metabolome- and proteome-wide MR (PWMR) analyses revealed 33 unique metabolites and critical inflammatory proteins such as FGF5 that are significantly linked to and colocalized with CKD and kidney function. These insights deepen our understanding of CKD pathogenesis and highlight novel targets for treatment and prevention.
Collapse
Affiliation(s)
| | - Yirong Wang
- School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China;
| |
Collapse
|
10
|
Raffington L. Utilizing epigenetics to study the shared nature of development and biological aging across the lifespan. NPJ SCIENCE OF LEARNING 2024; 9:24. [PMID: 38509146 PMCID: PMC10954727 DOI: 10.1038/s41539-024-00239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Recently, biological aging has been quantified in DNA-methylation samples of older adults and applied as so-called "methylation profile scores" (MPSs) in separate target samples, including samples of children. This nascent research indicates that (1) biological aging can be quantified early in the life course, decades before the onset of aging-related disease, (2) is affected by common environmental predictors of childhood development, and (3) shows overlap with "developmental processes" (e.g., puberty). Because the MPSs were computed using algorithms developed in adults, these studies indicate a molecular link between childhood environments, development, and adult biological aging. Yet, if MPSs can be used to connect development and aging, previous research has only traveled one way, deriving MPSs developed in adults and applying them to samples of children. Researchers have not yet quantified epigenetic measures that reflect the pace of child development, and tested whether resulting MPSs are associated with physical and psychological aging. In this perspective I posit that combining measures of biological aging with new quantifications of child development has the power to address fundamental questions about life span: How are development and experience in childhood related to biological aging in adulthood? And what is aging?
Collapse
Affiliation(s)
- Laurel Raffington
- Max Planck Research Group Biosocial-Biology, Social Disparities, and Development, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
| |
Collapse
|
11
|
Todorova MN, Savova MS, Mihaylova LV, Georgiev MI. Icariin Improves Stress Resistance and Extends Lifespan in Caenorhabditis elegans through hsf-1 and daf-2-Driven Hormesis. Int J Mol Sci 2023; 25:352. [PMID: 38203522 PMCID: PMC10778813 DOI: 10.3390/ijms25010352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/17/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Aging presents an increasingly significant challenge globally, driven by the growing proportion of individuals aged 60 and older. Currently, there is substantial research interest in pro-longevity interventions that target pivotal signaling pathways, aiming not only to extend lifespan but also to enhance healthspan. One particularly promising approach involves inducing a hormetic response through the utilization of natural compounds defined as hormetins. Various studies have introduced the flavonoid icariin as beneficial for age-related diseases such as cardiovascular and neurodegenerative conditions. To validate its potential pro-longevity properties, we employed Caenorhabditis elegans as an experimental platform. The accumulated results suggest that icariin extends the lifespan of C. elegans through modulation of the DAF-2, corresponding to the insulin/IGF-1 signaling pathway in humans. Additionally, we identified increased resistance to heat and oxidative stress, modulation of lipid metabolism, improved late-life healthspan, and an extended lifespan upon icariin treatment. Consequently, a model mechanism of action was provided for icariin that involves the modulation of various players within the stress-response network. Collectively, the obtained data reveal that icariin is a potential hormetic agent with geroprotective properties that merits future developments.
Collapse
Affiliation(s)
- Monika N. Todorova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (L.V.M.)
| | - Martina S. Savova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (L.V.M.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Liliya V. Mihaylova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (L.V.M.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Milen I. Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (L.V.M.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
12
|
Chen H, Zhou X, Hu J, Li S, Wang Z, Zhu T, Cheng H, Zhang G. Genetic insights into the association of statin and newer nonstatin drug target genes with human longevity: a Mendelian randomization analysis. Lipids Health Dis 2023; 22:220. [PMID: 38082436 PMCID: PMC10714481 DOI: 10.1186/s12944-023-01983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND It remains controversial whether the long-term use of statins or newer nonstatin drugs has a positive effect on human longevity. Therefore, this study aimed to investigate the genetic associations between different lipid-lowering therapeutic gene targets and human longevity. METHODS Two-sample Mendelian randomization analyses were conducted. The exposures comprised genetic variants that proxy nine drug target genes mimicking lipid-lowering effects (LDLR, HMGCR, PCKS9, NPC1L1, APOB, CETP, LPL, APOC3, and ANGPTL3). Two large-scale genome-wide association study (GWAS) summary datasets of human lifespan, including up to 500,193 European individuals, were used as outcomes. The inverse-variance weighting method was applied as the main approach. Sensitivity tests were conducted to evaluate the robustness, heterogeneity, and pleiotropy of the results. Causal effects were further validated using expression quantitative trait locus (eQTL) data. RESULTS Genetically proxied LDLR variants, which mimic the effects of lowering low-density lipoprotein cholesterol (LDL-C), were associated with extended lifespan. This association was replicated in the validation set and was further confirmed in the eQTL summary data of blood and liver tissues. Mediation analysis revealed that the genetic mimicry of LDLR enhancement extended lifespan by reducing the risk of major coronary heart disease, accounting for 22.8% of the mediation effect. The genetically proxied CETP and APOC3 inhibitions also showed causal effects on increased life expectancy in both outcome datasets. The lipid-lowering variants of HMGCR, PCKS9, LPL, and APOB were associated with longer lifespans but did not causally increase extreme longevity. No statistical evidence was detected to support an association between NPC1L1 and lifespan. CONCLUSION This study suggests that LDLR is a promising genetic target for human longevity. Lipid-related gene targets, such as PCSK9, CETP, and APOC3, might potentially regulate human lifespan, thus offering promising prospects for developing newer nonstatin therapies.
Collapse
Affiliation(s)
- Han Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, People's Republic of China.
- Branch of Health Promotion and Education, Jiangsu Anti-aging Association, Nanjing, People's Republic of China.
| | - Xiaoying Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Jingwen Hu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Shuo Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Zi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Tong Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hong Cheng
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Guoxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
13
|
Korchazhkina NB, Mikhailova AA, Reshetova IV, Dimova OV, Kotenko KV. [Modern approaches to developing a system of valid methods for monitoring individual health and maintaining active longevity]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2023; 100:6-13. [PMID: 38289299 DOI: 10.17116/kurort20231000616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Life expectancy In Russia in 2023, according to preliminary data, exceeded 73 years, returning to the pre-pandemic level. The increase in life expectancy is associated both with an improvement in the quality of medical care In Russia and with a more responsible attitude towards the health of citizens, which is confirmed by an improvement in the quality of nutrition, a decrease in alcohol consumption and an increase in the number of people involved in sports. At the same time, there are many signs of aging, both cellular and molecular, some of the main ones are genome stability, telomere shortening, epigenetic alterations, impaired proteostasis and nutrient recognition, mitochondrial dysfunction, depletion of the stem cell pool and changes in intercellular interactions, extracellular matrix rigidity, as well as retrotransposon activation and chronic inflammation. For these reasons, in modern healthcare, the tasks of preventing premature aging and treating age-related diseases are becoming priorities. MATERIAL AND METHODS In total, at the first stage of work (in 2023), we examined 80 people, whose average age was 59.6±0.7 years. When analyzing and assessing data, the study adopted a division into age groups (WHO). The following indicators were studied: HbA1, fructosamine, HDL cholesterol, LDL cholesterol, insulin, homocysteine, C-peptide, TSH, free T4, prolactin, total testosterone, cortisol, arginine, asymmetric dimethylarginine, leptin, TNF-a, ferritin, interleukin 1 and 6, telomere length, creatinine, uric acid and urea. RESULTS As a result of the study, it was revealed that the aging process of the body affects many indicators, while the main markers that changed in men aged 18 to 44 years were total testosterone, leptin and telomere length; aged 44 to 60 years - HbA1, fructosamine, HDL cholesterol, homocysteine, C-peptide, total testosterone, leptin and telomere length; from 60 to 75 years - fructosamine, HDL cholesterol and telomere length and for 75-90 years - HbA1, HDL cholesterol, insulin, total testosterone, leptin and telomere length, interleukin 6 and uric acid. In women aged 18 to 44 years, only an increase in leptin was observed against the background of shortening telomere length; at the age of 44 to 60 years, the main markers that changed were total testosterone, leptin and telomere length; for the age group 60-75 years - indicators of HbA1, homocysteine, C-peptide, prolactin, total testosterone and leptin, interleukin 6 and uric acid, telomere length was shorter by only 2%; in the age group of 75-90 years, the main markers that changed were insulin, total testosterone, leptin, interleukin 6, while the indicators of uric acid, urea and telomere length differed from the reference values by 2-4%. Shortening of telomere length in all age groups, both men and women, indicates the presence of signs of premature aging. In an individual analysis, data were obtained on a more dramatic shortening of telomeres in 16 subjects in the presence of impaired glucose tolerance and insulin secretion, especially in comparison with healthy subjects, which was confirmed by the data of glycated hemoglobin (HbA1c), while, with shortening of telomere length, the HbA1 indicator was significantly higher (6.8±0.5) than in individuals with long telomeres and no chronic pathology (5.1±0.4). CONCLUSION A system of highly valid methods and panels of markers has been developed that indicate the presence of aging processes, taking into account gender and age characteristics, which can be used to identify premature aging processes, monitor individual health and maintain active longevity, as well as for the prevention of age-associated diseases.
Collapse
Affiliation(s)
- N B Korchazhkina
- FSBSI «Petrovsky National Research Centre of Surgery», Moscow, Russia
| | - A A Mikhailova
- FSBSI «Petrovsky National Research Centre of Surgery», Moscow, Russia
| | - I V Reshetova
- FSBSI «Petrovsky National Research Centre of Surgery», Moscow, Russia
| | - O V Dimova
- FSBSI «Petrovsky National Research Centre of Surgery», Moscow, Russia
| | - K V Kotenko
- FSBSI «Petrovsky National Research Centre of Surgery», Moscow, Russia
| |
Collapse
|