1
|
Zhao B, Wang C, Sun M, Ma X, Zeng Q, Xi J, Zhou J, Pei X, Jia Y, Yue W. UC-MSCs based on biomimetic microniche exert excellent regulatory effects on acute brain inflammation through advantageous properties. Biomaterials 2025; 315:122945. [PMID: 39522143 DOI: 10.1016/j.biomaterials.2024.122945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/13/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Neuroinflammation triggered by activated microglia leads to neuronal damage and, to a certain extent, neurodegeneration. Human umbilical cord mesenchymal stem cells (UC-MSCs) have good immunomodulatory and neuroprotective effects as well as therapeutic potential for neuroinflammation-related diseases. However, the complex microenvironment created by neuroinflammation poses a challenge to transplanted UC-MSCs. The emerging biomimetic microniche (BN)-based culture technology provides new opportunities to optimize the preparation of UC-MSCs; but the fundamental changes in the characteristics of UC-MSCs based on BN remain unclear, and more reliable preclinical data are needed to support their ability to regulate inflammation. Here, we systematically studied the cellular properties and inflammation regulatory capacity of UC-MSCs in conventional static planar culture (SP-UCMSCs) and suspension culture based on BN (BN-UCMSCs). In vitro, compared with SP-UCMSCs, BN-UCMSCs not only maintained the fundamental characteristics of MSCs, but also significantly enhanced cell proliferation, adhesion, and migration capabilities, etc; notably, the paracrine function and anti-inflammatory capacity of BN-UCMSCs were also enhanced. We further established a murine model of acute brain inflammation and demonstrated that the expression level of pro-inflammatory cytokines in hippocampal and cortical tissues of the BN-UCMSCs group was significantly decreased compared with that in the SP-UCMSCs group. Subsequent transcriptomic analysis of hippocampal and cortical tissues revealed that BN-UCMSCs had the advantage of significantly reducing the expression of pro-inflammatory cytokines through the TLR4-Myd88-NF-κB axis, which was further validated at the gene and protein levels. Taken together, these data strongly indicated that BN-UCMSCs exerts excellent regulatory effects on acute brain inflammation through advantageous properties.
Collapse
Affiliation(s)
- Bichun Zhao
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chao Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Manqiang Sun
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiaocao Ma
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, Beijing, 100853, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jiafei Xi
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Junnian Zhou
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Yali Jia
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
2
|
Kim C, Kang N, Min S, Thangam R, Lee S, Hong H, Kim K, Kim SY, Kim D, Rha H, Tag KR, Lee HJ, Singh N, Jeong D, Hwang J, Kim Y, Park S, Lee H, Kim T, Son SW, Park S, Karamikamkar S, Zhu Y, Hassani Najafabadi A, Chu Z, Sun W, Zhao P, Zhang K, Bian L, Song HC, Park SG, Kim JS, Lee SY, Ahn JP, Kim HK, Zhang YS, Kang H. Modularity-based mathematical modeling of ligand inter-nanocluster connectivity for unraveling reversible stem cell regulation. Nat Commun 2024; 15:10665. [PMID: 39715783 DOI: 10.1038/s41467-024-54557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2024] [Indexed: 12/25/2024] Open
Abstract
The native extracellular matrix is continuously remodeled to form complex interconnected network structures that reversibly regulate stem cell behaviors. Both regulation and understanding of its intricate dynamicity can help to modulate numerous cell behaviors. However, neither of these has yet been achieved due to the lack of designing and modeling such complex structures with dynamic controllability. Here we report modularity-based mathematical modeling of extracellular matrix-emulating ligand inter-cluster connectivity using the graph theory. Increasing anisotropy of magnetic nano-blockers proportionately disconnects arginine-glycine-aspartic acid ligand-to-ligand interconnections and decreases the number of ligand inter-cluster edges. This phenomenon deactivates stem cells, which can be partly activated by linearizing the nano-blockers. Remote cyclic elevation of high-anisotropy nano-blockers flexibly generates nano-gaps under the nano-blockers and augments the number of ligand inter-cluster edges. Subsequently, integrin-presenting stem cell infiltration is stimulated, which reversibly intensifies focal adhesion and mechanotransduction-driven differentiation both in vitro and in vivo. Designing and systemically modeling extracellular matrix-mimetic geometries opens avenues for unraveling dynamic cell-material interactions for tissue regeneration.
Collapse
Affiliation(s)
- Chowon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Nayeon Kang
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sungkyu Lee
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Hyunsik Hong
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Kanghyeon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Seong Yeol Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Dahee Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Hyunji Rha
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Kyong-Ryol Tag
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyun-Jeong Lee
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Nem Singh
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Daun Jeong
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Jangsun Hwang
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sangwoo Park
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Hyesung Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Taeeon Kim
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, Republic of Korea
| | - Sang Wook Son
- Department of Dermatology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | | | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong, PR China
| | - Wujin Sun
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, PR China
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, PR China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, PR China
| | - Hyun-Cheol Song
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Sung-Gyu Park
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Sang-Yup Lee
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, Republic of Korea
| | - Jae-Pyoung Ahn
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hong-Kyu Kim
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA.
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea.
- Department of Future Convergence Materials, Korea University, Seoul, Republic of Korea.
- College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Cui Y, Ren Y, Ren F, Zhang Y, Wang H. Synergistic effect and molecular mechanism of nicotinamide and UM171 in ex vivo expansion of long-term hematopoietic stem cells. Regen Ther 2024; 27:191-199. [PMID: 38840730 PMCID: PMC11150914 DOI: 10.1016/j.reth.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Several approaches to expand human hematopoietic stem cells (HSCs) have been reported, but the ability of these methods to expand long-term hematopoietic stem cells (LT-HSCs) remains to be improved, which limits the application of HSCs-based therapies. Methods CD34+ cells were purified from umbilical cord blood using MacsCD34 beads, and then cultured for 12 d in a serum-free medium. Flow cytometry was used to detect phenotype, cell cycle distribution, and apoptosis of the cultured cells. Colony-forming cell (CFC) assays can evaluate multi-lineage differentiation potential of HSCs. Real-time polymerase chain reaction was employed to detect the expression of genes related to self-renewal programs and antioxidant activity. DCFH-DA probes were used to evaluate intracellular production of reactive oxygen species (ROS). Determination of the effect of different culture conditions on the balance of cytokine by cytometric bead array. Results Here, we show a combination, Nicotinamide (NAM) combined with pyrimidoindole derivative UM171, can massively expand LT-HSCs ex vivo, and the expanded cells maintained the capability of self-renewal and multilineage differentiation. Additionally, our data indicated that UM171 promoted self-renewal of HSCs by inducing HSCs entry into the cell cycle and activating Notch and Wnt pathways, but the infinite occurrence of this process may lead to mitochondrial metabolism disorder and differentiation of HSCs. NAM kept HSCs in their primitive and dormant states by reducing intracellular ROS levels and upregulating the expression of stemness related genes, so we believed that NAM can act as a brake to control the above process. Conclusions The discovery of the synergistic effect of NAM and UM171 for expanding LT-HSCs provides a new strategy in solving the clinical issue of limited numbers of HSCs.
Collapse
Affiliation(s)
- Yanni Cui
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yan Ren
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fanggang Ren
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Molecular Diagnosis and Treatment of Blood Diseases in Shanxi Province, Taiyuan, China
| | - Yaofang Zhang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Molecular Diagnosis and Treatment of Blood Diseases in Shanxi Province, Taiyuan, China
| | - Hongwei Wang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Molecular Diagnosis and Treatment of Blood Diseases in Shanxi Province, Taiyuan, China
- Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
4
|
Li G, Zhao Y, Liu R, Zhang Y, Zhang Y, Du W, Zhang Y. Highly effective strategy for isolation of mononuclear cells from frozen cord blood. J Immunol Methods 2024; 534:113762. [PMID: 39343085 DOI: 10.1016/j.jim.2024.113762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/18/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND AIMS Cord blood mononuclear cells (CBMCs) comprise a variety of single-nucleated cells found in the cord blood, mainly consisting of monocytes and lymphocytes. They also include a smaller proportion of other cell types, such as hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs). CBMCs are vital for acquiring HSPCs, MSCs, and other immune cells, like natural killer cells. These cells are essential for supporting subsequent research and clinical applications. Although automated equipment for CBMC enrichment has shown promise, the high cost of these machines and the expense of disposable consumables limit their routine use. Furthermore, limited information is available on manual strategies for isolating CBMCs from cryopreserved cord blood. Therefore, we aimed to optimize the dilution buffer and refine the isolation procedure for CBMCs. METHODS We enhanced the CBMC recovery rate from cryopreserved cord blood using an optimized dilution buffer and a modified isolation procedure. RESULTS We achieved average recovery rates of 42.4 % and 54.3 % for CBMCs and CD34+ cells, respectively. Notably, all reagents used in the isolation procedure were of GMP-grade or pharmaceutical preparations, underscoring the potential clinical benefits of our strategy. DISCUSSION We devised an optimized protocol suitable for routine research and clinical applications for enhanced recovery of CBMCs from cryopreserved cord blood units using an optimized dilution buffer and a modified isolation procedure.
Collapse
Affiliation(s)
- Guangzhao Li
- Union Stem Cell & Gene Engineering Co., LTD, Tianjin 300384, China; Tianjin Key Laboratory of Blood Cell Therapy Technology, Tianjin 300384, China; National Stem Cell Product Industrialization Base, Tianjin 300384, China
| | - Yunyan Zhao
- Union Stem Cell & Gene Engineering Co., LTD, Tianjin 300384, China; Tianjin Key Laboratory of Blood Cell Therapy Technology, Tianjin 300384, China; National Stem Cell Product Industrialization Base, Tianjin 300384, China
| | - Rongzhi Liu
- Union Stem Cell & Gene Engineering Co., LTD, Tianjin 300384, China; Tianjin Key Laboratory of Blood Cell Therapy Technology, Tianjin 300384, China; National Stem Cell Product Industrialization Base, Tianjin 300384, China
| | - Yabin Zhang
- Union Stem Cell & Gene Engineering Co., LTD, Tianjin 300384, China; Tianjin Key Laboratory of Blood Cell Therapy Technology, Tianjin 300384, China; National Stem Cell Product Industrialization Base, Tianjin 300384, China
| | - Yong Zhang
- Union Stem Cell & Gene Engineering Co., LTD, Tianjin 300384, China; Tianjin Key Laboratory of Blood Cell Therapy Technology, Tianjin 300384, China; National Stem Cell Product Industrialization Base, Tianjin 300384, China
| | - Wei Du
- Union Stem Cell & Gene Engineering Co., LTD, Tianjin 300384, China; Tianjin Key Laboratory of Blood Cell Therapy Technology, Tianjin 300384, China; National Stem Cell Product Industrialization Base, Tianjin 300384, China
| | - Yu Zhang
- Union Stem Cell & Gene Engineering Co., LTD, Tianjin 300384, China; Tianjin Key Laboratory of Blood Cell Therapy Technology, Tianjin 300384, China; National Stem Cell Product Industrialization Base, Tianjin 300384, China; Vcanbio Cell & Gene Engineering Co., Ltd, Tianjin 300384, China.
| |
Collapse
|
5
|
Li X, Zhang X, Wang S, Li Y, Meng C, Wang J, Chang B, Yang J. Simultaneous detection of multiple urinary biomarkers in patients with early-stage diabetic kidney disease using Luminex liquid suspension chip technology. Front Endocrinol (Lausanne) 2024; 15:1443573. [PMID: 39229378 PMCID: PMC11369644 DOI: 10.3389/fendo.2024.1443573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Background Several urinary biomarkers have good diagnostic value for diabetic kidney disease (DKD); however, the predictive value is limited with the use of single biomarkers. We investigated the clinical value of Luminex liquid suspension chip detection of several urinary biomarkers simultaneously. Methods The study included 737 patients: 585 with diabetes mellitus (DM) and 152 with DKD. Propensity score matching (PSM) of demographic and medical characteristics identified a subset of 78 patients (DM = 39, DKD = 39). Two Luminex liquid suspension chips were used to detect 11 urinary biomarkers according to their molecular weight and concentration. The biomarkers, including cystatin C (CysC), nephrin, epidermal growth factor (EGF), kidney injury molecule-1 (KIM-1), retinol-binding protein4 (RBP4), α1-microglobulin (α1-MG), β2-microglobulin (β2-MG), vitamin D binding protein (VDBP), tissue inhibitor of metalloproteinases-1 (TIMP-1), tumor necrosis factor receptor-1 (TNFR-1), and tumor necrosis factor receptor-2 (TNFR-2) were compared in the DM and DKD groups. The diagnostic values of single biomarkers and various biomarker combinations for early diagnosis of DKD were assessed using receiver operating characteristic (ROC) curve analysis. Results Urinary levels of VDBP, RBP4, and KIM-1 were markedly higher in the DKD group than in the DM group (p < 0.05), whereas the TIMP-1, TNFR-1, TNFR-2, α1-MG, β2-MG, CysC, nephrin, and EGF levels were not significantly different between the groups. RBP4, KIM-1, TNFR-2, and VDBP reached p < 0.01 in univariate analysis and were entered into the final analysis. VDBP had the highest AUC (0.780, p < 0.01), followed by RBP4 (0.711, p < 0.01), KIM-1 (0.640, p = 0.044), and TNFR-2 (0.615, p = 0.081). However, a combination of these four urinary biomarkers had the highest AUC (0.812), with a sensitivity of 0.742 and a specificity of 0.760. Conclusions The urinary levels of VDBP, RBP4, KIM-1, and TNFR-2 can be detected simultaneously using Luminex liquid suspension chip technology. The combination of these biomarkers, which reflect different mechanisms of kidney damage, had the highest diagnostic value for DKD. However, this finding should be explored further to understand the synergistic effects of these biomarkers.
Collapse
Affiliation(s)
- Xinran Li
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xinxin Zhang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shenglan Wang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yuan Li
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Cheng Meng
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jingyu Wang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Baocheng Chang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Juhong Yang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
6
|
Huang M, Wang L, Zhang Q, Zhou L, Liao R, Wu A, Wang X, Luo J, Huang F, Zou W, Wu J. Interleukins in Platelet Biology: Unraveling the Complex Regulatory Network. Pharmaceuticals (Basel) 2024; 17:109. [PMID: 38256942 PMCID: PMC10820339 DOI: 10.3390/ph17010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Interleukins, a diverse family of cytokines produced by various cells, play crucial roles in immune responses, immunoregulation, and a wide range of physiological and pathological processes. In the context of megakaryopoiesis, thrombopoiesis, and platelet function, interleukins have emerged as key regulators, exerting significant influence on the development, maturation, and activity of megakaryocytes (MKs) and platelets. While the therapeutic potential of interleukins in platelet-related diseases has been recognized for decades, their clinical application has been hindered by limitations in basic research and challenges in drug development. Recent advancements in understanding the molecular mechanisms of interleukins and their interactions with MKs and platelets, coupled with breakthroughs in cytokine engineering, have revitalized the field of interleukin-based therapeutics. These breakthroughs have paved the way for the development of more effective and specific interleukin-based therapies for the treatment of platelet disorders. This review provides a comprehensive overview of the effects of interleukins on megakaryopoiesis, thrombopoiesis, and platelet function. It highlights the potential clinical applications of interleukins in regulating megakaryopoiesis and platelet function and discusses the latest bioengineering technologies that could improve the pharmacokinetic properties of interleukins. By synthesizing the current knowledge in this field, this review aims to provide valuable insights for future research into the clinical application of interleukins in platelet-related diseases.
Collapse
Affiliation(s)
- Miao Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Qianhui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Ling Zhou
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Rui Liao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Xinle Wang
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
| | - Jiesi Luo
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Jianming Wu
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
- The Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education of China, Luzhou 646000, China
| |
Collapse
|