1
|
Jin K, Yu L, Zhang Y, Niu L, Huang Y, Zhang Y, Wu Y. A Microrobotic System Based on Engineered Bacteria for Targeted Self-Driven Photodynamic Therapy. Angew Chem Int Ed Engl 2025; 64:e202414347. [PMID: 39607388 DOI: 10.1002/anie.202414347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Indexed: 11/29/2024]
Abstract
Photodynamic therapy (PDT) has been used clinically to treat superficial tumors for decades. However, its effectiveness against deep-seated tumors has been limited by the inefficient delivery of the key components -light, photosensitizer, and oxygen- required for the photochemical reactions in PDT. Here, we present a novel platform that enables the photochemical reaction to occur in a self-driven manner, eliminating the need for external delivery of these components and instead orchestrating their endogenous generation within tumors. This was achieved by genetically modifying probiotic Escherichia coli to host three modules - Lux, Hem1, and KatG - responsible for light production, photosensitizer biosynthesis, and oxygen generation, respectively. The system is self-driven, relying solely on substrates within E. coli cells and tumors. The modules exhibited prolonged activity for days within in vivo mouse models, enabling metronomic PDT that induced an immune response. This research holds promise for revolutionizing PDT and overcoming the enduring challenges encountered in its application for treating deep-seated tumors.
Collapse
Affiliation(s)
- Kai Jin
- Department of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd. 333, Shanghai, China
| | - Lin Yu
- Department of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd. 333, Shanghai, China
- School of Medicine, Shanghai University, Nanchen Rd. 333, Shanghai, China
- School of Medicine, Zhejiang University, Yuhangtang Rd. 333, Hangzhou, China
| | - Yue Zhang
- Department of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd. 333, Shanghai, China
| | - Luqi Niu
- Department of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd. 333, Shanghai, China
| | - Yi Huang
- Department of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd. 333, Shanghai, China
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yihan Wu
- Department of Environmental and Chemical Engineering, Shanghai University, Nanchen Rd. 333, Shanghai, China
| |
Collapse
|
2
|
Cheng Y, Lu Y. Physical stimuli-responsive polymeric patches for healthcare. Bioact Mater 2025; 43:342-375. [PMID: 39399837 PMCID: PMC11470481 DOI: 10.1016/j.bioactmat.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/15/2024] Open
Abstract
Many chronic diseases have become severe public health problems with the development of society. A safe and efficient healthcare method is to utilize physical stimulus-responsive polymer patches, which may respond to physical stimuli, including light, electric current, temperature, magnetic field, mechanical force, and ultrasound. Under certain physical stimuli, these patches have been widely used in therapy for diabetes, cancer, wounds, hair loss, obesity, and heart diseases since they could realize controllable treatment and reduce the risks of side effects. This review sketches the design principles of polymer patches, including composition, properties, and performances. Besides, control methods of using different kinds of physical stimuli were introduced. Then, the fabrication methods and characterization of patches were explored. Furthermore, recent applications of these patches in the biomedical field were demonstrated. Finally, we discussed the challenges and prospects for its clinical translation. We anticipate that physical stimulus-responsive polymer patches will open up new avenues for healthcare by acting as a platform with multiple functions.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Zhao L, Liu Y, Jin F, Hu K, Lv M, Zhou Y, Zhao W, Hu Y, Wu J, Yang Y, Wang W. Multifunctional nanoparticles potentiate in-situ tumor vaccines via reversing insufficient Photothermal therapy by disrupting tumor vasculature. J Control Release 2024; 376:842-860. [PMID: 39401677 DOI: 10.1016/j.jconrel.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
Photothermal therapy can trigger immunogenic cell death and release personalized in-situ tumor vaccine, activating immune responses to eliminate systemic tumors beyond the irradiated zone. However, the immune response of the in-situ tumor vaccines is often undermined by the residual tumor cells and their induced immunosuppressive tumor microenvironment (TME), which is attributed to insufficient photothermal effects stemming from the limited accumulation of photosensitizers. To overcome these limitations, we developed multi-functional nanoparticles (VI@Gd-NPs) that integrate a tumor vasculature-specific disrupting agent (Vadimezan, Phase III clinical drug), a photosensitizer (Indocyanine Green, ICG), and a magnetic resonance imaging contrast agent (Gadolinium, Gd) through chemical self-assembly. By selectively disrupting the tumor vasculature, these nanoparticles enhance the intratumoral delivery of photosensitizers (ICG and blood cells), and Gd. With the guidance of Gd-enhanced MRI, the improved delivery facilitates comprehensive photothermal ablation and regulates the TME, further initiating the in-situ tumor vaccine. Notably, this approach significantly enhances anti-tumor immune responses, improves survival rates, and reduces tumor recurrence and metastasis in various animal models. Moreover, depleting CD8+ T cells reverses these therapeutic benefits, highlighting the critical role of adaptive T cell immunity. Therefore, the VI@Gd-NPs treatment holds great potential for reigniting the in-situ tumor vaccine of photothermal therapy.
Collapse
Affiliation(s)
- Lili Zhao
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yiran Liu
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Fangfei Jin
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Kaiyuan Hu
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Miao Lv
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yuehua Zhou
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Weijun Zhao
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yong Yang
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Wenguang Wang
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
4
|
Deng K, Hua Y, Gao Y, Zheng H, Jiang Y, Wang Y, Gao C, Ren T, Zhu Y. Thermosensitive Hydrogel with Programmable, Self-Regulated HIF-1α Stabilizer Release for Myocardial Infarction Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408013. [PMID: 39308185 DOI: 10.1002/advs.202408013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Indexed: 11/22/2024]
Abstract
HIF-1α (hypoxia induced factor-1α), a vital protective signal against hypoxia, has a short lifetime after myocardial infarction (MI). Increasing HIF-1α stability by inhibiting its hydroxylation with prolyl hydroxylases inhibitors such as DPCA (1,4-dihydrophenonthrolin-4-one-3-carboxylic acid) presents positive results. However, the optimal inhibitor administration profile for MI treatment is still unexplored. Here, injectable, thermosensitive hydrogels with programmable DPCA release are designed and synthesized. Hydrogel degradation and slow DPCA release are coupled to form a feedback loop by attaching pendant DPCA to polymer backbone, which serve as additional crosslinking points through π-π and hydrophobic interactions. Pendant carboxyl groups are added to the copolymer to accelerate DPCA release. Burst release in the acute phase for myocardial protection and extended near zero-order release across the inflammatory and fibrotic phases with different rates are achieved. All DPCA-releasing hydrogels upregulate HIF-1α, decrease apoptosis, promote angiogenesis, and stimulate cardiomyocyte proliferation, leading to preserved cardiac function and ventricular geometry. Faster hydrogel degradation induced by faster DPCA release results in a HIF-1α expression eight times of healthy control and better therapeutic effect in MI treatment. This research demonstrates the value of precise regulation of HIF-1α expression in treating MI and other relevant diseases and provides an implantable device-based modulation strategy.
Collapse
Affiliation(s)
- Kaicheng Deng
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuyan Hua
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ying Gao
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Houwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yangzi Jiang
- School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, Hong Kong, 999077, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, Hong Kong, 999077, China
| | - Yaping Wang
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Changyou Gao
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tanchen Ren
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Yang Zhu
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
5
|
Kong X, He X, He F, Li Y, Feng Y, Li Y, Luo Z, Shen JW, Duan Y. Sandwich Layer-Modified Ω-Shaped Fiber-Optic LSPR Enables the Development of an Aptasensor for a Cytosensing-Photothermal Therapy Circuit. ACS Sens 2024; 9:4637-4645. [PMID: 39120046 DOI: 10.1021/acssensors.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The metastasis of cancer cells is a principal cause of morbidity and mortality in cancer. The combination of a cytosensor and photothermal therapy (PTT) cannot completely eliminate cancer cells at one time. Hence, this study aimed to design a localized surface plasmonic resonance (LSPR)-based aptasensor for a circuit of cytosensing-PTT (COCP). This was achieved by coating a novel sandwich layer of polydopamine/gold nanoparticles/polydopamine (PDA/AuNPs/PDA) around the Ω-shaped fiber-optic (Ω-FO). The short-wavelength peak of the sandwich layer with strong resonance exhibited a high refractive index sensitivity (RIS). The modification with the T-shaped aptamer endowed FO-LSPR with unique characteristics of time-dependent sensitivity enhancement behavior for a sensitive cytosensor with the lowest limit of detection (LOD) of 13 cells/mL. The long-wavelength resonance peak in the sandwich layer appears in the near-infrared region. Hence, the rate of increased localized temperature of FO-LSPR was 160 and 30-fold higher than that of the bare and PDA-coated FO, indicating strong photothermal conversion efficiency. After considering the localized temperature distribution around the FO under the flow environment, the FO-LSPR-enabled aptasensor killed 77.6% of cancer cells in simulated blood circulation after five cycles of COCP. The FO-LSPR-enabled aptasensor improved the efficiency of the cytosensor and PTT to effectively kill cancer cells, showing significant potential for application in inhibiting cancer metastasis.
Collapse
Affiliation(s)
- Xinyu Kong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Xingliang He
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Fan He
- School of Physics, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yu Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Yanting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Ji-Wei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Yang Z, Shen X, Jin J, Jiang X, Pan W, Wu C, Yu D, Li P, Feng W, Chen Y. Sonosynthetic Cyanobacteria Oxygenation for Self-Enhanced Tumor-Specific Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400251. [PMID: 38867396 PMCID: PMC11304326 DOI: 10.1002/advs.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/27/2024] [Indexed: 06/14/2024]
Abstract
Photosynthesis, essential for life on earth, sustains diverse processes by providing nutrition in plants and microorganisms. Especially, photosynthesis is increasingly applied in disease treatments, but its efficacy is substantially limited by the well-known low penetration depth of external light. Here, ultrasound-mediated photosynthesis is reported for enhanced sonodynamic tumor therapy using organic sonoafterglow (ultrasound-induced afterglow) nanoparticles combined with cyanobacteria, demonstrating the proof-of-concept sonosynthesis (sonoafterglow-induced photosynthesis) in cancer therapy. Chlorin e6, a typical small-molecule chlorine, is formulated into nanoparticles to stimulate cyanobacteria for sonosynthesis, which serves three roles, i.e., overcoming the tissue-penetration limitations of external light sources, reducing hypoxia, and acting as a sonosensitizer for in vivo tumor suppression. Furthermore, sonosynthetic oxygenation suppresses the expression of hypoxia-inducible factor 1α, leading to reduced stability of downstream SLC7A11 mRNA, which results in glutathione depletion and inactivation of glutathione peroxidase 4, thereby inducing ferroptosis of cancer cells. This study not only broadens the scope of microbial nanomedicine but also offers a distinct direction for sonosynthesis.
Collapse
Affiliation(s)
- Zhenyu Yang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiu Shen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Junyi Jin
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiaoyan Jiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wenqi Pan
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ping Li
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, P. R. China
| |
Collapse
|
7
|
Tian S, Tan S, Fan M, Gong W, Yang T, Jiao F, Qiao H. Hypoxic environment of wounds and photosynthesis-based oxygen therapy. BURNS & TRAUMA 2024; 12:tkae012. [PMID: 38860010 PMCID: PMC11163460 DOI: 10.1093/burnst/tkae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 06/12/2024]
Abstract
The hypoxic environment is among the most important factors that complicates the healing of chronic wounds, such as venous leg ulcers, pressure injuries and diabetic foot ulcers, which seriously affects the quality of life of patients. Various oxygen supply treatments are used in clinical practice to improve the hypoxic environment at the wound site. However, problems still occur, such as insufficient oxygen supply, short oxygen infusion time and potential biosafety risks. In recent years, artificial photosynthetic systems have become a research hotspot in the fields of materials and energy. Photosynthesis is expected to improve the oxygen level at wound sites and promote wound healing because the method provides a continuous oxygen supply and has good biosafety. In this paper, oxygen treatment methods for wounds are reviewed, and the oxygen supply principle and construction of artificial photosynthesis systems are described. Finally, research progress on the photosynthetic oxygen production system to promote wound healing is summarized.
Collapse
Affiliation(s)
- Shuning Tian
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Shenyu Tan
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Mingjie Fan
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Wenlin Gong
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Tianchang Yang
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Fangwen Jiao
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Hongzhi Qiao
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| |
Collapse
|
8
|
Wu H, Chen P, Zhan X, Lin K, Hu T, Xiao A, Liang J, Huang Y, Huang Y, Guan BO. Marriage of a Dual-Plasmonic Interface and Optical Microfiber for NIR-II Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310571. [PMID: 38029784 DOI: 10.1002/adma.202310571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Indexed: 12/01/2023]
Abstract
The use of light as a powerful tool for disease treatment has introduced a new era in tumor treatment and provided abundant opportunities for light-based tumor theranostics. This work reports a photothermal theranostic fiber integrating cancer detection and therapeutic functions. Its self-heating effect can be tuned at ultralow powers and used for self-heating detection and tumor ablation. The fiber, consisting of a dual-plasmonic nanointerface and an optical microfiber, can be used to distinguish cancer cells from normal cells, quantify cancer cells, perform hyperthermal ablation of cancer cells, and evaluate the ablation efficacy. Its cancer cell ablation rate reaches 89% in a single treatment. In vitro and in vivo studies reveal quick, deep-tissue photonic hyperthermia in the NIR-II window, which can markedly ablate tumors. The marriage of a dual-plasmonic nanointerface and an optical microfiber presents a novel paradigm in photothermal therapy, offering the potential to surmount the challenges posed by limited light penetration depth, nonspecific accumulation in normal tissues, and inadvertent damage in current methods. This work thus provides insight for the exploration of an integrated theranostic platform with simultaneous functions in cancer diagnostics, therapeutics, and postoperative monitoring for future practical applications.
Collapse
Affiliation(s)
- Haotian Wu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Pengwei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Xundi Zhan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Kaiyue Lin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Tao Hu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Aoxiang Xiao
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The first Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Jiaxuan Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Yugang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yunyun Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The first Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
9
|
Hong X, Tian G, Zhu Y, Ren T. Exogeneous metal ions as therapeutic agents in cardiovascular disease and their delivery strategies. Regen Biomater 2023; 11:rbad103. [PMID: 38173776 PMCID: PMC10761210 DOI: 10.1093/rb/rbad103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024] Open
Abstract
Metal ions participate in many metabolic processes in the human body, and their homeostasis is crucial for life. In cardiovascular diseases (CVDs), the equilibriums of metal ions are frequently interrupted, which are related to a variety of disturbances of physiological processes leading to abnormal cardiac functions. Exogenous supplement of metal ions has the potential to work as therapeutic strategies for the treatment of CVDs. Compared with other therapeutic drugs, metal ions possess broad availability, good stability and safety and diverse drug delivery strategies. The delivery strategies of metal ions are important to exert their therapeutic effects and reduce the potential toxic side effects for cardiovascular applications, which are also receiving increasing attention. Controllable local delivery strategies for metal ions based on various biomaterials are constantly being designed. In this review, we comprehensively summarized the positive roles of metal ions in the treatment of CVDs from three aspects: protecting cells from oxidative stress, inducing angiogenesis, and adjusting the functions of ion channels. In addition, we introduced the transferability of metal ions in vascular reconstruction and cardiac tissue repair, as well as the currently available engineered strategies for the precise delivery of metal ions, such as integrated with nanoparticles, hydrogels and scaffolds.
Collapse
Affiliation(s)
- Xiaoqian Hong
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Geer Tian
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Yang Zhu
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tanchen Ren
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|