1
|
You J, Xu A, Wang Y, Tu G, Huang R, Wu S. The STING signaling pathways and bacterial infection. Apoptosis 2024:10.1007/s10495-024-02031-7. [PMID: 39428409 DOI: 10.1007/s10495-024-02031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
As antibiotic-resistant bacteria continue to emerge frequently, bacterial infections have become a significant and pressing challenge to global public health. Innate immunity triggers the activation of host responses by sensing "non-self" components through various pattern recognition receptors (PRRs), serving as the first line of antibacterial defense. Stimulator of interferon genes (STING) is a PRR that binds with cyclic dinucleotides (CDN) to exert effects against bacteria, viruses, and cancer by inducing the production of type I interferon and inflammatory cytokines, and facilitating regulated cell death. Currently, drugs targeting the STING signaling pathway are predominantly applied in the fields of modulating host immune defense against cancer and viral infections, with relatively limited application in treating bacterial infections. Given the significant immunomodulatory functions of STING in the interaction between bacteria and hosts, this review summarizes the research progress on STING signaling pathways and their roles in bacterial infection, as well as the novel functions of STING modulators, aiming to offer insights for the development of antibacterial drugs.
Collapse
Affiliation(s)
- Jiayi You
- Department of Medical Microbiology, School of Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Ailing Xu
- Department of Medical Microbiology, School of Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Ye Wang
- Department of Medical Microbiology, School of Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Guangmin Tu
- Department of Medical Microbiology, School of Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Rui Huang
- Department of Medical Microbiology, School of Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Shuyan Wu
- Department of Medical Microbiology, School of Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215123, China.
| |
Collapse
|
2
|
Foster AJ, van den Noort M, Poolman B. Bacterial cell volume regulation and the importance of cyclic di-AMP. Microbiol Mol Biol Rev 2024; 88:e0018123. [PMID: 38856222 PMCID: PMC11332354 DOI: 10.1128/mmbr.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYNucleotide-derived second messengers are present in all domains of life. In prokaryotes, most of their functionality is associated with general lifestyle and metabolic adaptations, often in response to environmental fluctuations of physical parameters. In the last two decades, cyclic di-AMP has emerged as an important signaling nucleotide in many prokaryotic lineages, including Firmicutes, Actinobacteria, and Cyanobacteria. Its importance is highlighted by the fact that both the lack and overproduction of cyclic di-AMP affect viability of prokaryotes that utilize cyclic di-AMP, and that it generates a strong innate immune response in eukaryotes. In bacteria that produce the second messenger, most molecular targets of cyclic di-AMP are associated with cell volume control. Besides, other evidence links the second messenger to cell wall remodeling, DNA damage repair, sporulation, central metabolism, and the regulation of glycogen turnover. In this review, we take a biochemical, quantitative approach to address the main cellular processes that are directly regulated by cyclic di-AMP and show that these processes are very connected and require regulation of a similar set of proteins to which cyclic di-AMP binds. Altogether, we argue that cyclic di-AMP is a master regulator of cell volume and that other cellular processes can be connected with cyclic di-AMP through this core function. We further highlight important directions in which the cyclic di-AMP field has to develop to gain a full understanding of the cyclic di-AMP signaling network and why some processes are regulated, while others are not.
Collapse
Affiliation(s)
- Alexander J. Foster
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Woubshete M, Cioccolo S, Byrne B. Advances in Membrane Mimetic Systems for Manipulation and Analysis of Membrane Proteins: Detergents, Polymers, Lipids and Scaffolds. Chempluschem 2024; 89:e202300678. [PMID: 38315323 DOI: 10.1002/cplu.202300678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Extracting membrane proteins from the hydrophobic environment of the biological membrane, in a physiologically relevant and stable state, suitable for downstream analysis remains a challenge. The traditional route to membrane protein extraction has been to use detergents and the last 15 years or so have seen a veritable explosion in the development of novel detergents with improved properties, making them more suitable for individual proteins and specific applications. There have also been significant advances in the development of encapsulation of membrane proteins in lipid based nanodiscs, either directly from the native membrane using polymers allowing effective capture of the protein and protein-associated membrane lipids, or via reconstitution of detergent extracted and purified protein into nanodiscs of defined lipid composition. All of these advances have been successfully applied to the study of membrane proteins via a range of techniques and there have been some spectacular membrane protein structures solved. In addition, the first detailed structural and biophysical analyses of membrane proteins retained within a biological membrane have been reported. Here we summarise and review the recent advances with respect to these new agents and systems for membrane protein extraction, reconstitution and analysis.
Collapse
Affiliation(s)
- Menebere Woubshete
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Sara Cioccolo
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
- Department of Chemistry, Imperial College London, White City, London, W12 0BZ, United Kingdom
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| |
Collapse
|
4
|
Rocha R, Jorge JMP, Teixeira-Duarte CM, Figueiredo-Costa IR, Cereija TB, Ferreira-Teixeira PF, Herzberg C, Stülke J, Morais-Cabral JH. c-di-AMP determines the hierarchical organization of bacterial RCK proteins. Proc Natl Acad Sci U S A 2024; 121:e2318666121. [PMID: 38652747 PMCID: PMC11067040 DOI: 10.1073/pnas.2318666121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
In bacteria, intracellular K+ is involved in the regulation of membrane potential, cytosolic pH, and cell turgor as well as in spore germination, environmental adaptation, cell-to-cell communication in biofilms, antibiotic sensitivity, and infectivity. The second messenger cyclic-di-AMP (c-di-AMP) has a central role in modulating the intracellular K+ concentration in many bacterial species, controlling transcription and function of K+ channels and transporters. However, our understanding of how this regulatory network responds to c-di-AMP remains poor. We used the RCK (Regulator of Conductance of K+) proteins that control the activity of Ktr channels in Bacillus subtilis as a model system to analyze the regulatory function of c-di-AMP with a combination of in vivo and in vitro functional and structural characterization. We determined that the two RCK proteins (KtrA and KtrC) are neither physiologically redundant or functionally equivalent. KtrC is the physiologically dominant RCK protein in the regulation of Ktr channel activity. In explaining this hierarchical organization, we found that, unlike KtrA, KtrC is very sensitive to c-di-AMP inactivation and lack of c-di-AMP regulation results in RCK protein toxicity, most likely due to unregulated K+ flux. We also found that KtrC can assemble with KtrA, conferring c-di-AMP regulation to the functional KtrA/KtrC heteromers and potentially compensating KtrA toxicity. Altogether, we propose that the central role of c-di-AMP in the control of the K+ machinery, by modulating protein levels through gene transcription and by regulating protein activity, has determined the evolutionary selection of KtrC as the dominant RCK protein, shaping the hierarchical organization of regulatory components of the K+ machinery.
Collapse
Affiliation(s)
- Rita Rocha
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto4200-135, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto4200-135, Portugal
| | - João M. P. Jorge
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto4200-135, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto4200-135, Portugal
| | - Celso M. Teixeira-Duarte
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto4200-135, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto4200-135, Portugal
| | | | - Tatiana B. Cereija
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto4200-135, Portugal
| | | | - Christina Herzberg
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen37073, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen37073, Germany
| | - João H. Morais-Cabral
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto4200-135, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto4200-135, Portugal
| |
Collapse
|
5
|
Silberberg JM, Ketter S, Böhm PJN, Jordan K, Wittenberg M, Grass J, Hänelt I. KdpD is a tandem serine histidine kinase that controls K + pump KdpFABC transcriptionally and post-translationally. Nat Commun 2024; 15:3223. [PMID: 38622146 PMCID: PMC11018627 DOI: 10.1038/s41467-024-47526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Two-component systems, consisting of a histidine kinase and a response regulator, serve signal transduction in bacteria, often regulating transcription in response to environmental stimuli. Here, we identify a tandem serine histidine kinase function for KdpD, previously described as a histidine kinase of the KdpDE two-component system, which controls production of the potassium pump KdpFABC. We show that KdpD additionally mediates an inhibitory serine phosphorylation of KdpFABC at high potassium levels, using not its C-terminal histidine kinase domain but an N-terminal atypical serine kinase domain. Sequence analysis of KdpDs from different species highlights that some KdpDs are much shorter than others. We show that, while Escherichia coli KdpD's atypical serine kinase domain responds directly to potassium levels, a shorter version from Deinococcus geothermalis is controlled by second messenger cyclic di-AMP. Our findings add to the growing functional diversity of sensor kinases while simultaneously expanding the framework for regulatory mechanisms in bacterial potassium homeostasis.
Collapse
Affiliation(s)
- Jakob M Silberberg
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| | - Sophie Ketter
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| | - Paul J N Böhm
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| | - Kristin Jordan
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| | - Marcel Wittenberg
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| | - Julia Grass
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| | - Inga Hänelt
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany.
| |
Collapse
|
6
|
Lasham J, Djurabekova A, Zickermann V, Vonck J, Sharma V. Role of Protonation States in the Stability of Molecular Dynamics Simulations of High-Resolution Membrane Protein Structures. J Phys Chem B 2024; 128:2304-2316. [PMID: 38430110 PMCID: PMC11389979 DOI: 10.1021/acs.jpcb.3c07421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Classical molecular dynamics (MD) simulations provide unmatched spatial and time resolution of protein structure and function. However, the accuracy of MD simulations often depends on the quality of force field parameters and the time scale of sampling. Another limitation of conventional MD simulations is that the protonation states of titratable amino acid residues remain fixed during simulations, even though protonation state changes coupled to conformational dynamics are central to protein function. Due to the uncertainty in selecting protonation states, classical MD simulations are sometimes performed with all amino acids modeled in their standard charged states at pH 7. Here, we performed and analyzed classical MD simulations on high-resolution cryo-EM structures of two large membrane proteins that transfer protons by catalyzing protonation/deprotonation reactions. In simulations performed with titratable amino acids modeled in their standard protonation (charged) states, the structure diverges far from its starting conformation. In comparison, MD simulations performed with predetermined protonation states of amino acid residues reproduce the structural conformation, protein hydration, and protein-water and protein-protein interactions of the structure much better. The results support the notion that it is crucial to perform basic protonation state calculations, especially on structures where protonation changes play an important functional role, prior to the launch of any conventional MD simulations. Furthermore, the combined approach of fast protonation state prediction and MD simulations can provide valuable information about the charge states of amino acids in the cryo-EM sample. Even though accurate prediction of protonation states in proteinaceous environments currently remains a challenge, we introduce an approach of combining pKa prediction with cryo-EM density map analysis that helps in improving not only the protonation state predictions but also the atomic modeling of density data.
Collapse
Affiliation(s)
- Jonathan Lasham
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Amina Djurabekova
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
- HiLIFE Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
7
|
Monterroso B, Margolin W, Boersma AJ, Rivas G, Poolman B, Zorrilla S. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions. Chem Rev 2024; 124:1899-1949. [PMID: 38331392 PMCID: PMC10906006 DOI: 10.1021/acs.chemrev.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.
Collapse
Affiliation(s)
- Begoña Monterroso
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department
of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, Texas 77030, United States
| | - Arnold J. Boersma
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Germán Rivas
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - Bert Poolman
- Department
of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silvia Zorrilla
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
8
|
Elston R, Mulligan C, Thomas GH. Flipping the switch: dynamic modulation of membrane transporter activity in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37948297 DOI: 10.1099/mic.0.001412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The controlled entry and expulsion of small molecules across the bacterial cytoplasmic membrane is essential for efficient cell growth and cellular homeostasis. While much is known about the transcriptional regulation of genes encoding transporters, less is understood about how transporter activity is modulated once the protein is functional in the membrane, a potentially more rapid and dynamic level of control. In this review, we bring together literature from the bacterial transport community exemplifying the extensive and diverse mechanisms that have evolved to rapidly modulate transporter function, predominantly by switching activity off. This includes small molecule feedback, inhibition by interaction with small peptides, regulation through binding larger signal transduction proteins and, finally, the emerging area of controlled proteolysis. Many of these examples have been discovered in the context of metal transport, which has to finely balance active accumulation of elements that are essential for growth but can also quickly become toxic if intracellular homeostasis is not tightly controlled. Consistent with this, these transporters appear to be regulated at multiple levels. Finally, we find common regulatory themes, most often through the fusion of additional regulatory domains to transporters, which suggest the potential for even more widespread regulation of transporter activity in biology.
Collapse
Affiliation(s)
- Rory Elston
- Department of Biology, University of York, York, UK
| | | | | |
Collapse
|