1
|
Bower G, Kvon EZ. Genetic factors mediating long-range enhancer-promoter communication in mammalian development. Curr Opin Genet Dev 2024; 90:102282. [PMID: 39579740 DOI: 10.1016/j.gde.2024.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
Enhancers are remotely located noncoding DNA sequences that regulate gene expression in response to developmental, homeostatic, and environmental cues. Canonical short-range enhancers located <50 kb from their cognate promoters function by binding transcription factors, coactivators, and chromatin modifiers. In this review, we discuss recent evidence that medium-range (50-400 kb) and long-range (>400 kb) enhancers rely on additional mechanisms, including cohesin, CCCTC-binding factor, and high-affinity protein-protein interactions. These mechanisms are crucial for establishing the physical proximity and interaction between enhancers and their target promoters over extended genomic distances and ensuring robust gene activation during mammalian development. Future studies will be critical to unravel their prevalence and evolutionary significance across various genomic loci, cell types, and species.
Collapse
Affiliation(s)
- Grace Bower
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA. https://twitter.com/@gracecbower
| | - Evgeny Z Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA.
| |
Collapse
|
2
|
Gao D, Luo P, Guo R, He B, Liu T, Wang B, Zhang Q. Rare Combination of Congenital Microtia and Limb Malformations: Analysis of Etiology and Treatment. J Craniofac Surg 2024:00001665-990000000-02091. [PMID: 39466184 DOI: 10.1097/scs.0000000000010659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 10/29/2024] Open
Abstract
ABSTRACT Congenital microtia is the second most common congenital craniofacial deformity, and limb malformation is the most common birth defect. The combination of the 2 deformities is rare. In this study, the authors present 3 cases with a rare combination of congenital microtia and limb malformations and analyze the etiology and treatment of the malformations. There may be genetic homology between these two malformations, and they can be associated with abnormal ectodermal migration. LEVEL OF EVIDENCE Level IV-case study.
Collapse
Affiliation(s)
- Dejin Gao
- Comprehensive Ward of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Pan Luo
- Comprehensive Ward of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Rui Guo
- Comprehensive Ward of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Bei He
- Comprehensive Ward of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Tun Liu
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingqing Wang
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingguo Zhang
- Comprehensive Ward of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|
3
|
Abassah-Oppong S, Zoia M, Mannion BJ, Rouco R, Tissières V, Spurrell CH, Roland V, Darbellay F, Itum A, Gamart J, Festa-Daroux TA, Sullivan CS, Kosicki M, Rodríguez-Carballo E, Fukuda-Yuzawa Y, Hunter RD, Novak CS, Plajzer-Frick I, Tran S, Akiyama JA, Dickel DE, Lopez-Rios J, Barozzi I, Andrey G, Visel A, Pennacchio LA, Cobb J, Osterwalder M. A gene desert required for regulatory control of pleiotropic Shox2 expression and embryonic survival. Nat Commun 2024; 15:8793. [PMID: 39389973 PMCID: PMC11467299 DOI: 10.1038/s41467-024-53009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Approximately a quarter of the human genome consists of gene deserts, large regions devoid of genes often located adjacent to developmental genes and thought to contribute to their regulation. However, defining the regulatory functions embedded within these deserts is challenging due to their large size. Here, we explore the cis-regulatory architecture of a gene desert flanking the Shox2 gene, which encodes a transcription factor indispensable for proximal limb, craniofacial, and cardiac pacemaker development. We identify the gene desert as a regulatory hub containing more than 15 distinct enhancers recapitulating anatomical subdomains of Shox2 expression. Ablation of the gene desert leads to embryonic lethality due to Shox2 depletion in the cardiac sinus venosus, caused in part by the loss of a specific distal enhancer. The gene desert is also required for stylopod morphogenesis, mediated via distributed proximal limb enhancers. In summary, our study establishes a multi-layered role of the Shox2 gene desert in orchestrating pleiotropic developmental expression through modular arrangement and coordinated dynamics of tissue-specific enhancers.
Collapse
Affiliation(s)
- Samuel Abassah-Oppong
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- Department of Biological Sciences, Fort Hays State University, Hays, KS, 67601, USA
| | - Matteo Zoia
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Brandon J Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Raquel Rouco
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Virginie Tissières
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013, Seville, Spain
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland
| | - Cailyn H Spurrell
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Virginia Roland
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anja Itum
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Julie Gamart
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland
| | - Tabitha A Festa-Daroux
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Carly S Sullivan
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eddie Rodríguez-Carballo
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Riana D Hunter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Catherine S Novak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stella Tran
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013, Seville, Spain
- School of Health Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Iros Barozzi
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Guillaume Andrey
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - John Cobb
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada.
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland.
| |
Collapse
|
4
|
Mañes-García J, Marco-Ferreres R, Beccari L. Shaping gene expression and its evolution by chromatin architecture and enhancer activity. Curr Top Dev Biol 2024; 159:406-437. [PMID: 38729683 DOI: 10.1016/bs.ctdb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Transcriptional regulation plays a pivotal role in orchestrating the intricate genetic programs governing embryonic development. The expression of developmental genes relies on the combined activity of several cis-regulatory elements (CREs), such as enhancers and silencers, which can be located at long linear distances from the genes that they regulate and that interact with them through establishment of chromatin loops. Mutations affecting their activity or interaction with their target genes can lead to developmental disorders and are thought to have importantly contributed to the evolution of the animal body plan. The income of next-generation-sequencing approaches has allowed identifying over a million of sequences with putative regulatory potential in the human genome. Characterizing their function and establishing gene-CREs maps is essential to decode the logic governing developmental gene expression and is one of the major challenges of the post-genomic era. Chromatin 3D organization plays an essential role in determining how CREs specifically contact their target genes while avoiding deleterious off-target interactions. Our understanding of these aspects has greatly advanced with the income of chromatin conformation capture techniques and fluorescence microscopy approaches to visualize the organization of DNA elements in the nucleus. Here we will summarize relevant aspects of how the interplay between CRE activity and chromatin 3D organization regulates developmental gene expression and how it relates to pathological conditions and the evolution of animal body plan.
Collapse
Affiliation(s)
| | | | - Leonardo Beccari
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
5
|
Wilderman A, D'haene E, Baetens M, Yankee TN, Winchester EW, Glidden N, Roets E, Van Dorpe J, Janssens S, Miller DE, Galey M, Brown KM, Stottmann RW, Vergult S, Weaver KN, Brugmann SA, Cox TC, Cotney J. A distant global control region is essential for normal expression of anterior HOXA genes during mouse and human craniofacial development. Nat Commun 2024; 15:136. [PMID: 38167838 PMCID: PMC10762089 DOI: 10.1038/s41467-023-44506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Craniofacial abnormalities account for approximately one third of birth defects. The regulatory programs that build the face require precisely controlled spatiotemporal gene expression, achieved through tissue-specific enhancers. Clusters of coactivated enhancers and their target genes, known as superenhancers, are important in determining cell identity but have been largely unexplored in development. In this study we identified superenhancer regions unique to human embryonic craniofacial tissue. To demonstrate the importance of such regions in craniofacial development and disease, we focused on an ~600 kb noncoding region located between NPVF and NFE2L3. We identified long range interactions with this region in both human and mouse embryonic craniofacial tissue with the anterior portion of the HOXA gene cluster. Mice lacking this superenhancer exhibit perinatal lethality, and present with highly penetrant skull defects and orofacial clefts phenocopying Hoxa2-/- mice. Moreover, we identified two cases of de novo copy number changes of the superenhancer in humans both with severe craniofacial abnormalities. This evidence suggests we have identified a critical noncoding locus control region that specifically regulates anterior HOXA genes and copy number changes are pathogenic in human patients.
Collapse
Affiliation(s)
| | - Eva D'haene
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Machteld Baetens
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Emma Wentworth Winchester
- Graduate Program UConn Health, Farmington, CT, USA
- University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Nicole Glidden
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Ellen Roets
- Department of Obstetrics, Women's Clinic, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Sandra Janssens
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Danny E Miller
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Washington, WA, USA
- Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Brotman Baty Institute of Precision Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Miranda Galey
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Washington, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Kari M Brown
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rolf W Stottmann
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Sarah Vergult
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - K Nicole Weaver
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Timothy C Cox
- Department of Oral & Craniofacial Sciences, University of Missouri Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri Kansas City, Kansas City, MO, USA
| | - Justin Cotney
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
6
|
Nguyen TT, Mitchell JM, Kiel MD, Kenny CP, Li H, Jones KL, Cornell RA, Williams TJ, Nichols JT, Van Otterloo E. TFAP2 paralogs regulate midfacial development in part through a conserved ALX genetic pathway. Development 2024; 151:dev202095. [PMID: 38063857 PMCID: PMC10820886 DOI: 10.1242/dev.202095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Cranial neural crest development is governed by positional gene regulatory networks (GRNs). Fine-tuning of the GRN components underlies facial shape variation, yet how those networks in the midface are connected and activated remain poorly understood. Here, we show that concerted inactivation of Tfap2a and Tfap2b in the murine neural crest, even during the late migratory phase, results in a midfacial cleft and skeletal abnormalities. Bulk and single-cell RNA-seq profiling reveal that loss of both TFAP2 family members dysregulates numerous midface GRN components involved in midface morphogenesis, patterning and differentiation. Notably, Alx1, Alx3 and Alx4 (ALX) transcript levels are reduced, whereas ChIP-seq analyses suggest TFAP2 family members directly and positively regulate ALX gene expression. Tfap2a, Tfap2b and ALX co-expression in midfacial neural crest cells of both mouse and zebrafish implies conservation of this regulatory axis across vertebrates. Consistent with this notion, tfap2a zebrafish mutants present with abnormal alx3 expression patterns, Tfap2a binds ALX loci and tfap2a-alx3 genetic interactions are observed. Together, these data demonstrate TFAP2 paralogs regulate vertebrate midfacial development in part by activating expression of ALX transcription factor genes.
Collapse
Affiliation(s)
- Timothy T. Nguyen
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Jennyfer M. Mitchell
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michaela D. Kiel
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Colin P. Kenny
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L. Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Robert A. Cornell
- Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA 98195, USA
| | - Trevor J. Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric Van Otterloo
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Chen LF, Long HK. Topology regulatory elements: From shaping genome architecture to gene regulation. Curr Opin Struct Biol 2023; 83:102723. [PMID: 37931379 PMCID: PMC7615376 DOI: 10.1016/j.sbi.2023.102723] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/08/2023]
Abstract
The importance of 3D genome topology in the control of gene expression is becoming increasingly apparent, while regulatory mechanisms remain incompletely understood. Several recent studies have identified architectural elements that influence developmental gene expression by shaping locus topology. We refer to these elements as topological regulatory elements (TopoREs) to reflect their dual roles in genome organisation and gene expression. Importantly, these elements do not harbour autonomous transcriptional activation capacity, and instead appear to facilitate enhancer-promoter interactions, contributing to robust and precise timing of transcription. We discuss examples of TopoREs from two classes that are either dependent or independent of CTCF binding. Importantly, identification and interpretation of TopoRE function may shed light on multiple aspects of gene regulation, including the relationship between enhancer-promoter proximity and transcription, and enhancer-promoter specificity. Ultimately, understanding TopoRE diversity and function will aid in the interpretation of how human sequence variation can impact transcription and contribute to disease phenotypes.
Collapse
Affiliation(s)
- Liang-Fu Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hannah Katherine Long
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, UK.
| |
Collapse
|
8
|
Nguyen TT, Mitchell JM, Kiel MD, Jones KL, Williams TJ, Nichols JT, Van Otterloo E. TFAP2 paralogs regulate midfacial development in part through a conserved ALX genetic pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545376. [PMID: 37398373 PMCID: PMC10312788 DOI: 10.1101/2023.06.16.545376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cranial neural crest development is governed by positional gene regulatory networks (GRNs). Fine-tuning of the GRN components underly facial shape variation, yet how those in the midface are connected and activated remain poorly understood. Here, we show that concerted inactivation of Tfap2a and Tfap2b in the murine neural crest even during the late migratory phase results in a midfacial cleft and skeletal abnormalities. Bulk and single-cell RNA-seq profiling reveal that loss of both Tfap2 members dysregulated numerous midface GRN components involved in midface fusion, patterning, and differentiation. Notably, Alx1/3/4 (Alx) transcript levels are reduced, while ChIP-seq analyses suggest TFAP2 directly and positively regulates Alx gene expression. TFAP2 and ALX co-expression in midfacial neural crest cells of both mouse and zebrafish further implies conservation of this regulatory axis across vertebrates. Consistent with this notion, tfap2a mutant zebrafish present abnormal alx3 expression patterns, and the two genes display a genetic interaction in this species. Together, these data demonstrate a critical role for TFAP2 in regulating vertebrate midfacial development in part through ALX transcription factor gene expression.
Collapse
Affiliation(s)
- Timothy T Nguyen
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
| | - Jennyfer M Mitchell
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michaela D Kiel
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Trevor J Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - James T Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric Van Otterloo
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
- Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|