1
|
Kumar AA, Bhandary S, Hegde SG, Chatterjee J. Knowledge graph applications and multi-relation learning for drug repurposing: A scoping review. Comput Biol Chem 2025; 115:108364. [PMID: 39914071 DOI: 10.1016/j.compbiolchem.2025.108364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025]
Abstract
OBJECTIVE Development of novel drug solutions has always been an expensive endeavour, hence drug repurposing as an approach has gained popularity in recent years. In this review we intend to examine one of the most unique computational methods for drug repurposing, that being knowledge graphs. METHOD Through literature review we looked at the application of knowledge graphs in medicine, specifically at its use in drug repurposing. We also looked at literature embedding methods, integration of machine learning models and approaches to completion of knowledge graphs. RESULT After filtering 43 papers were used for analysis. Timeline, country distribution, application areas of knowledge graph was highlighted. General trends in the use of knowledge graphs for drug repurposing and any shortcomings of the approach was discussed. CONCLUSION This approach has gained popularity only very recently; hence it is in a nascent phase.
Collapse
Affiliation(s)
- A Arun Kumar
- Department of Biotechnology, PES University, Bangalore 560085, India
| | - Samarth Bhandary
- Department of Biotechnology, PES University, Bangalore 560085, India
| | | | - Jhinuk Chatterjee
- Department of Biotechnology, PES University, Bangalore 560085, India.
| |
Collapse
|
2
|
Selote R, Makhijani R. A knowledge graph approach to drug repurposing for Alzheimer's, Parkinson's and Glioma using drug-disease-gene associations. Comput Biol Chem 2025; 115:108302. [PMID: 39693851 DOI: 10.1016/j.compbiolchem.2024.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/06/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Drug Repurposing gives us facility to find the new uses of previously developed drugs rather than developing new drugs from start. Particularly during pandemic, drug repurposing caught much attention to provide new applications of the previously approved drugs. In our research, we provide a novel method for drug repurposing based on feature learning process from drug-disease-gene network. In our research, we aimed at finding drug candidates which can be repurposed under neurodegenerative diseases and glioma. We collected association data between drugs, diseases and genes from public resources and primarily examined the data related to Alzheimer's, Parkinson's and Glioma diseases. We created a Knowledge Graph using neo4j by integrating all these datasets and applied scalable feature learning algorithm known as node2vec to create node embeddings. These embeddings were later used to predict the unknown associations between disease and their candidate drugs by finding cosine similarity between disease and drug nodes embedding. We obtained a definitive set of candidate drugs for repurposing. These results were validated from the literature and CodReS online tool to rank the candidate drugs. Additionally, we verified the status of candidate drugs from pharmaceutical knowledge databases to confirm their significance.
Collapse
Affiliation(s)
- Ruchira Selote
- Department of Computer Science and Engineering, Indian Institute of Information Technology, Nagpur, India.
| | - Richa Makhijani
- Department of Computer Science and Engineering, Indian Institute of Information Technology, Nagpur, India.
| |
Collapse
|
3
|
Kim J, Jang H, Park Y, Jung I, Jo K. ExPDrug: Integration of an interpretable neural network and knowledge graph for pathway-based drug repurposing. Comput Biol Med 2025; 187:109729. [PMID: 39884058 DOI: 10.1016/j.compbiomed.2025.109729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
Precision medicine aims to provide personalized therapies by analyzing patient molecular profiles, often focusing on gene expression data. However, effectively linking these data to actionable drug discovery for clinical application remains challenging. In this paper, we introduce ExPDrug, a neural network (NN) model that integrates biological pathways from transcriptomic data with a biomedical knowledge graph to facilitate pathway-based drug repurposing. ExPDrug enhances disease phenotype prediction by capturing the complex relationships between genes and pathways. Using layer-wise relevance propagation (LRP), the model interprets the contribution of each pathway using relevance scores applied in a random walk-with-restart (RWR) algorithm to prioritize potential drug candidates in the biomedical network. ExPDrug outperforms existing methods in predicting phenotypes for the three diseases and identifying drug candidates, as supported by the literature. This model offers a transformative approach for advancing precision medicine by linking transcriptomic insights directly to clinical drug repurposing, thereby potentially improving treatment strategies for complex diseases.
Collapse
Affiliation(s)
- Junku Kim
- Department of Computer Engineering, Chungbuk National University, Cheongju, Republic of Korea
| | - Hojoong Jang
- Department of Computer Engineering, Chungbuk National University, Cheongju, Republic of Korea
| | - Youngjun Park
- Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
| | - Inuk Jung
- School of Computer Science and Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Kyuri Jo
- Department of Computer Engineering, Chungbuk National University, Cheongju, Republic of Korea.
| |
Collapse
|
4
|
Cummings JL, Zhou Y, Van Stone A, Cammann D, Tonegawa-Kuji R, Fonseca J, Cheng F. Drug repurposing for Alzheimer's disease and other neurodegenerative disorders. Nat Commun 2025; 16:1755. [PMID: 39971900 PMCID: PMC11840136 DOI: 10.1038/s41467-025-56690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
Repurposed drugs provide a rich source of potential therapies for Alzheimer's disease (AD) and other neurodegenerative disorders (NDD). Repurposed drugs have information from non-clinical studies, phase 1 dosing, and safety and tolerability data collected with the original indication. Computational approaches, "omic" studies, drug databases, and electronic medical records help identify candidate therapies. Generic repurposed agents lack intellectual property protection and are rarely advanced to late-stage trials for AD/NDD. In this review we define repurposing, describe the advantages and challenges of repurposing, offer strategies for overcoming the obstacles, and describe the key contributions of repurposing to the drug development ecosystem.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, 89106, USA.
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | | | - Davis Cammann
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Reina Tonegawa-Kuji
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Jorge Fonseca
- Howard R Hughes College of Engineering, Department of Computer Science, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, 89154, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106, USA
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| |
Collapse
|
5
|
Gu Y, Zheng S, Zhang B, Kang H, Jiang R, Li J. Deep multiple instance learning on heterogeneous graph for drug-disease association prediction. Comput Biol Med 2025; 184:109403. [PMID: 39577348 DOI: 10.1016/j.compbiomed.2024.109403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Drug repositioning offers promising prospects for accelerating drug discovery by identifying potential drug-disease associations (DDAs) for existing drugs and diseases. Previous methods have generated meta-path-augmented node or graph embeddings for DDA prediction in drug-disease heterogeneous networks. However, these approaches rarely develop end-to-end frameworks for path instance-level representation learning as well as the further feature selection and aggregation. By leveraging the abundant topological information in path instances, more fine-grained and interpretable predictions can be achieved. To this end, we introduce deep multiple instance learning into drug repositioning by proposing a novel method called MilGNet. MilGNet employs a heterogeneous graph neural network (HGNN)-based encoder to learn drug and disease node embeddings. Treating each drug-disease pair as a bag, we designed a special quadruplet meta-path form and implemented a pseudo meta-path generator in MilGNet to obtain multiple meta-path instances based on network topology. Additionally, a bidirectional instance encoder enhances the representation of meta-path instances. Finally, MilGNet utilizes a multi-scale interpretable predictor to aggregate bag embeddings with an attention mechanism, providing predictions at both the bag and instance levels for accurate and explainable predictions. Comprehensive experiments on five benchmarks demonstrate that MilGNet significantly outperforms ten advanced methods. Notably, three case studies on one drug (Methotrexate) and two diseases (Renal Failure and Mismatch Repair Cancer Syndrome) highlight MilGNet's potential for discovering new indications, therapies, and generating rational meta-path instances to investigate possible treatment mechanisms. The source code is available at https://github.com/gu-yaowen/MilGNet.
Collapse
Affiliation(s)
- Yaowen Gu
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100020, China; Department of Chemistry, New York University, NY, 10027, USA.
| | - Si Zheng
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100020, China; Institute for Artificial Intelligence, Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, 100084, China
| | - Bowen Zhang
- Beijing StoneWise Technology Co Ltd., Beijing, 100080, China
| | - Hongyu Kang
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100020, China
| | - Rui Jiang
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Jiao Li
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100020, China.
| |
Collapse
|
6
|
Ceskoutsé RFT, Bomgni AB, Gnimpieba Zanfack DR, Agany DDM, Thomas BB, Zohim EG. HeteroKGRep: Heterogeneous Knowledge Graph based Drug Repositioning. Knowl Based Syst 2024; 305:112638. [PMID: 39610660 PMCID: PMC11600970 DOI: 10.1016/j.knosys.2024.112638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The process of developing new drugs is both time-consuming and costly, often taking over a decade and billions of dollars to obtain regulatory approval. Additionally, the complexity of patent protection for novel compounds presents challenges for pharmaceutical innovation. Drug repositioning offers an alternative strategy to uncover new therapeutic uses for existing medicines. Previous repositioning models have been limited by their reliance on homogeneous data sources, failing to leverage the rich information available in heterogeneous biomedical knowledge graphs. We propose HeteroKGRep, a novel drug repositioning model that utilizes heterogeneous graphs to address these limitations. HeteroKGRep is a multi-step framework that first generates a similarity graph from hierarchical concept relations. It then applies SMOTE over-sampling to address class imbalance before generating node sequences using a heterogeneous graph neural network. Drug and disease embeddings are extracted from the network and used for prediction. We evaluated HeteroKGRep on a graph containing biomedical concepts and relations from ontologies, pathways and literature. It achieved state-of-the-art performance with 99% accuracy, 95% AUC ROC and 94% average precision on predicting repurposing opportunities. Compared to existing homogeneous approaches, HeteroKGRep leverages diverse knowledge sources to enrich representation learning. Based on heterogeneous graphs, HeteroKGRep can discover new drug-desease associations, leveraging de novo drug development. This work establishes a promising new paradigm for knowledge-guided drug repositioning using multimodal biomedical data.
Collapse
Affiliation(s)
- Ribot Fleury T Ceskoutsé
- Ecole Nationale Supérieure Polytechnique, University of Yaounde I, P.O. Box. 8390, Yaoundé, Cameroon
| | - Alain Bertrand Bomgni
- University of South Dakota, 4800 N Career Avenue, 57107, SD, USA
- Departement of Mathematics and computer science, University of Dschang, P.O. Box. 67, Dschang, Cameroon
| | - David R Gnimpieba Zanfack
- Laboratory of Innovative Technologies (LTI), University of Picardie Jule Verne (UPJV), 48 Rue Raspail, 02100 Saint Quentin, France
| | - Diing D M Agany
- University of South Dakota, 4800 N Career Avenue, 57107, SD, USA
| | - Bouetou Bouetou Thomas
- Ecole Nationale Supérieure Polytechnique, University of Yaounde I, P.O. Box. 8390, Yaoundé, Cameroon
| | | |
Collapse
|
7
|
Yang Y, Zheng Z, Xu Y, Wei H, Yan W. BioGSF: a graph-driven semantic feature integration framework for biomedical relation extraction. Brief Bioinform 2024; 26:bbaf025. [PMID: 39853110 PMCID: PMC11759886 DOI: 10.1093/bib/bbaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
The automatic and accurate extraction of diverse biomedical relations from literature constitutes the core elements of medical knowledge graphs, which are indispensable for healthcare artificial intelligence. Currently, fine-tuning through stacking various neural networks on pre-trained language models (PLMs) represents a common framework for end-to-end resolution of the biomedical relation extraction (RE) problem. Nevertheless, sequence-based PLMs, to a certain extent, fail to fully exploit the connections between semantics and the topological features formed by these connections. In this study, we presented a graph-driven framework named BioGSF for RE from the literature by integrating shortest dependency paths (SDP) with entity-pair graph through the employment of the graph neural network model. Initially, we leveraged dependency relationships to obtain the SDP between entities and incorporated this information into the entity-pair graph. Subsequently, the graph attention network was utilized to acquire the topological information of the entity-pair graph. Ultimately, the obtained topological information was combined with the semantic features of the contextual information for relation classification. Our method was evaluated on two distinct datasets, namely S4 and BioRED. The outcomes reveal that BioGSF not only attains the superior performance among previous models with a micro-F1 score of 96.68% (S4) and 96.03% (BioRED), but also demands the shortest running times. BioGSF emerges as an efficient framework for biomedical RE.
Collapse
Affiliation(s)
- Yang Yang
- Computing Science and Artificial Intelligence College, Suzhou City University, No. 1188 Wuzhong Avenue, Wuzhong District Suzhou, Suzhou 215004, China
- Suzhou Key Lab of Multi-modal Data Fusion and Intelligent Healthcare, No. 1188 Wuzhong Avenue, Wuzhong District Suzhou, Suzhou 215004, China
- School of Computer Science & Technology, Soochow University, No. 1 Shizi Street, Suzhou 215000, China
| | - Zixuan Zheng
- School of Computer Science & Technology, Soochow University, No. 1 Shizi Street, Suzhou 215000, China
| | - Yuyang Xu
- School of Computer Science & Technology, Soochow University, No. 1 Shizi Street, Suzhou 215000, China
| | - Huifang Wei
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, No. 199 Renai Road, SIP, Suzhou 215123, China
| | - Wenying Yan
- Suzhou Key Lab of Multi-modal Data Fusion and Intelligent Healthcare, No. 1188 Wuzhong Avenue, Wuzhong District Suzhou, Suzhou 215004, China
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, No. 199 Renai Road, SIP, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, No. 199 Renai Road, SIP, Suzhou 215123, China
| |
Collapse
|
8
|
Gao Z, Winhusen TJ, Gorenflo MP, Dorney I, Ghitza UE, Kaelber DC, Xu R. Artificial intelligence-based drug repurposing with electronic health record clinical corroboration: A case for ketamine as a potential treatment for amphetamine-type stimulant use disorder. Addiction 2024. [PMID: 39552271 DOI: 10.1111/add.16715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND AND AIMS Amphetamine-type stimulants are the second-most used illicit drugs globally, yet there are no US Food and Drug Administration (FDA)-approved treatments for amphetamine-type stimulant use disorders (ATSUD). The aim of this study was to utilize a drug discovery framework that integrates artificial intelligence (AI)-based drug prediction, clinical corroboration and mechanism of action analysis to identify FDA-approved drugs that can be repurposed for treating ATSUD. DESIGN AND SETTING An AI-based knowledge graph model was first utilized to prioritize FDA-approved drugs in their potential efficacy for treating ATSUD. Among the top 10 ranked candidate drugs, ketamine represented a novel candidate with few studies examining its effects on ATSUD. We therefore conducted a retrospective cohort study to assess the association between ketamine and ATSUD remission using US electronic health record (EHR) data. Finally, we analyzed the potential mechanisms of action of ketamine in the context of ATSUD. PARTICIPANTS AND MEASUREMENTS ATSUD patients who received anesthesia (n = 3663) or were diagnosed with depression (n = 4328) between January 2019 and June 2022. The outcome measure was the diagnosis of ATSUD remission within one year of the drug prescription. FINDINGS Ketamine for anesthesia in ATSUD patients was associated with greater ATSUD remission compared with other anesthetics: hazard ratio (HR) = 1.58, 95% confidence interval (CI) = 1.15-2.17. Similar results were found for ATSUD patients with depression when comparing ketamine with antidepressants and bupropion/mirtazapine with HRs of 1.51 (95% CI = 1.14-2.01) and 1.68 (95% CI = 1.18-2.38), respectively. Functional analyses demonstrated that ketamine targets several ATSUD-associated pathways including neuroactive ligand-receptor interaction and amphetamine addiction. CONCLUSIONS There appears to be an association between clinician-prescribed ketamine and higher remission rates in patients with amphetamine-type stimulant use disorders.
Collapse
Affiliation(s)
- Zhenxiang Gao
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - T John Winhusen
- Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Maria P Gorenflo
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ian Dorney
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Udi E Ghitza
- Center for the Clinical Trials Network (CCTN), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - David C Kaelber
- Center for Clinical Informatics Research and Education, The Metro Health System, Cleveland, OH, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
9
|
Qin G, Narsinh K, Wei Q, Roach JC, Joshi A, Goetz SL, Moxon ST, Brush MH, Xu C, Yao Y, Glen AK, Morris ED, Ralevski A, Roper R, Belhu B, Zhang Y, Shmulevich I, Hadlock J, Glusman G. Generating Biomedical Knowledge Graphs from Knowledge Bases, Registries, and Multiomic Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623648. [PMID: 39605475 PMCID: PMC11601480 DOI: 10.1101/2024.11.14.623648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
As large clinical and multiomics datasets and knowledge resources accumulate, they need to be transformed into computable and actionable information to support automated reasoning. These datasets range from laboratory experiment results to electronic health records (EHRs). Barriers to accessibility and sharing of such datasets include diversity of content, size and privacy. Effective transformation of data into information requires harmonization of stakeholder goals, implementation, enforcement of standards regarding quality and completeness, and availability of resources for maintenance and updates. Systems such as the Biomedical Data Translator leverage knowledge graphs (KGs), structured and machine learning readable knowledge representation, to encode knowledge extracted through inference. We focus here on the transformation of data from multiomics datasets and EHRs into compact knowledge, represented in a KG data structure. We demonstrate this data transformation in the context of the Translator ecosystem, including clinical trials, drug approvals, cancer, wellness, and EHR data. These transformations preserve individual privacy. We provide access to the five resulting KGs through the Translator framework. We show examples of biomedical research questions supported by our KGs, and discuss issues arising from extracting biomedical knowledge from multiomics data.
Collapse
Affiliation(s)
- Guangrong Qin
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Kamileh Narsinh
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Qi Wei
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Jared C. Roach
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Arpita Joshi
- The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Skye L. Goetz
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Sierra T. Moxon
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Matthew H. Brush
- UNC Chapel Hill, Department of Genetics, 120 Mason Farm Rd, Chapel Hill, NC 27599, USA
| | - Colleen Xu
- The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Yao Yao
- Oregon State University, 1500 SW Jefferson Way, Corvallis, OR 97331
| | - Amy K. Glen
- Oregon State University, 1500 SW Jefferson Way, Corvallis, OR 97331
| | - Evan D. Morris
- Renaissance Computing Institute, 100 Europa Dr, Ste 540, Chapel Hill, NC 27517, USA
| | | | - Ryan Roper
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Basazin Belhu
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Yue Zhang
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Ilya Shmulevich
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Jennifer Hadlock
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Gwênlyn Glusman
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| |
Collapse
|
10
|
Muniyappan S, Rayan AXA, Varrieth GT. DRADTiP: Drug repurposing for aging disease through drug-target interaction prediction. Comput Biol Med 2024; 182:109145. [PMID: 39305733 DOI: 10.1016/j.compbiomed.2024.109145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 11/14/2024]
Abstract
MOTIVATION The greatest risk factor for many non-communicable diseases is aging. Studies on model organisms have demonstrated that genetic and chemical perturbation alterations can lengthen longevity and overall health. However, finding longevity-enhancing medications and their related targets is difficult. METHOD In this work, we designed a novel drug repurposing model by identifying the interaction between aging-related genes or targets and drugs similar to aging disease. Each disease is associated with certain specific genetic factors for the occurrence of that disease. The factors include gene expression, pathway, miRNA, and degree of genes in the protein-protein interaction network. In this paper, we aim to find the drugs that prolong the life span of humans with their aging-related targets using the above-mentioned factors. In addition, the contribution or importance of each factor may vary among drugs and targets. Therefore, we designed a novel multi-layer random walk-based network representation learning model including node and edge weight to learn the features of drugs and targets respectively. RESULT The performance of the proposed model is demonstrated using k-fold cross-validation (k = 5). This model achieved better performance with scores of 0.93 and 0.91 for precision and recall respectively. The drugs identified by the system are evaluated to be potential candidates for aging since the degree of interaction between the potential drugs and their gene sets are high. In addition, the genes that are interacting with drugs produce the same biological functions. Hence the life span of the human will be increased or prolonged.
Collapse
Affiliation(s)
- Saranya Muniyappan
- Computer Science and Engineering, CEG Campus, Anna University, Chennai, Tamil Nadu, India.
| | | | | |
Collapse
|
11
|
Ren Z, Zeng X, Lao Y, Zheng H, You Z, Xiang H, Zou Q. A spatial hierarchical network learning framework for drug repositioning allowing interpretation from macro to micro scale. Commun Biol 2024; 7:1413. [PMID: 39478146 PMCID: PMC11525566 DOI: 10.1038/s42003-024-07107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Biomedical network learning offers fresh prospects for expediting drug repositioning. However, traditional network architectures struggle to quantify the relationship between micro-scale drug spatial structures and corresponding macro-scale biomedical networks, limiting their ability to capture key pharmacological properties and complex biomedical information crucial for drug screening and therapeutic discovery. Moreover, challenges such as difficulty in capturing long-range dependencies hinder current network-based approaches. To address these limitations, we introduce the Spatial Hierarchical Network, modeling molecular 3D structures and biological associations into a unified network. We propose an end-to-end framework, SpHN-VDA, integrating spatial hierarchical information through triple attention mechanisms to enhance machine understanding of molecular functionality and improve the accuracy of virus-drug association identification. SpHN-VDA outperforms leading models across three datasets, particularly excelling in out-of-distribution and cold-start scenarios. It also exhibits enhanced robustness against data perturbation, ranging from 20% to 40%. It accurately identifies critical motifs for binding sites, even without protein residue annotations. Leveraging reliability of SpHN-VDA, we have identified 25 potential candidate drugs through gene expression analysis and CMap. Molecular docking experiments with the SARS-CoV-2 spike protein further corroborate the predictions. This research highlights the broad potential of SpHN-VDA to enhance drug repositioning and identify effective treatments for various diseases.
Collapse
Affiliation(s)
- Zhonghao Ren
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Yizhen Lao
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Heping Zheng
- College of Biology, Department of Molecular Medicine, Hunan University, Changsha, China
| | - Zhuhong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Hongxin Xiang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
12
|
Gordillo-Marañón M, Schmidt AF, Warwick A, Tomlinson C, Ytsma C, Engmann J, Torralbo A, Maclean R, Sofat R, Langenberg C, Shah AD, Denaxas S, Pirmohamed M, Hemingway H, Hingorani AD, Finan C. Disease coverage of human genome-wide association studies and pharmaceutical research and development. COMMUNICATIONS MEDICINE 2024; 4:195. [PMID: 39379679 PMCID: PMC11461613 DOI: 10.1038/s43856-024-00625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Despite the growing interest in the use of human genomic data for drug target identification and validation, the extent to which the spectrum of human disease has been addressed by genome-wide association studies (GWAS), or by drug development, and the degree to which these efforts overlap remain unclear. METHODS In this study we harmonize and integrate different data sources to create a sample space of all the human drug targets and diseases and identify points of convergence or divergence of GWAS and drug development efforts. RESULTS We show that only 612 of 11,158 diseases listed in Human Disease Ontology have an approved drug treatment in at least one region of the world. Of the 1414 diseases that are the subject of preclinical or clinical phase drug development, only 666 have been investigated in GWAS. Conversely, of the 1914 human diseases that have been the subject of GWAS, 1121 have yet to be investigated in drug development. CONCLUSIONS We produce target-disease indication lists to help the pharmaceutical industry to prioritize future drug development efforts based on genetic evidence, academia to prioritize future GWAS for diseases without effective treatments, and both sectors to harness genetic evidence to expand the indications for licensed drugs or to identify repurposing opportunities for clinical candidates that failed in their originally intended indication.
Collapse
Affiliation(s)
- María Gordillo-Marañón
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom.
| | - Amand F Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands
- UCL British Heart Foundation Research Accelerator, London, United Kingdom
| | - Alasdair Warwick
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom
| | - Chris Tomlinson
- Institute of Health Informatics, Faculty of Population Health, University College London, London, United Kingdom
| | - Cai Ytsma
- Institute of Health Informatics, Faculty of Population Health, University College London, London, United Kingdom
| | - Jorgen Engmann
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom
| | - Ana Torralbo
- Institute of Health Informatics, Faculty of Population Health, University College London, London, United Kingdom
| | - Rory Maclean
- Institute of Health Informatics, Faculty of Population Health, University College London, London, United Kingdom
| | - Reecha Sofat
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
- Health Data Research, London, United Kingdom
| | - Claudia Langenberg
- Precision Healthcare University Research Institute, Queen Mary University of London, London, United Kingdom
- Computational Medicine, Berlin Institute of Health at Charité Universitätsmedizin, Berlin, Germany
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Anoop D Shah
- Institute of Health Informatics, Faculty of Population Health, University College London, London, United Kingdom
- NIHR Biomedical Research Centre at University College London Hospitals, London, United Kingdom
| | - Spiros Denaxas
- Institute of Health Informatics, Faculty of Population Health, University College London, London, United Kingdom
- NIHR Biomedical Research Centre at University College London Hospitals, London, United Kingdom
- British Heart Foundation Data Science Centre, London, United Kingdom
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom
| | - Harry Hemingway
- Institute of Health Informatics, Faculty of Population Health, University College London, London, United Kingdom
- Health Data Research, London, United Kingdom
- NIHR Biomedical Research Centre at University College London Hospitals, London, United Kingdom
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, United Kingdom
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, United Kingdom
| |
Collapse
|
13
|
Zhou C, Cai CP, Huang XT, Wu S, Yu JL, Wu JW, Fang JS, Li GB. TarKG: a comprehensive biomedical knowledge graph for target discovery. Bioinformatics 2024; 40:btae598. [PMID: 39392404 PMCID: PMC11513019 DOI: 10.1093/bioinformatics/btae598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
MOTIVATION Target discovery is a crucial step in drug development, as it directly affects the success rate of clinical trials. Knowledge graphs (KGs) offer unique advantages in processing complex biological data and inferring new relationships. Existing biomedical KGs primarily focus on tasks such as drug repositioning and drug-target interactions, leaving a gap in the construction of KGs tailored for target discovery. RESULTS We established a comprehensive biomedical KG focusing on target discovery, termed TarKG, by integrating seven existing biomedical KGs, nine public databases, and traditional Chinese medicine knowledge databases. TarKG consists of 1 143 313 entities and 32 806 467 relations across 15 entity categories and 171 relation types, all centered around 3 core entity types: Disease, Gene, and Compound. TarKG provides specialized knowledges for the core entities including chemical structures, protein sequences, or text descriptions. By using different KG embedding algorithms, we assessed the knowledge completion capabilities of TarKG, particularly for disease-target link prediction. In case studies, we further examined TarKG's ability to predict potential protein targets for Alzheimer's disease (AD) and to identify diseases potentially associated with the metallo-deubiquitinase CSN5, using literature analysis for validation. Furthermore, we provided a user-friendly web server (https://tarkg.ddtmlab.org) that enables users to perform knowledge retrieval and relation inference using TarKG. AVAILABILITY AND IMPLEMENTATION TarKG is accessible at https://tarkg.ddtmlab.org.
Collapse
Affiliation(s)
- Cong Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chui-Pu Cai
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Xiao-Tian Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Song Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jun-Lin Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing-Wei Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian-Song Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Perdomo-Quinteiro P, Belmonte-Hernández A. Knowledge Graphs for drug repurposing: a review of databases and methods. Brief Bioinform 2024; 25:bbae461. [PMID: 39325460 PMCID: PMC11426166 DOI: 10.1093/bib/bbae461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
Drug repurposing has emerged as a effective and efficient strategy to identify new treatments for a variety of diseases. One of the most effective approaches for discovering potential new drug candidates involves the utilization of Knowledge Graphs (KGs). This review comprehensively explores some of the most prominent KGs, detailing their structure, data sources, and how they facilitate the repurposing of drugs. In addition to KGs, this paper delves into various artificial intelligence techniques that enhance the process of drug repurposing. These methods not only accelerate the identification of viable drug candidates but also improve the precision of predictions by leveraging complex datasets and advanced algorithms. Furthermore, the importance of explainability in drug repurposing is emphasized. Explainability methods are crucial as they provide insights into the reasoning behind AI-generated predictions, thereby increasing the trustworthiness and transparency of the repurposing process. We will discuss several techniques that can be employed to validate these predictions, ensuring that they are both reliable and understandable.
Collapse
Affiliation(s)
- Pablo Perdomo-Quinteiro
- Grupo de Aplicación de Telecomunicaciones Visuales, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Avenida Complutense 30, 28040 Madrid, Spain
| | - Alberto Belmonte-Hernández
- Grupo de Aplicación de Telecomunicaciones Visuales, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Avenida Complutense 30, 28040 Madrid, Spain
| |
Collapse
|
15
|
Mag P, Nemes-Terényi M, Jerzsele Á, Mátyus P. Some Aspects and Convergence of Human and Veterinary Drug Repositioning. Molecules 2024; 29:4475. [PMID: 39339469 PMCID: PMC11433938 DOI: 10.3390/molecules29184475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Drug innovation traditionally follows a de novo approach with new molecules through a complex preclinical and clinical pathway. In addition to this strategy, drug repositioning has also become an important complementary approach, which can be shorter, cheaper, and less risky. This review provides an overview of drug innovation in both human and veterinary medicine, with a focus on drug repositioning. The evolution of drug repositioning and the effectiveness of this approach are presented, including the growing role of data science and computational modeling methods in identifying drugs with potential for repositioning. Certain business aspects of drug innovation, especially the relevant factors of market exclusivity, are also discussed. Despite the promising potential of drug repositioning for innovation, it remains underutilized, especially in veterinary applications. To change this landscape for mutual benefits of human and veterinary drug innovation, further exploitation of the potency of drug repositioning is necessary through closer cooperation between all stakeholders, academia, industry, pharmaceutical authorities, and innovation policy makers, and the integration of human and veterinary repositioning into a unified innovation space. For this purpose, the establishment of the conceptually new "One Health Drug Repositioning Platform" is proposed. Oncology is one of the disease areas where this platform can significantly support the development of new drugs for human and dog (or other companion animals) anticancer therapies. As an example of the utilization of human and veterinary drugs for veterinary repositioning, the use of COX inhibitors to treat dog cancers is reviewed.
Collapse
Affiliation(s)
- Patrik Mag
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
| | - Melinda Nemes-Terényi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
| | - Péter Mátyus
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
| |
Collapse
|
16
|
Zhang Y, Mastouri M, Zhang Y. Accelerating drug discovery, development, and clinical trials by artificial intelligence. MED 2024; 5:1050-1070. [PMID: 39173629 DOI: 10.1016/j.medj.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/21/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Artificial intelligence (AI) has profoundly advanced the field of biomedical research, which also demonstrates transformative capacity for innovation in drug development. This paper aims to deliver a comprehensive analysis of the progress in AI-assisted drug development, particularly focusing on small molecules, RNA, and antibodies. Moreover, this paper elucidates the current integration of AI methodologies within the industrial drug development framework. This encompasses a detailed examination of the industry-standard drug development process, supplemented by a review of medications presently undergoing clinical trials. Conclusively, the paper tackles a predominant obstacle within the AI pharmaceutical sector: the absence of AI-conceived drugs receiving approval. This paper also advocates for the adoption of large language models and diffusion models as a viable strategy to surmount this challenge. This review not only underscores the significant potential of AI in drug discovery but also deliberates on the challenges and prospects within this dynamically progressing field.
Collapse
Affiliation(s)
- Yilun Zhang
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China; School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, China
| | - Mohamed Mastouri
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Yang Zhang
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China.
| |
Collapse
|
17
|
Steiert D, Wittig C, Banerjee P, Preissner R, Szulcek R. An exploration into CTEPH medications: Combining natural language processing, embedding learning, in vitro models, and real-world evidence for drug repurposing. PLoS Comput Biol 2024; 20:e1012417. [PMID: 39264975 PMCID: PMC11478854 DOI: 10.1371/journal.pcbi.1012417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 10/15/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND In the modern era, the growth of scientific literature presents a daunting challenge for researchers to keep informed of advancements across multiple disciplines. OBJECTIVE We apply natural language processing (NLP) and embedding learning concepts to design PubDigest, a tool that combs PubMed literature, aiming to pinpoint potential drugs that could be repurposed. METHODS Using NLP, especially term associations through word embeddings, we explored unrecognized relationships between drugs and diseases. To illustrate the utility of PubDigest, we focused on chronic thromboembolic pulmonary hypertension (CTEPH), a rare disease with an overall limited number of scientific publications. RESULTS Our literature analysis identified key clinical features linked to CTEPH by applying term frequency-inverse document frequency (TF-IDF) scoring, a technique measuring a term's significance in a text corpus. This allowed us to map related diseases. One standout was venous thrombosis (VT), which showed strong semantic links with CTEPH. Looking deeper, we discovered potential repurposing candidates for CTEPH through large-scale neural network-based contextualization of literature and predictive modeling on both the CTEPH and the VT literature corpora to find novel, yet unrecognized associations between the two diseases. Alongside the anti-thrombotic agent caplacizumab, benzofuran derivatives were an intriguing find. In particular, the benzofuran derivative amiodarone displayed potential anti-thrombotic properties in the literature. Our in vitro tests confirmed amiodarone's ability to reduce platelet aggregation significantly by 68% (p = 0.02). However, real-world clinical data indicated that CTEPH patients receiving amiodarone treatment faced a significant 15.9% higher mortality risk (p<0.001). CONCLUSIONS While NLP offers an innovative approach to interpreting scientific literature, especially for drug repurposing, it is crucial to combine it with complementary methods like in vitro testing and real-world evidence. Our exploration with benzofuran derivatives and CTEPH underscores this point. Thus, blending NLP with hands-on experiments and real-world clinical data can pave the way for faster and safer drug repurposing approaches, especially for rare diseases like CTEPH.
Collapse
Affiliation(s)
- Daniel Steiert
- Laboratory of in vitro modeling systems of pulmonary and thrombotic diseases, Institute of Physiology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Corey Wittig
- Laboratory of in vitro modeling systems of pulmonary and thrombotic diseases, Institute of Physiology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Priyanka Banerjee
- Structural Bioinformatics Group, Institute of Physiology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Preissner
- Structural Bioinformatics Group, Institute of Physiology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Szulcek
- Laboratory of in vitro modeling systems of pulmonary and thrombotic diseases, Institute of Physiology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiac Anesthesiology and Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
18
|
Johnson R, Li MM, Noori A, Queen O, Zitnik M. Graph Artificial Intelligence in Medicine. Annu Rev Biomed Data Sci 2024; 7:345-368. [PMID: 38749465 PMCID: PMC11344018 DOI: 10.1146/annurev-biodatasci-110723-024625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
In clinical artificial intelligence (AI), graph representation learning, mainly through graph neural networks and graph transformer architectures, stands out for its capability to capture intricate relationships and structures within clinical datasets. With diverse data-from patient records to imaging-graph AI models process data holistically by viewing modalities and entities within them as nodes interconnected by their relationships. Graph AI facilitates model transfer across clinical tasks, enabling models to generalize across patient populations without additional parameters and with minimal to no retraining. However, the importance of human-centered design and model interpretability in clinical decision-making cannot be overstated. Since graph AI models capture information through localized neural transformations defined on relational datasets, they offer both an opportunity and a challenge in elucidating model rationale. Knowledge graphs can enhance interpretability by aligning model-driven insights with medical knowledge. Emerging graph AI models integrate diverse data modalities through pretraining, facilitate interactive feedback loops, and foster human-AI collaboration, paving the way toward clinically meaningful predictions.
Collapse
Affiliation(s)
- Ruth Johnson
- Berkowitz Family Living Laboratory, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA;
| | - Michelle M Li
- Bioinformatics and Integrative Genomics Program, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA;
| | - Ayush Noori
- Department of Computer Science, Harvard John A. Paulson School of Engineering and Applied Sciences, Allston, Massachusetts, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA;
| | - Owen Queen
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA;
| | - Marinka Zitnik
- Harvard Data Science Initiative, Cambridge, Massachusetts, USA
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Allston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
19
|
Zhang H, Zhou Y, Zhang Z, Sun H, Pan Z, Mou M, Zhang W, Ye Q, Hou T, Li H, Hsieh CY, Zhu F. Large Language Model-Based Natural Language Encoding Could Be All You Need for Drug Biomedical Association Prediction. Anal Chem 2024. [PMID: 39011990 DOI: 10.1021/acs.analchem.4c01793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Analyzing drug-related interactions in the field of biomedicine has been a critical aspect of drug discovery and development. While various artificial intelligence (AI)-based tools have been proposed to analyze drug biomedical associations (DBAs), their feature encoding did not adequately account for crucial biomedical functions and semantic concepts, thereby still hindering their progress. Since the advent of ChatGPT by OpenAI in 2022, large language models (LLMs) have demonstrated rapid growth and significant success across various applications. Herein, LEDAP was introduced, which uniquely leveraged LLM-based biotext feature encoding for predicting drug-disease associations, drug-drug interactions, and drug-side effect associations. Benefiting from the large-scale knowledgebase pre-training, LLMs had great potential in drug development analysis owing to their holistic understanding of natural language and human topics. LEDAP illustrated its notable competitiveness in comparison with other popular DBA analysis tools. Specifically, even in simple conjunction with classical machine learning methods, LLM-based feature representations consistently enabled satisfactory performance across diverse DBA tasks like binary classification, multiclass classification, and regression. Our findings underpinned the considerable potential of LLMs in drug development research, indicating a catalyst for further progress in related fields.
Collapse
Affiliation(s)
- Hanyu Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yuan Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhichao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing Ye
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honglin Li
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai 200062, China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Yang Y, Yu K, Gao S, Yu S, Xiong D, Qin C, Chen H, Tang J, Tang N, Zhu H. Alzheimer's Disease Knowledge Graph Enhances Knowledge Discovery and Disease Prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601339. [PMID: 39005357 PMCID: PMC11245034 DOI: 10.1101/2024.07.03.601339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Alzheimer's disease (AD), a progressive neurodegenerative disorder, continues to increase in prevalence without any effective treatments to date. In this context, knowledge graphs (KGs) have emerged as a pivotal tool in biomedical research, offering new perspectives on drug repurposing and biomarker discovery by analyzing intricate network structures. Our study seeks to build an AD-specific knowledge graph, highlighting interactions among AD, genes, variants, chemicals, drugs, and other diseases. The goal is to shed light on existing treatments, potential targets, and diagnostic methods for AD, thereby aiding in drug repurposing and the identification of biomarkers. Results We annotated 800 PubMed abstracts and leveraged GPT-4 for text augmentation to enrich our training data for named entity recognition (NER) and relation classification. A comprehensive data mining model, integrating NER and relationship classification, was trained on the annotated corpus. This model was subsequently applied to extract relation triplets from unannotated abstracts. To enhance entity linking, we utilized a suite of reference biomedical databases and refine the linking accuracy through abbreviation resolution. As a result, we successfully identified 3,199,276 entity mentions and 633,733 triplets, elucidating connections between 5,000 unique entities. These connections were pivotal in constructing a comprehensive Alzheimer's Disease Knowledge Graph (ADKG). We also integrated the ADKG constructed after entity linking with other biomedical databases. The ADKG served as a training ground for Knowledge Graph Embedding models with the high-ranking predicted triplets supported by evidence, underscoring the utility of ADKG in generating testable scientific hypotheses. Further application of ADKG in predictive modeling using the UK Biobank data revealed models based on ADKG outperforming others, as evidenced by higher values in the areas under the receiver operating characteristic (ROC) curves. Conclusion The ADKG is a valuable resource for generating hypotheses and enhancing predictive models, highlighting its potential to advance AD's disease research and treatment strategies.
Collapse
Affiliation(s)
- Yue Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill
| | - Kaixian Yu
- Independent Researcher, Shanghai, P.R. China
| | - Shan Gao
- Department of Mathematics and Statistics, Yunnan University
| | - Sheng Yu
- Center for Statistics Science, Tsinghua University
| | - Di Xiong
- Department of Statistics, Shanghai University
| | - Chuanyang Qin
- Department of Mathematics and Statistics, Yunnan University
| | - Huiyuan Chen
- Department of Mathematics and Statistics, Yunnan University
| | - Jiarui Tang
- Department of Biostatistics, University of North Carolina at Chapel Hill
| | - Niansheng Tang
- Department of Mathematics and Statistics, Yunnan University
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill
| |
Collapse
|
21
|
Du X, Sun X, Li M. Knowledge Graph Convolutional Network with Heuristic Search for Drug Repositioning. J Chem Inf Model 2024; 64:4928-4937. [PMID: 38837744 DOI: 10.1021/acs.jcim.4c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Drug repositioning is a strategy of repurposing approved drugs for treating new indications, which can accelerate the drug discovery process, reduce development costs, and lower the safety risk. The advancement of biotechnology has significantly accelerated the speed and scale of biological data generation, offering significant potential for drug repositioning through biomedical knowledge graphs that integrate diverse entities and relations from various biomedical sources. To fully learn the semantic information and topological structure information from the biological knowledge graph, we propose a knowledge graph convolutional network with a heuristic search, named KGCNH, which can effectively utilize the diversity of entities and relationships in biological knowledge graphs, as well as topological structure information, to predict the associations between drugs and diseases. Specifically, we design a relation-aware attention mechanism to compute the attention scores for each neighboring entity of a given entity under different relations. To address the challenge of randomness of the initial attention scores potentially impacting model performance and to expand the search scope of the model, we designed a heuristic search module based on Gumbel-Softmax, which uses attention scores as heuristic information and introduces randomness to assist the model in exploring more optimal embeddings of drugs and diseases. Following this module, we derive the relation weights, obtain the embeddings of drugs and diseases through neighborhood aggregation, and then predict drug-disease associations. Additionally, we employ feature-based augmented views to enhance model robustness and mitigate overfitting issues. We have implemented our method and conducted experiments on two data sets. The results demonstrate that KGCNH outperforms competing methods. In particular, case studies on lithium and quetiapine confirm that KGCNH can retrieve more actual drug-disease associations in the top prediction results.
Collapse
Affiliation(s)
- Xiang Du
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
| | - Xinliang Sun
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
22
|
Chapman MA, Sorg BA. A Systematic Review of Extracellular Matrix-Related Alterations in Parkinson's Disease. Brain Sci 2024; 14:522. [PMID: 38928523 PMCID: PMC11201521 DOI: 10.3390/brainsci14060522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
The role of the extracellular matrix (ECM) in Parkinson's disease (PD) is not well understood, even though it is critical for neuronal structure and signaling. This systematic review identified the top deregulated ECM-related pathways in studies that used gene set enrichment analyses (GSEA) to document transcriptomic, proteomic, or genomic alterations in PD. PubMed and Google scholar were searched for transcriptomics, proteomics, or genomics studies that employed GSEA on data from PD tissues or cells and reported ECM-related pathways among the top-10 most enriched versus controls. Twenty-seven studies were included, two of which used multiple omics analyses. Transcriptomics and proteomics studies were conducted on a variety of tissue and cell types. Of the 17 transcriptomics studies (16 data sets), 13 identified one or more adhesion pathways in the top-10 deregulated gene sets or pathways, primarily related to cell adhesion and focal adhesion. Among the 8 proteomics studies, 5 identified altered overarching ECM gene sets or pathways among the top 10. Among the 4 genomics studies, 3 identified focal adhesion pathways among the top 10. The findings summarized here suggest that ECM organization/structure and cell adhesion (particularly focal adhesion) are altered in PD and should be the focus of future studies.
Collapse
Affiliation(s)
| | - Barbara A. Sorg
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97232, USA;
| |
Collapse
|
23
|
Labarga A, Martínez-Gonzalez J, Barajas M. Integrative Multi-Omics Analysis for Etiology Classification and Biomarker Discovery in Stroke: Advancing towards Precision Medicine. BIOLOGY 2024; 13:338. [PMID: 38785820 PMCID: PMC11149453 DOI: 10.3390/biology13050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Recent advancements in high-throughput omics technologies have opened new avenues for investigating stroke at the molecular level and elucidating the intricate interactions among various molecular components. We present a novel approach for multi-omics data integration on knowledge graphs and have applied it to a stroke etiology classification task of 30 stroke patients through the integrative analysis of DNA methylation and mRNA, miRNA, and circRNA. This approach has demonstrated promising performance as compared to other existing single technology approaches.
Collapse
Affiliation(s)
- Alberto Labarga
- Health Science Department, Public University of Navarra, 31006 Pamplona, Spain;
| | | | - Miguel Barajas
- Health Science Department, Public University of Navarra, 31006 Pamplona, Spain;
| |
Collapse
|
24
|
Di Maria A, Bellomo L, Billeci F, Cardillo A, Alaimo S, Ferragina P, Ferro A, Pulvirenti A. NetMe 2.0: a web-based platform for extracting and modeling knowledge from biomedical literature as a labeled graph. Bioinformatics 2024; 40:btae194. [PMID: 38597890 PMCID: PMC11074003 DOI: 10.1093/bioinformatics/btae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024] Open
Abstract
MOTIVATION The rapid increase of bio-medical literature makes it harder and harder for scientists to keep pace with the discoveries on which they build their studies. Therefore, computational tools have become more widespread, among which network analysis plays a crucial role in several life-science contexts. Nevertheless, building correct and complete networks about some user-defined biomedical topics on top of the available literature is still challenging. RESULTS We introduce NetMe 2.0, a web-based platform that automatically extracts relevant biomedical entities and their relations from a set of input texts-i.e. in the form of full-text or abstract of PubMed Central's papers, free texts, or PDFs uploaded by users-and models them as a BioMedical Knowledge Graph (BKG). NetMe 2.0 also implements an innovative Retrieval Augmented Generation module (Graph-RAG) that works on top of the relationships modeled by the BKG and allows the distilling of well-formed sentences that explain their content. The experimental results show that NetMe 2.0 can infer comprehensive and reliable biological networks with significant Precision-Recall metrics when compared to state-of-the-art approaches. AVAILABILITY AND IMPLEMENTATION https://netme.click/.
Collapse
Affiliation(s)
- Antonio Di Maria
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95125, Italy
| | | | - Fabrizio Billeci
- Department of Computer Science, University of Catania, Catania, 95125, Italy
| | - Alfio Cardillo
- Department of Computer Science, University of Catania, Catania, 95125, Italy
| | - Salvatore Alaimo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95125, Italy
| | - Paolo Ferragina
- Department of Computer Science, University of Pisa, Pisa, 56126 , Italy
| | - Alfredo Ferro
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95125, Italy
| | - Alfredo Pulvirenti
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95125, Italy
| |
Collapse
|
25
|
Wei H, Gao L, Wu S, Jiang Y, Liu B. DiSMVC: a multi-view graph collaborative learning framework for measuring disease similarity. Bioinformatics 2024; 40:btae306. [PMID: 38715444 PMCID: PMC11256965 DOI: 10.1093/bioinformatics/btae306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024] Open
Abstract
MOTIVATION Exploring potential associations between diseases can help in understanding pathological mechanisms of diseases and facilitating the discovery of candidate biomarkers and drug targets, thereby promoting disease diagnosis and treatment. Some computational methods have been proposed for measuring disease similarity. However, these methods describe diseases without considering their latent multi-molecule regulation and valuable supervision signal, resulting in limited biological interpretability and efficiency to capture association patterns. RESULTS In this study, we propose a new computational method named DiSMVC. Different from existing predictors, DiSMVC designs a supervised graph collaborative framework to measure disease similarity. Multiple bio-entity associations related to genes and miRNAs are integrated via cross-view graph contrastive learning to extract informative disease representation, and then association pattern joint learning is implemented to compute disease similarity by incorporating phenotype-annotated disease associations. The experimental results show that DiSMVC can draw discriminative characteristics for disease pairs, and outperform other state-of-the-art methods. As a result, DiSMVC is a promising method for predicting disease associations with molecular interpretability. AVAILABILITY AND IMPLEMENTATION Datasets and source codes are available at https://github.com/Biohang/DiSMVC.
Collapse
Affiliation(s)
- Hang Wei
- School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
| | - Shuai Wu
- School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
| | - Yina Jiang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Bin Liu
- Faculty of Engineering, Shenzhen MSU-BIT University, Shenzhen, Guangdong 518172, China
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
26
|
Patidar K, Deng JH, Mitchell CS, Ford Versypt AN. Cross-Domain Text Mining of Pathophysiological Processes Associated with Diabetic Kidney Disease. Int J Mol Sci 2024; 25:4503. [PMID: 38674089 PMCID: PMC11050166 DOI: 10.3390/ijms25084503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. This study's goal was to identify the signaling drivers and pathways that modulate glomerular endothelial dysfunction in DKD via artificial intelligence-enabled literature-based discovery. Cross-domain text mining of 33+ million PubMed articles was performed with SemNet 2.0 to identify and rank multi-scalar and multi-factorial pathophysiological concepts related to DKD. A set of identified relevant genes and proteins that regulate different pathological events associated with DKD were analyzed and ranked using normalized mean HeteSim scores. High-ranking genes and proteins intersected three domains-DKD, the immune response, and glomerular endothelial cells. The top 10% of ranked concepts were mapped to the following biological functions: angiogenesis, apoptotic processes, cell adhesion, chemotaxis, growth factor signaling, vascular permeability, the nitric oxide response, oxidative stress, the cytokine response, macrophage signaling, NFκB factor activity, the TLR pathway, glucose metabolism, the inflammatory response, the ERK/MAPK signaling response, the JAK/STAT pathway, the T-cell-mediated response, the WNT/β-catenin pathway, the renin-angiotensin system, and NADPH oxidase activity. High-ranking genes and proteins were used to generate a protein-protein interaction network. The study results prioritized interactions or molecules involved in dysregulated signaling in DKD, which can be further assessed through biochemical network models or experiments.
Collapse
Affiliation(s)
- Krutika Patidar
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Jennifer H. Deng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Cassie S. Mitchell
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Center for Machine Learning at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ashlee N. Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA
- Institute for Artificial Intelligence and Data Science, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
27
|
Rani N, Kaushik A, Kardam S, Kag S, Raj VS, Ambasta RK, Kumar P. Reimagining old drugs with new tricks: Mechanisms, strategies and notable success stories in drug repurposing for neurological diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:23-70. [PMID: 38789181 DOI: 10.1016/bs.pmbts.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Recent evolution in drug repurposing has brought new anticipation, especially in the conflict against neurodegenerative diseases (NDDs). The traditional approach to developing novel drugs for these complex disorders is laborious, time-consuming, and often abortive. However, drug reprofiling which is the implementation of illuminating novel therapeutic applications of existing approved drugs, has shown potential as a promising strategy to accelerate the hunt for therapeutics. The advancement of computational approaches and artificial intelligence has expedited drug repurposing. These progressive technologies have enabled scientists to analyse extensive datasets and predict potential drug-disease interactions. By prospecting into the existing pharmacological knowledge, scientists can recognise potential therapeutic candidates for reprofiling, saving precious time and resources. Preclinical models have also played a pivotal role in this field, confirming the effectiveness and mechanisms of action of repurposed drugs. Several studies have occurred in recent years, including the discovery of available drugs that demonstrate significant protective effects in NDDs, relieve debilitating symptoms, or slow down the progression of the disease. These findings highlight the potential of repurposed drugs to change the landscape of NDD treatment. Here, we present an overview of recent developments and major advances in drug repurposing intending to provide an in-depth analysis of traditional drug discovery and the strategies, approaches and technologies that have contributed to drug repositioning. In addition, this chapter attempts to highlight successful case studies of drug repositioning in various therapeutic areas related to NDDs and explore the clinical trials, challenges and limitations faced by researchers in the field. Finally, the importance of drug repositioning in drug discovery and development and its potential to address discontented medical needs is also highlighted.
Collapse
Affiliation(s)
- Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shefali Kardam
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Sonika Kag
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - V Samuel Raj
- Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India.
| |
Collapse
|
28
|
Yang C, Chen X, Huang J, An Y, Huang Z, Sun Y. A few-shot link prediction framework to drug repurposing using multi-level attention network. Comput Biol Med 2024; 170:107936. [PMID: 38244473 DOI: 10.1016/j.compbiomed.2024.107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/22/2024]
Abstract
Drug repurposing is a strategy aiming at uncovering novel medical indications of approved drugs. This process of discovery can be effectively represented as a link prediction task within a medical knowledge graph by predicting the missing relation between the disease entity and the drug entity. Typically, the links to be predicted pertain to rare types, thereby necessitating the task of few-shot link prediction. However, the sparsity of neighborhood information and weak triplet interactions result in less effective representations, which brings great challenges to the few-shot link prediction. Therefore, in this paper, we proposed a meta-learning framework based on a multi-level attention network (MLAN) to capture valuable information in the few-shot scenario for drug repurposing. First, the proposed method utilized a gating mechanism and a graph attention network to effectively filter noise information and highlight the valuable neighborhood information, respectively. Second, the proposed commonality relation learner, employing a set transformer, effectively captured triplet-level interactions while remaining insensitive to the size of the support set. Finally, a model-agnostic meta-learning training strategy was employed to optimize the model quickly on each meta task. We conducted validation of the proposed method on two datasets specifically designed for few-shot link prediction in medical field: COVID19-One and BIOKG-One. Experimental results showed that the proposed model had significant advantages over state-of-the-art few-shot link prediction methods. Results also highlighted the valuable insights of the proposed method, which successfully integrated the components within a unified meta-learning framework for drug repurposing.
Collapse
Affiliation(s)
- Chenglin Yang
- Big Data Institute, Central South University, Changsha, 410083, China; School of Life Sciences, Central South University, Changsha, 410083, China
| | - Xianlai Chen
- Big Data Institute, Central South University, Changsha, 410083, China.
| | - Jincai Huang
- Big Data Institute, Central South University, Changsha, 410083, China.
| | - Ying An
- Big Data Institute, Central South University, Changsha, 410083, China
| | - Zhenyu Huang
- Big Data Institute, Central South University, Changsha, 410083, China
| | - Yu Sun
- Big Data Institute, Central South University, Changsha, 410083, China
| |
Collapse
|
29
|
Jeong D, Koo B, Oh M, Kim TB, Kim S. GOAT: Gene-level biomarker discovery from multi-Omics data using graph ATtention neural network for eosinophilic asthma subtype. Bioinformatics 2023; 39:btad582. [PMID: 37740295 PMCID: PMC10547929 DOI: 10.1093/bioinformatics/btad582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023] Open
Abstract
MOTIVATION Asthma is a heterogeneous disease where various subtypes are established and molecular biomarkers of the subtypes are yet to be discovered. Recent availability of multi-omics data paved a way to discover molecular biomarkers for the subtypes. However, multi-omics biomarker discovery is challenging because of the complex interplay between different omics layers. RESULTS We propose a deep attention model named Gene-level biomarker discovery from multi-Omics data using graph ATtention neural network (GOAT) for identifying molecular biomarkers for eosinophilic asthma subtypes with multi-omics data. GOAT identifies genes that discriminate subtypes using a graph neural network by modeling complex interactions among genes as the attention mechanism in the deep learning model. In experiments with multi-omics profiles of the COREA (Cohort for Reality and Evolution of Adult Asthma in Korea) asthma cohort of 300 patients, GOAT outperforms existing models and suggests interpretable biological mechanisms underlying asthma subtypes. Importantly, GOAT identified genes that are distinct only in terms of relationship with other genes through attention. To better understand the role of biomarkers, we further investigated two transcription factors, CTNNB1 and JUN, captured by GOAT. We were successful in showing the role of the transcription factors in eosinophilic asthma pathophysiology in a network propagation and transcriptional network analysis, which were not distinct in terms of gene expression level differences. AVAILABILITY AND IMPLEMENTATION Source code is available https://github.com/DabinJeong/Multi-omics_biomarker. The preprocessed data underlying this article is accessible in data folder of the github repository. Raw data are available in Multi-Omics Platform at http://203.252.206.90:5566/, and it can be accessible when requested.
Collapse
Affiliation(s)
- Dabin Jeong
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
| | - Bonil Koo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
- AIGENDRUG Co., Ltd, Seoul 08826, Republic of Korea
| | - Minsik Oh
- School of Software Convergence, Myongji University, Seoul 03674, Republic of Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
- AIGENDRUG Co., Ltd, Seoul 08826, Republic of Korea
- Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Artificial Intelligence,, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
30
|
Gu J, Bang D, Yi J, Lee S, Kim DK, Kim S. A model-agnostic framework to enhance knowledge graph-based drug combination prediction with drug-drug interaction data and supervised contrastive learning. Brief Bioinform 2023; 24:bbad285. [PMID: 37544660 DOI: 10.1093/bib/bbad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023] Open
Abstract
Combination therapies have brought significant advancements to the treatment of various diseases in the medical field. However, searching for effective drug combinations remains a major challenge due to the vast number of possible combinations. Biomedical knowledge graph (KG)-based methods have shown potential in predicting effective combinations for wide spectrum of diseases, but the lack of credible negative samples has limited the prediction performance of machine learning models. To address this issue, we propose a novel model-agnostic framework that leverages existing drug-drug interaction (DDI) data as a reliable negative dataset and employs supervised contrastive learning (SCL) to transform drug embedding vectors to be more suitable for drug combination prediction. We conducted extensive experiments using various network embedding algorithms, including random walk and graph neural networks, on a biomedical KG. Our framework significantly improved performance metrics compared to the baseline framework. We also provide embedding space visualizations and case studies that demonstrate the effectiveness of our approach. This work highlights the potential of using DDI data and SCL in finding tighter decision boundaries for predicting effective drug combinations.
Collapse
Affiliation(s)
- Jeonghyeon Gu
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea
| | - Dongmin Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea
- AIGENDRUG Co., Ltd., 1, Gwanak-ro, 08826 Seoul, Republic of Korea
| | - Jungseob Yi
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea
| | - Sangseon Lee
- Institute of Computer Technology Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea
| | - Dong Kyu Kim
- PHARMGENSCIENCE Co., Ltd., 216, Dongjak-daero, 06554 Seoul, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea
- Department of Computer Science and Engineering, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea
- AIGENDRUG Co., Ltd., 1, Gwanak-ro, 08826 Seoul, Republic of Korea
- Institute of Computer Technology, Seoul National University, 1, Gwanak-ro, 08826 Seoul, Republic of Korea
| |
Collapse
|