1
|
Marsac P, Wallet T, Redheuil A, Gueda Moussa M, Lamy J, Nguyen V, Charpentier E, Hammoudi N, Bollache E, Kachenoura N. New atrio-ventricular indices derived from conventional cine MRI correlate with functional capacity in patients with asymptomatic primary mitral regurgitation. Sci Rep 2024; 14:21429. [PMID: 39271732 PMCID: PMC11399337 DOI: 10.1038/s41598-024-71563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Mitral regurgitation (MR) is associated with morphological and functional alterations of left atrium (LA) and ventricle (LV), possibly inducing LA-LV misalignment. We aimed to: (1) characterize angulation between LA and mitral annulus from conventional cine MRI data and feature-tracking (FT) contours, (2) assess their associations with functional capacity in MR patients, as assessed by oxygen consumption (peak-VO2) and minute ventilation to carbon dioxide production (VE/VCO2) slope, in comparison with MRI LA/LV strain indices. Thirty-two asymptomatic primary MR patients (56 [40; 66] years, 12 women) underwent cardiac MRI resulting in LA/LV conventional FT-derived strain indices. Then, end-diastolic angles were derived from FT LA contours: (1) α, centered on the LA centre of mass and defined by mitral valve extremities, (2) γ, centered on the mitral ring anterior/lateral side, and defined by LA centre and the other extremity of the mitral ring. Cardiopulmonary exercise testing with simultaneous echocardiography were also performed; peak-VO2 and VE/VCO2 slope were measured. While peak-VO2 and VE/VCO2 slope were not correlated to LA/LV strains, they were significantly associated with angles (α: r = 0.50, p = 0.003 and r = - 0.52, p = 0.003; γ: r = - 0.53, p = 0.002 and r = 0.52, p = 0.003; respectively), independently of age and gender (R2 ≥ 0.29, p ≤ 0.03). In primary MR, the new LA/mitral annulus angles, computed directly from standard-of-care MRI, are better correlated to exercise tolerance than conventional LA/LV strain.
Collapse
Affiliation(s)
- Perrine Marsac
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, 15 rue de l'ecole de medecine, 75006, Paris, France
| | - Thomas Wallet
- Sorbonne Université, ACTION Study Group, INSERM UMRS_1166, Institut de Cardiologie, Hôpital Pitié-Salpêtrière (AP-HP), Paris, France
| | - Alban Redheuil
- Hôpital Universitaire Pitié-Salpêtrière, Unité d'Imagerie Cardiovasculaire et Thoracique (ICT), Paris, France
| | - Moussa Gueda Moussa
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, 15 rue de l'ecole de medecine, 75006, Paris, France
| | - Jérôme Lamy
- Hôpital Européen Georges-Pompidou, Cardiovascular Research Center (PARCC, Inserm U970), Paris, France
| | - Vincent Nguyen
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, 15 rue de l'ecole de medecine, 75006, Paris, France
| | - Etienne Charpentier
- Hôpital Universitaire Pitié-Salpêtrière, Unité d'Imagerie Cardiovasculaire et Thoracique (ICT), Paris, France
| | - Nadjib Hammoudi
- Sorbonne Université, ACTION Study Group, INSERM UMRS_1166, Institut de Cardiologie, Hôpital Pitié-Salpêtrière (AP-HP), Paris, France
| | - Emilie Bollache
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, 15 rue de l'ecole de medecine, 75006, Paris, France
| | - Nadjia Kachenoura
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, 15 rue de l'ecole de medecine, 75006, Paris, France.
| |
Collapse
|
2
|
Gary NC, Misganaw B, Hammamieh R, Gautam A. Exploring metabolomic dynamics in acute stress disorder: amino acids, lipids, and carbohydrates. Front Genet 2024; 15:1394630. [PMID: 39119583 PMCID: PMC11306072 DOI: 10.3389/fgene.2024.1394630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Acute Stress Disorder (ASD) is a psychiatric condition that can develop shortly after trauma exposure. Although molecular studies of ASD are only beginning, groups of metabolites have been found to be significantly altered with acute stress phenotypes in various pre-clinical and clinical studies. ASD implicated metabolites include amino acids (β-hydroxybutyrate, glutamate, 5-aminovalerate, kynurenine and aspartate), ketone bodies (β-hydroxybutyrate), lipids (cortisol, palmitoylethanomide, and N-palmitoyl taurine) and carbohydrates (glucose and mannose). Network and pathway analysis with the most prominent metabolites shows that Extracellular signal-regulated kinases and c-AMP response element binding (CREB) protein can be crucial players. After highlighting main recent findings on the role of metabolites in ASD, we will discuss potential future directions and challenges that need to be tackled. Overall, we aim to showcase that metabolomics present a promising opportunity to advance our understanding of ASD pathophysiology as well as the development of novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Nicholas C. Gary
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- The Geneva Foundation, Tacoma, WA, United States
| | - Burook Misganaw
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Culmen International, Alexandria, VA, United States
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
3
|
Zulfaj E, Nejat A, Espinosa AS, Hussain S, Haamid A, Soliman AE, Kakaei Y, Jha A, Redfors B, Omerovic E. Development of a small animal model replicating core characteristics of takotsubo syndrome in humans. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae048. [PMID: 38974875 PMCID: PMC11227227 DOI: 10.1093/ehjopen/oeae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/05/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
Aims Adequate animal models are necessary to understand human conditions, such as takotsubo syndrome (TS) characterized by the heart's transient regional wall motion abnormalities. This study aims to develop a reproducible, low-mortality TS model that closely mimics the human condition and addresses the limitations of existing models. Methods and results We conducted six experiments using 309 Sprague Dawley rats, each approximately 300 g and aged 7-8 weeks. Initially, we replicated an established model using intraperitoneal isoprenaline injections. Subsequent experiments varied the doses and infusion durations of intravenous isoprenaline and assessed the effects of sex, strain, and breeder on the development of reversible akinetic segments. High-resolution echocardiography monitored the regional wall motion over 30 days to correlate with histological changes. Increasing the isoprenaline dose and the infusion time significantly enhanced akinesia (P < 0.01), resulting in pronounced apical ballooning observed in three-dimensional imaging. Akinesia peaked at 6 h post-infusion, with recovery observed at 24 h; most rats recovered from akinetic segments within 48-72 h. Optimizing the mode of administration, dose, and duration achieved a TS-like phenotype in 90% of cases, with a 16.7% mortality rate. Histological examinations confirmed that myocardial injury occurred, independent of apical ballooning. Conclusion This study presents a refined TS model that reliably replicates the syndrome's key features, including morphological and electrocardiographic changes, demonstrating its transient nature with high fidelity and reduced mortality. The model's reproducibility, evidenced by consistent results across trials, suggests its potential for broader application pending further validation.
Collapse
Affiliation(s)
- Ermir Zulfaj
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Bruna stråket 16, 413 45 Gothenburg, Sweden
| | - Amirali Nejat
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Bruna stråket 16, 413 45 Gothenburg, Sweden
| | - Aaron Shekka Espinosa
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Bruna stråket 16, 413 45 Gothenburg, Sweden
| | - Shafaat Hussain
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Bruna stråket 16, 413 45 Gothenburg, Sweden
| | - Abdulhussain Haamid
- Core Facilities—Experimental Biomedicine, Sahlgrenska Academy, Gothenburg, Sweden
| | - Ahmed Elmahdy Soliman
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Bruna stråket 16, 413 45 Gothenburg, Sweden
| | - Yalda Kakaei
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Bruna stråket 16, 413 45 Gothenburg, Sweden
| | - Abhishek Jha
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Bruna stråket 16, 413 45 Gothenburg, Sweden
| | - Björn Redfors
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Bruna stråket 16, 413 45 Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Bruna stråket 16, 413 45 Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
4
|
Umapathi P, Aggarwal A, Zahra F, Narayanan B, Zachara NE. The multifaceted role of intracellular glycosylation in cytoprotection and heart disease. J Biol Chem 2024; 300:107296. [PMID: 38641064 PMCID: PMC11126959 DOI: 10.1016/j.jbc.2024.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
The modification of nuclear, cytoplasmic, and mitochondrial proteins by O-linked β-N-actylglucosamine (O-GlcNAc) is an essential posttranslational modification that is common in metozoans. O-GlcNAc is cycled on and off proteins in response to environmental and physiological stimuli impacting protein function, which, in turn, tunes pathways that include transcription, translation, proteostasis, signal transduction, and metabolism. One class of stimulus that induces rapid and dynamic changes to O-GlcNAc is cellular injury, resulting from environmental stress (for instance, heat shock), hypoxia/reoxygenation injury, ischemia reperfusion injury (heart attack, stroke, trauma hemorrhage), and sepsis. Acute elevation of O-GlcNAc before or after injury reduces apoptosis and necrosis, suggesting that injury-induced changes in O-GlcNAcylation regulate cell fate decisions. However, prolonged elevation or reduction in O-GlcNAc leads to a maladaptive response and is associated with pathologies such as hypertrophy and heart failure. In this review, we discuss the impact of O-GlcNAc in both acute and prolonged models of injury with a focus on the heart and biological mechanisms that underpin cell survival.
Collapse
Affiliation(s)
- Priya Umapathi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Akanksha Aggarwal
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fiddia Zahra
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bhargavi Narayanan
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
5
|
Wang Y, Tang X, Cui J, Wang P, Yang Q, Chen Y, Zhang T. Ginsenoside Rb1 mitigates acute catecholamine surge-induced myocardial injuries in part by suppressing STING-mediated macrophage activation. Biomed Pharmacother 2024; 175:116794. [PMID: 38776673 DOI: 10.1016/j.biopha.2024.116794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Stress cardiomyopathy (SCM) is associated with cardiovascular mortality rates similar to acute coronary syndrome. Myocardial injuries driven by inflammatory mechanisms may in part account for the dismal prognosis of SCM. Currently, no inflammation-targeted therapies are available to mitigate SCM-associated myocardial injuries. In this study, acute catecholamine surge-induced SCM was modeled by stimulating the ovariectomized (OVX) mice with isoproterenol (ISO). The effects of ginsenoside Rb1 (Rb1) on SCM-associated myocardial injuries were assessed in the OVX-ISO compound mice. RAW 264.7 macrophages stimulated with calf thymus DNA (ctDNA) or STING agonist DMXAA were adopted to further understand the anti-inflammatory mechanisms of Rb1. The results show that estrogen deprivation increases the susceptibility to ISO-induced myocardial injuries. Rb1 mitigates myocardial injuries and attenuates cardiomyocyte necrosis as well as myocardial inflammation in the OVX-ISO mice. Bioinformatics analysis suggests that cytosolic DNA-sensing pathway is closely linked with ISO-triggered inflammatory responses and cell death in the heart. In macrophages, Rb1 lowers ctDNA-stimulated production of TNF-α, IL-6, CCL2 and IFN-β. RNA-seq analyses uncover that Rb1 offsets DNA-stimulated upregulation in multiple inflammatory response pathways and cytosolic DNA-sensing pathway. Furthermore, Rb1 directly mitigates DMXAA-stimulated STING activation and inflammatory responses in macrophages. In conclusion, the work here demonstrates for the first time that Rb1 protects against SCM-associated myocardial injuries in part by counteracting acute ISO stress-triggered cardiomyocyte necrosis and myocardial inflammation. Moreover, by evidencing that Rb1 downregulates cytosolic DNA-sensing machineries in macrophages, our findings warrant further investigation of therapeutic implications of the anti-inflammatory Rb1 in the treatment of SCM.
Collapse
Affiliation(s)
- Yujue Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai 200437, China
| | - Xinmiao Tang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai 200437, China
| | - Jingang Cui
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai 200437, China
| | - Peiwei Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai 200437, China
| | - Qinbo Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai 200437, China
| | - Yu Chen
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai 200437, China; Laboratory of Clinical and Molecular Pharmacology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai 200437, China.
| | - Teng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai 200437, China.
| |
Collapse
|
6
|
Zulfaj E, Nejat A, Haamid A, Elmahdy A, Espinosa A, Redfors B, Omerovic E. Animal models of Takotsubo syndrome: bridging the gap to the human condition. Front Cardiovasc Med 2024; 11:1351587. [PMID: 38841261 PMCID: PMC11152046 DOI: 10.3389/fcvm.2024.1351587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 06/07/2024] Open
Abstract
Modelling human diseases serves as a crucial tool to unveil underlying mechanisms and pathophysiology. Takotsubo syndrome (TS), an acute form of heart failure resembling myocardial infarction, manifests with reversible regional wall motion abnormalities (RWMA) of the ventricles. Despite its mortality and clinical similarity to myocardial infarction, TS aetiology remains elusive, with stress and catecholamines playing central roles. This review delves into current animal models of TS, aiming to assess their ability to replicate key clinical traits and identifying limitations. An in-depth evaluation of published animal models reveals a variation in the definition of TS among studies. We notice a substantial prevalence of catecholamine-induced models, particularly in rodents. While these models shed light on TS, there remains potential for refinement. Translational success in TS research hinges on models that align with human TS features and exhibit the key features, including transient RWMA. Animal models should be comprehensively evaluated regarding the various systemic changes of the applied trigger(s) for a proper interpretation. This review acts as a guide for researchers, advocating for stringent TS model standards and enhancing translational validity.
Collapse
Affiliation(s)
- Ermir Zulfaj
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden
| | - AmirAli Nejat
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden
| | - Abdulhussain Haamid
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ahmed Elmahdy
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden
| | - Aaron Espinosa
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden
| | - Björn Redfors
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden
- Core Facilities - Experimental Biomedicine, Sahlgrenska Academy, Gothenburg, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden
- Core Facilities - Experimental Biomedicine, Sahlgrenska Academy, Gothenburg, Sweden
| |
Collapse
|
7
|
Losi MA, Borrelli F, Bossone E, Esposito G. Takotsubo syndrome: From a reversible to a chronic condition in search for the Ariadne's ball of string. Int J Cardiol 2023; 393:131385. [PMID: 37741349 DOI: 10.1016/j.ijcard.2023.131385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Affiliation(s)
- Maria-Angela Losi
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy.
| | - Felice Borrelli
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Eduardo Bossone
- Department of Public Health, University Federico II, Naples, Italy
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| |
Collapse
|
8
|
Belosludtseva NV, Pavlik LL, Mikheeva IB, Talanov EY, Serov DA, Khurtin DA, Belosludtsev KN, Mironova GD. Protective Effect of Uridine on Structural and Functional Rearrangements in Heart Mitochondria after a High-Dose Isoprenaline Exposure Modelling Stress-Induced Cardiomyopathy in Rats. Int J Mol Sci 2023; 24:17300. [PMID: 38139129 PMCID: PMC10744270 DOI: 10.3390/ijms242417300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The pyrimidine nucleoside uridine and its phosphorylated derivates have been shown to be involved in the systemic regulation of energy and redox balance and promote the regeneration of many tissues, including the myocardium, although the underlying mechanisms are not fully understood. Moreover, rearrangements in mitochondrial structure and function within cardiomyocytes are the predominant signs of myocardial injury. Accordingly, this study aimed to investigate whether uridine could alleviate acute myocardial injury induced by isoprenaline (ISO) exposure, a rat model of stress-induced cardiomyopathy, and to elucidate the mechanisms of its action related to mitochondrial dysfunction. For this purpose, a biochemical analysis of the relevant serum biomarkers and ECG monitoring were performed in combination with transmission electron microscopy and a comprehensive study of cardiac mitochondrial functions. The administration of ISO (150 mg/kg, twice with an interval of 24 h, s.c.) to rats caused myocardial degenerative changes, a sharp increase in the serum cardiospecific markers troponin I and the AST/ALT ratio, and a decline in the ATP level in the left ventricular myocardium. In parallel, alterations in the organization of sarcomeres with focal disorganization of myofibrils, and ultrastructural and morphological defects in mitochondria, including disturbances in the orientation and packing density of crista membranes, were detected. These malfunctions were improved by pretreatment with uridine (30 mg/kg, twice with an interval of 24 h, i.p.). Uridine also led to the normalization of the QT interval. Moreover, uridine effectively inhibited ISO-induced ROS overproduction and lipid peroxidation in rat heart mitochondria. The administration of uridine partially recovered the protein level of the respiratory chain complex V, along with the rates of ATP synthesis and mitochondrial potassium transport, suggesting the activation of the potassium cycle through the mitoKATP channel. Taken together, these results indicate that uridine ameliorates acute ISO-induced myocardial injury and mitochondrial malfunction, which may be due to the activation of mitochondrial potassium recycling and a mild uncoupling leading to decreased ROS generation and oxidative damage.
Collapse
Affiliation(s)
- Natalia V. Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Lubov L. Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Irina B. Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Eugeny Yu. Talanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov St. 38, 119991 Moscow, Russia;
| | - Dmitriy A. Khurtin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia;
| | - Konstantin N. Belosludtsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia;
| | - Galina D. Mironova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| |
Collapse
|