1
|
Shi Y, Mao J, Wang S, Ma S, Luo L, You J. Pharmaceutical strategies for optimized mRNA expression. Biomaterials 2025; 314:122853. [PMID: 39342919 DOI: 10.1016/j.biomaterials.2024.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Messenger RNA (mRNA)-based immunotherapies and protein in situ production therapies hold great promise for addressing theoretically all the diseases characterized by aberrant protein levels. The safe, stable, and precise delivery of mRNA to target cells via appropriate pharmaceutical strategies is a prerequisite for its optimal efficacy. In this review, we summarize the structural characteristics, mode of action, development prospects, and limitations of existing mRNA delivery systems from a pharmaceutical perspective, with an emphasis on the impacts from formulation adjustments and preparation techniques of non-viral vectors on mRNA stability, target site accumulation and transfection efficiency. In addition, we introduce strategies for synergistical combination of mRNA and small molecules to augment the potency or mitigate the adverse effects of mRNA therapeutics. Lastly, we delve into the challenges impeding the development of mRNA drugs while exploring promising avenues for future advancements.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiapeng Mao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Siyao Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, 166 Qiutaobei Road, Hangzhou, Zhejiang, 310017, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, PR China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, PR China.
| |
Collapse
|
2
|
Kim B, Subraveti SN, Liu JX, Nayagam SK, Merghoub S, Caggiano NJ, Amelemah DF, Jiang T, Bizmark N, Conway JM, Tsourkas A, Prud'homme RK. Diblock Copolymer Targeted Lipid Nanoparticles: Next-Generation Nucleic Acid Delivery System Produced by Confined Impinging Jet Mixers. ACS APPLIED BIO MATERIALS 2024. [PMID: 39480746 DOI: 10.1021/acsabm.4c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Despite the recent advances and clinical demonstration of lipid nanoparticles (LNPs) for therapeutic and prophylactic applications, the extrahepatic delivery of nucleic acids remains a significant challenge in the field. This limitation arises from the rapid desorption of lipid-PEG in the bloodstream and clearance to the liver, which hinders extrahepatic delivery. In response, we explore the substitution of lipid-PEG with biodegradable block copolymers (BCPs), specifically poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG). BCPs offer strong anchoring for large macromolecules, potentially enhancing cell-specific targeting. To develop and optimize BCP-stabilized LNPs (BCP-LNPs), we employed a Design of Experiment (DOE) approach. Through a systematic exploration, we identified optimal formulations for BCP-LNPs, achieving desirable physicochemical properties and encapsulation efficiency. Notably, BCP-LNPs exhibit surprising trends in transfection efficiency, with certain formulations showing up to a 40-fold increase in transfection in Hela cells, while maintaining minimal cytotoxicity. The lipid compositions that optimized PCL-b-PEG LNP transfection were different from the compositions that optimized PEG-lipid LNP transfection. Furthermore, our study confirms the versatility of BCP-LNPs in encapsulating and delivering both mRNA and pDNA, demonstrating their cargo-agnostic nature. Lastly, we showcased the targeted BCP-LNPs using a Cetuximab-conjugated formulation. These targeted LNPs show significant promise in delivering cargo specific to EGFR-overexpressing cells (A549 cells), with up to 2.4 times higher transfection compared to nontargeted LNPs. This finding underscores the potential of BCP-LNPs in targeted gene therapy, especially in challenging scenarios such as tumor targeting. Overall, our study establishes the viability of BCP-LNPs as a versatile, efficient, and targeted delivery platform for nucleic acids, opening avenues for advanced therapeutic applications.
Collapse
Affiliation(s)
- Bumjun Kim
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Sai Nikhil Subraveti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Jason X Liu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Satya K Nayagam
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Safaa Merghoub
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas J Caggiano
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - David F Amelemah
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ting Jiang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Navid Bizmark
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Jonathan M Conway
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
3
|
Hashiba K, Taguchi M, Sakamoto S, Otsu A, Maeda Y, Suzuki Y, Ebe H, Okazaki A, Harashima H, Sato Y. Impact of Lipid Tail Length on the Organ Selectivity of mRNA-Lipid Nanoparticles. NANO LETTERS 2024; 24. [PMID: 39373269 PMCID: PMC11487653 DOI: 10.1021/acs.nanolett.4c02566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
The delivery of mRNA molecules to organs beyond the liver is valuable for therapeutic applications. Functionalized lipid nanoparticles (LNPs) using exogenous mechanisms can regulate in vivo mRNA expression profiles from hepatocytes to extrahepatic tissues but lead to process complexity and cost escalation. Here, we report that mRNA expression gradually shifts from the liver to the spleen in an ionizable lipid tail length-dependent manner. Remarkably, this simple chemical strategy held true even when different ionizable lipid head structures were employed. As a potential mechanism underlying this discovery, our data suggest that 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) is enriched on the surface of mRNA/LNPs with short-tail lipids. This feature limits their interaction with biological components, avoiding their rapid hepatic clearance. We also show that spleen-targeting LNPs loaded with SARS-CoV-2 receptor-binding domain (RBD) mRNA can efficiently induce immune responses and neutralize activity following intramuscular vaccination priming and boosting.
Collapse
Affiliation(s)
- Kazuki Hashiba
- Nucleic
Acid Medicine Business Division, Nitto Denko
Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka 567-8680, Japan
| | - Masamitsu Taguchi
- Nucleic
Acid Medicine Business Division, Nitto Denko
Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka 567-8680, Japan
| | - Sachiko Sakamoto
- Nucleic
Acid Medicine Business Division, Nitto Denko
Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka 567-8680, Japan
| | - Ayaka Otsu
- Nucleic
Acid Medicine Business Division, Nitto Denko
Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka 567-8680, Japan
| | - Yoshiki Maeda
- Nucleic
Acid Medicine Business Division, Nitto Denko
Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka 567-8680, Japan
| | - Yuichi Suzuki
- Laboratory
for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-Ku, Sapporo 060-0812, Japan
| | - Hirofumi Ebe
- Nucleic
Acid Medicine Business Division, Nitto Denko
Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka 567-8680, Japan
| | - Arimichi Okazaki
- Nucleic
Acid Medicine Business Division, Nitto Denko
Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka 567-8680, Japan
| | - Hideyoshi Harashima
- Laboratory
for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-Ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Laboratory
for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-Ku, Sapporo 060-0812, Japan
| |
Collapse
|
4
|
Wu J, Bai X, Yan L, Baimanov D, Cong Y, Quan P, Cai R, Guan Y, Bu W, Lin B, Wang J, Yu S, Li S, Chong Y, Li Y, Hu G, Zhao Y, Chen C, Wang L. Selective regulation of macrophage lipid metabolism via nanomaterials' surface chemistry. Nat Commun 2024; 15:8349. [PMID: 39333092 PMCID: PMC11436645 DOI: 10.1038/s41467-024-52609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Understanding the interface between nanomaterials and lipoproteins is crucial for gaining insights into their impact on lipoprotein structure and lipid metabolism. Here, we use graphene oxide (GOs) nanosheets as a controlled carbon nanomaterial model to study how surface properties influence lipoprotein corona formation and show that GOs have strong binding affinity with low-density lipoprotein (LDL). We use advanced techniques including X-ray reflectivity, circular dichroism, and molecular simulations to explore the interfacial interactions between GOs and LDL. Specifically, hydrophobic GOs preferentially associate with LDL's lipid components, whereas hydrophilic GOs tend to bind with apolipoproteins. Furthermore, these GOs distinctly modulate a variety of lipid metabolism pathways, including LDL recognition, uptake, hydrolysis, efflux, and lipid droplet formation. This study underscores the importance of structure analysis at the nano-biomolecule interface, emphasizing how nanomaterials' surface properties critically influence cellular lipid metabolism. These insights will inspire the design and application of future biocompatible nanomaterials and nanomedicines.
Collapse
Affiliation(s)
- Junguang Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xuan Bai
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, PR China
- METiS Pharmaceuticals, Inc, Hangzhou, 310052, PR China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
| | - Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Peiyu Quan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
- NSF's ChemMatCARS, The University of Chicago, Chicago, IL, 60637, USA
| | - Rui Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, PR China
| | - Wei Bu
- NSF's ChemMatCARS, The University of Chicago, Chicago, IL, 60637, USA
| | - Binhua Lin
- NSF's ChemMatCARS, The University of Chicago, Chicago, IL, 60637, USA
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Shengtao Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
| | - Shijiao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
| | - Yu Chong
- State Key Laboratory of Radiation Medicine and Radiation Protection, School of Radiation Medicine and Protection, Soochow University, Soochow, 215123, PR China
| | - Yang Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, PR China
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, PR China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, Guangdong, PR China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China.
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, Guangdong, PR China.
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100049, PR China.
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
5
|
Bitounis D, Amiji MM. Lipid nanoparticles target haematopoietic stem cells. NATURE NANOTECHNOLOGY 2024; 19:1249-1250. [PMID: 38849545 DOI: 10.1038/s41565-024-01682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Affiliation(s)
- Dimitrios Bitounis
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, MA, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA.
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
6
|
Barz M, Parak WJ, Zentel R. Concepts and Approaches to Reduce or Avoid Protein Corona Formation on Nanoparticles: Challenges and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402935. [PMID: 38976560 PMCID: PMC11425909 DOI: 10.1002/advs.202402935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Indexed: 07/10/2024]
Abstract
This review describes the formation of a protein corona (or its absence) on different classes of nanoparticles, its basic principles, and its consequences for nanomedicine. For this purpose, it describes general concepts to control (guide/minimize) the interaction between artificial nanoparticles and plasma proteins to reduce protein corona formation. Thereafter, methods for the qualitative or quantitative determination of protein corona formation are presented, as well as the properties of nanoparticle surfaces, which are relevant for protein corona prevention (or formation). Thereby especially the role of grafting density of hydrophilic polymers on the surface of the nanoparticle is discussed to prevent the formation of a protein corona. In this context also the potential of detergents (surfactants) for a temporary modification as well as grafting-to and grafting-from approaches for a permanent modification of the surface are discussed. The review concludes by highlighting several promising avenues. This includes (i) the use of nanoparticles without protein corona for active targeting, (ii) the use of synthetic nanoparticles without protein corona formation to address the immune system, (iii) the recollection of nanoparticles with a defined protein corona after in vivo application to sample the blood proteome and (iv) further concepts to reduce protein corona formation.
Collapse
Affiliation(s)
- Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, NL-2333 CC, Netherlands
| | - Wolfgang J Parak
- Institut für Nanostruktur- und Festkörperphysik, Universität Hamburg, Luruper Chaussee 149, D-22761, Hamburg, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| |
Collapse
|
7
|
Lyu Y, Yang X, Yang L, Dai J, Qin H, Zhou Y, Huang Y, Wang Y, Wu D, Shuai Q, Li Q, Xin X, Yin L. Lipid nanoparticle-mediated hepatocyte delivery of siRNA and silibinin in metabolic dysfunction-associated steatotic liver disease. J Control Release 2024; 373:385-398. [PMID: 38972640 DOI: 10.1016/j.jconrel.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Lipid nanoparticle-mediated co-delivery of siRNA and small molecule holds a great potential to treat metabolic dysfunction-associated steatotic liver disease (MASLD). However, targeted delivery of therapeutics to hepatocytes remains challenging. Taking the advantage of rising low density lipoprotein receptor/very-low density lipoprotein receptor (LDLR/VLDR) levels in MASLD, the biological fate of dinonylamine-ethylene glycol chlorophosphate-1-nonanol (DNNA-COP-NA) based lipid nanoparticles (LNPs) was oriented to liver tissues via apolipoprotein E (ApoE)-LDLR/VLDLR pathway. We then adopted a three-round screening strategy to optimize the formulation with both high potency and selectivity to deliver siRNA-HIF-1α (siHIF1α) and silibinin (SLB) payloads to hepatocytes. The optimized SLB/siHIF1α-LNPs mediates great siRNA delivery and transfection of hepatocytes. In high fat diet (HFD)- and carbon tetrachloride (CCl4)-induced mouse models of MASLD, SLB/siHIF1α-LNPs enabled the silencing of hypoxia inducible factor-1α (HIF-1α), a therapeutic target primarily expressed by hepatocytes, leading to significantly reduced inflammation and liver fibrosis synergized with SLB. Moreover, it is demonstrated the hepatocyte-targeting delivery of SLB/siHIF1α-LNPs has the potential to restore the immune homeostasis by modulating the population of Tregs and cytotoxic T cells in spleen. This proof-of-concept study enable siRNA and small molecule co-delivery to hepatocytes through intrinsic variation of targeting receptors for MASLD therapy.
Collapse
Affiliation(s)
- Yifu Lyu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Xiuyi Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Lei Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Jinyu Dai
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Huanyu Qin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Yunuo Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Yunan Huang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Yanmei Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Di Wu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Qindai Shuai
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Qilong Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Xiaofei Xin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China.
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
8
|
Wu Z, Sun W, Qi H. Recent Advancements in mRNA Vaccines: From Target Selection to Delivery Systems. Vaccines (Basel) 2024; 12:873. [PMID: 39203999 PMCID: PMC11359327 DOI: 10.3390/vaccines12080873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
mRNA vaccines are leading a medical revolution. mRNA technologies utilize the host's own cells as bio-factories to produce proteins that serve as antigens. This revolutionary approach circumvents the complicated processes involved in traditional vaccine production and empowers vaccines with the ability to respond to emerging or mutated infectious diseases rapidly. Additionally, the robust cellular immune response elicited by mRNA vaccines has shown significant promise in cancer treatment. However, the inherent instability of mRNA and the complexity of tumor immunity have limited its broader application. Although the emergence of pseudouridine and ionizable cationic lipid nanoparticles (LNPs) made the clinical application of mRNA possible, there remains substantial potential for further improvement of the immunogenicity of delivered antigens and preventive or therapeutic effects of mRNA technology. Here, we review the latest advancements in mRNA vaccines, including but not limited to target selection and delivery systems. This review offers a multifaceted perspective on this rapidly evolving field.
Collapse
Affiliation(s)
- Zhongyan Wu
- Newish Biological R&D Center, Beijing 100101, China;
| | - Weilu Sun
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK;
| | - Hailong Qi
- Newish Biological R&D Center, Beijing 100101, China;
| |
Collapse
|
9
|
Su K, Shi L, Sheng T, Yan X, Lin L, Meng C, Wu S, Chen Y, Zhang Y, Wang C, Wang Z, Qiu J, Zhao J, Xu T, Ping Y, Gu Z, Liu S. Reformulating lipid nanoparticles for organ-targeted mRNA accumulation and translation. Nat Commun 2024; 15:5659. [PMID: 38969646 PMCID: PMC11226454 DOI: 10.1038/s41467-024-50093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Fully targeted mRNA therapeutics necessitate simultaneous organ-specific accumulation and effective translation. Despite some progress, delivery systems are still unable to fully achieve this. Here, we reformulate lipid nanoparticles (LNPs) through adjustments in lipid material structures and compositions to systematically achieve the pulmonary and hepatic (respectively) targeted mRNA distribution and expression. A combinatorial library of degradable-core based ionizable cationic lipids is designed, following by optimisation of LNP compositions. Contrary to current LNP paradigms, our findings demonstrate that cholesterol and phospholipid are dispensable for LNP functionality. Specifically, cholesterol-removal addresses the persistent challenge of preventing nanoparticle accumulation in hepatic tissues. By modulating and simplifying intrinsic LNP components, concurrent mRNA accumulation and translation is achieved in the lung and liver, respectively. This targeting strategy is applicable to existing LNP systems with potential to expand the progress of precise mRNA therapy for diverse diseases.
Collapse
Affiliation(s)
- Kexin Su
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lu Shi
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Tao Sheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xinxin Yan
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lixin Lin
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chaoyang Meng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Wu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yuxuan Chen
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chaorong Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zichuan Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Junjie Qiu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiahui Zhao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tengfei Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuan Ping
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| | - Shuai Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Zhang J, Ali K, Wang J. Research Advances of Lipid Nanoparticles in the Treatment of Colorectal Cancer. Int J Nanomedicine 2024; 19:6693-6715. [PMID: 38979534 PMCID: PMC11229238 DOI: 10.2147/ijn.s466490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Colorectal cancer (CRC) is a common type of gastrointestinal tract (GIT) cancer and poses an enormous threat to human health. Current strategies for metastatic colorectal cancer (mCRC) therapy primarily focus on chemotherapy, targeted therapy, immunotherapy, and radiotherapy; however, their adverse reactions and drug resistance limit their clinical application. Advances in nanotechnology have rendered lipid nanoparticles (LNPs) a promising nanomaterial-based drug delivery system for CRC therapy. LNPs can adapt to the biological characteristics of CRC by modifying their formulation, enabling the selective delivery of drugs to cancer tissues. They overcome the limitations of traditional therapies, such as poor water solubility, nonspecific biodistribution, and limited bioavailability. Herein, we review the composition and targeting strategies of LNPs for CRC therapy. Subsequently, the applications of these nanoparticles in CRC treatment including drug delivery, thermal therapy, and nucleic acid-based gene therapy are summarized with examples provided. The last section provides a glimpse into the advantages, current limitations, and prospects of LNPs in the treatment of CRC.
Collapse
Affiliation(s)
- Junyi Zhang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
| | - Kamran Ali
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
11
|
Montizaan D, Bartucci R, Reker-Smit C, de Weerd S, Åberg C, Guryev V, Spierings DCJ, Salvati A. Genome-wide forward genetic screening to identify receptors and proteins mediating nanoparticle uptake and intracellular processing. NATURE NANOTECHNOLOGY 2024; 19:1022-1031. [PMID: 38504023 DOI: 10.1038/s41565-024-01629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/07/2024] [Indexed: 03/21/2024]
Abstract
Understanding how cells process nanoparticles is crucial to optimize nanomedicine efficacy. However, characterizing cellular pathways is challenging, especially if non-canonical mechanisms are involved. In this Article a genome-wide forward genetic screening based on insertional mutagenesis is applied to discover receptors and proteins involved in the intracellular accumulation (uptake and intracellular processing) of silica nanoparticles. The nanoparticles are covered by a human serum corona known to target the low-density lipoprotein receptor (LDLR). By sorting cells with reduced nanoparticle accumulation and deep sequencing after each sorting, 80 enriched genes are identified. We find that, as well as LDLR, the scavenger receptor SCARB1 also mediates nanoparticle accumulation. Additionally, heparan sulfate acts as a specific nanoparticle receptor, and its role varies depending on cell and nanoparticle type. Furthermore, some of the identified targets affect nanoparticle trafficking to the lysosomes. These results show the potential of genetic screening to characterize nanoparticle pathways. Additionally, they indicate that corona-coated nanoparticles are internalized via multiple receptors.
Collapse
Affiliation(s)
- Daphne Montizaan
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Roberta Bartucci
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Catharina Reker-Smit
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Sander de Weerd
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Christoffer Åberg
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
12
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
13
|
Liu K, Lázaro-Ibáñez E, Lerche M, Lindén D, Salvati A, Sabirsh A. Reply to: Technical challenges of studying the impact of plasma components on the efficacy of lipid nanoparticles for vaccine and therapeutic applications. Nat Commun 2024; 15:3853. [PMID: 38724506 PMCID: PMC11082221 DOI: 10.1038/s41467-024-47726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Affiliation(s)
- Kai Liu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisa Lázaro-Ibáñez
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael Lerche
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713AV, The Netherlands
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
14
|
Simonsen JB. Technical challenges of studying the impact of plasma components on the efficacy of lipid nanoparticles for vaccine and therapeutic applications. Nat Commun 2024; 15:3852. [PMID: 38724528 PMCID: PMC11082148 DOI: 10.1038/s41467-024-47724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
|
15
|
López-Estévez AM, Lapuhs P, Pineiro-Alonso L, Alonso MJ. Personalized Cancer Nanomedicine: Overcoming Biological Barriers for Intracellular Delivery of Biopharmaceuticals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309355. [PMID: 38104275 DOI: 10.1002/adma.202309355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/09/2023] [Indexed: 12/19/2023]
Abstract
The success of personalized medicine in oncology relies on using highly effective and precise therapeutic modalities such as small interfering RNA (siRNA) and monoclonal antibodies (mAbs). Unfortunately, the clinical exploitation of these biological drugs has encountered obstacles in overcoming intricate biological barriers. Drug delivery technologies represent a plausible strategy to overcome such barriers, ultimately facilitating the access to intracellular domains. Here, an overview of the current landscape on how nanotechnology has dealt with protein corona phenomena as a first and determinant biological barrier is presented. This continues with the analysis of strategies facilitating access to the tumor, along with conceivable methods for enhanced tumor penetration. As a final step, the cellular barriers that nanocarriers must confront in order for their biological cargo to reach their target are deeply analyzed. This review concludes with a critical analysis and future perspectives of the translational advances in personalized oncological nanomedicine.
Collapse
Affiliation(s)
- Ana María López-Estévez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Philipp Lapuhs
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Laura Pineiro-Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
16
|
Müller JA, Schäffler N, Kellerer T, Schwake G, Ligon TS, Rädler JO. Kinetics of RNA-LNP delivery and protein expression. Eur J Pharm Biopharm 2024; 197:114222. [PMID: 38387850 DOI: 10.1016/j.ejpb.2024.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Lipid nanoparticles (LNPs) employing ionizable lipids are the most advanced technology for delivery of RNA, most notably mRNA, to cells. LNPs represent well-defined core-shell particles with efficient nucleic acid encapsulation, low immunogenicity and enhanced efficacy. While much is known about the structure and activity of LNPs, less attention is given to the timing of LNP uptake, cytosolic transfer and protein expression. However, LNP kinetics is a key factor determining delivery efficiency. Hence quantitative insight into the multi-cascaded pathway of LNPs is of interest to elucidate the mechanism of delivery. Here, we review experiments as well as theoretical modeling of the timing of LNP uptake, mRNA-release and protein expression. We describe LNP delivery as a sequence of stochastic transfer processes and review a mathematical model of subsequent protein translation from mRNA. We compile probabilities and numbers obtained from time resolved microscopy. Specifically, live-cell imaging on single cell arrays (LISCA) allows for high-throughput acquisition of thousands of individual GFP reporter expression time courses. The traces yield the distribution of mRNA life-times, expression rates and expression onset. Correlation analysis reveals an inverse dependence of gene expression efficiency and transfection onset-times. Finally, we discuss why timing of mRNA release is critical in the context of codelivery of multiple nucleic acid species as in the case of mRNA co-expression or CRISPR/Cas gene editing.
Collapse
Affiliation(s)
- Judith A Müller
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany
| | - Nathalie Schäffler
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany
| | - Thomas Kellerer
- Multiphoton Imaging Lab, Munich University of Applied Sciences, Munich, Germany
| | - Gerlinde Schwake
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany
| | | | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany.
| |
Collapse
|
17
|
Asoudeh M, Nguyen N, Raith M, Denman DS, Anozie UC, Mokhtarnejad M, Khomami B, Skotty KM, Isaac S, Gebhart T, Vaigneur L, Gelgie A, Dego OK, Freeman T, Beever J, Dalhaimer P. PEGylated nanoparticles interact with macrophages independently of immune response factors and trigger a non-phagocytic, low-inflammatory response. J Control Release 2024; 366:282-296. [PMID: 38123071 PMCID: PMC10922886 DOI: 10.1016/j.jconrel.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Poly-ethylene-glycol (PEG)-based nanoparticles (NPs) - including cylindrical micelles (CNPs), spherical micelles (SNPs), and PEGylated liposomes (PLs) - are hypothesized to be cleared in vivo by opsonization followed by liver macrophage phagocytosis. This hypothesis has been used to explain the rapid and significant localization of NPs to the liver after administration into the mammalian vasculature. Here, we show that the opsonization-phagocytosis nexus is not the major factor driving PEG-NP - macrophage interactions. First, mouse and human blood proteins had insignificant affinity for PEG-NPs. Second, PEG-NPs bound macrophages in the absence of serum proteins. Third, lipoproteins blocked PEG-NP binding to macrophages. Because of these findings, we tested the postulate that PEG-NPs bind (apo)lipoprotein receptors. Indeed, PEG-NPs triggered an in vitro macrophage transcription program that was similar to that triggered by lipoproteins and different from that triggered by lipopolysaccharide (LPS) and group A Streptococcus. Unlike LPS and pathogens, PLs did not increase transcripts involved in phagocytosis or inflammation. High-density lipoprotein (HDL) and SNPs triggered remarkably similar mouse bone-marrow-derived macrophage transcription programs. Unlike opsonized pathogens, CNPs, SNPs, and PLs lowered macrophage autophagosome levels and either reduced or did not increase the secretion of key macrophage pro-inflammatory cytokines and chemokines. Thus, the sequential opsonization and phagocytosis process is likely a minor aspect of PEG-NP - macrophage interactions. Instead, PEG-NP interactions with (apo)lipoprotein and scavenger receptors appear to be a strong driving force for PEG-NP - macrophage binding, entry, and downstream effects. We hypothesize that the high presence of these receptors on liver macrophages and on liver sinusoidal endothelial cells is the reason PEG-NPs localize rapidly and strongly to the liver.
Collapse
Affiliation(s)
- Monireh Asoudeh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Nicole Nguyen
- School of Medical Laboratory Science, University of Tennessee Medical Center, Knoxville, TN 37996, USA
| | - Mitch Raith
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Desiree S Denman
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Uche C Anozie
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Mahshid Mokhtarnejad
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Bamin Khomami
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Kaitlyn M Skotty
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Sami Isaac
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | - Aga Gelgie
- Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Trevor Freeman
- Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Jon Beever
- Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Paul Dalhaimer
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
18
|
Ghebosu RE, Goncalves JP, Wolfram J. Extracellular Vesicle and Lipoprotein Interactions. NANO LETTERS 2024; 24:1-8. [PMID: 38122812 PMCID: PMC10872241 DOI: 10.1021/acs.nanolett.3c03579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Extracellular vesicles and lipoproteins are lipid-based biological nanoparticles that play important roles in (patho)physiology. Recent evidence suggests that extracellular vesicles and lipoproteins can interact to form functional complexes. Such complexes have been observed in biofluids from healthy human donors and in various in vitro disease models such as breast cancer and hepatitis C infection. Lipoprotein components can also form part of the biomolecular corona that surrounds extracellular vesicles and contributes to biological identity. Potential mechanisms and the functional relevance of extracellular vesicle-lipoprotein complexes remain poorly understood. This Review addresses the current knowledge of the extracellular vesicle-lipoprotein interface while drawing on pre-existing knowledge of liposome interactions with biological nanoparticles. There is an urgent need for further research on the lipoprotein-extracellular vesicle interface, which could return important mechanistic, therapeutic, and diagnostic findings.
Collapse
Affiliation(s)
- Raluca E. Ghebosu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Jenifer Pendiuk Goncalves
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
19
|
Ivanova A, Badertscher L, O'Driscoll G, Bergman J, Gordon E, Gunnarsson A, Johansson C, Munson MJ, Spinelli C, Torstensson S, Vilén L, Voirel A, Wiseman J, Rak J, Dekker N, Lázaro‐Ibáñez E. Creating Designer Engineered Extracellular Vesicles for Diverse Ligand Display, Target Recognition, and Controlled Protein Loading and Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304389. [PMID: 37867228 PMCID: PMC10700174 DOI: 10.1002/advs.202304389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Efficient and targeted delivery of therapeutic agents remains a bottleneck in modern medicine. Here, biochemical engineering approaches to advance the repurposing of extracellular vesicles (EVs) as drug delivery vehicles are explored. Targeting ligands such as the sugar GalNAc are displayed on the surface of EVs using a HaloTag-fused to a protein anchor that is enriched on engineered EVs. These EVs are successfully targeted to human primary hepatocytes. In addition, the authors are able to decorate EVs with an antibody that recognizes a GLP1 cell surface receptor by using an Fc and Fab region binding moiety fused to an anchor protein, and they show that this improves EV targeting to cells that overexpress the receptor. The authors also use two different protein-engineering approaches to improve the loading of Cre recombinase into the EV lumen and demonstrate that functional Cre protein is delivered into cells in the presence of chloroquine, an endosomal escape enhancer. Lastly, engineered EVs are well tolerated upon intravenous injection into mice without detectable signs of liver toxicity. Collectively, the data show that EVs can be engineered to improve cargo loading and specific cell targeting, which will aid their transformation into tailored drug delivery vehicles.
Collapse
Affiliation(s)
- Alena Ivanova
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&D, AstraZenecaPepparedsleden 1Mölndal431 50Sweden
| | - Lukas Badertscher
- Translational GenomicsDiscovery SciencesBioPharmaceuticals R&D, AstraZenecaPepparedsleden 1Mölndal431 50Sweden
- Present address:
Myllia Biotechnology GmbHAm Kanal 27Vienna1110Austria
| | - Gwen O'Driscoll
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&D, AstraZenecaPepparedsleden 1Mölndal431 50Sweden
- Advanced Drug DeliveryPharmaceutical SciencesBioPharmaceuticals R&D, AstraZenecaPepparedsleden 1Mölndal431 50Sweden
- Present address:
Division of Radiotherapy and ImagingThe Institute of Cancer ResearchLondonUK
| | - Joakim Bergman
- Medicinal ChemistryResearch and Early Development Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaPepparedsleden 1Mölndal431 50Sweden
| | - Euan Gordon
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&D, AstraZenecaPepparedsleden 1Mölndal431 50Sweden
| | - Anders Gunnarsson
- Structure and BiophysicsDiscovery SciencesBioPharmaceuticals R&D, AstraZenecaPepparedsleden 1Mölndal431 50Sweden
| | - Camilla Johansson
- Clinical Pharmacology and Safety SciencesSweden Imaging HubBioPharmaceuticals R&D, AstraZenecaPepparedsleden 1Mölndal431 50Sweden
| | - Michael J. Munson
- Advanced Drug DeliveryPharmaceutical SciencesBioPharmaceuticals R&D, AstraZenecaPepparedsleden 1Mölndal431 50Sweden
| | - Cristiana Spinelli
- Research Institute of the McGill University Health CentreGlen SiteMcGill UniversityMontrealQuebecH4A 3J1Canada
| | - Sara Torstensson
- Translational GenomicsDiscovery SciencesBioPharmaceuticals R&D, AstraZenecaPepparedsleden 1Mölndal431 50Sweden
| | - Liisa Vilén
- DMPKResearch and Early Development Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaPepparedsleden 1Mölndal431 50Sweden
| | - Andrei Voirel
- Medicinal ChemistryResearch and Early Development Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaPepparedsleden 1Mölndal431 50Sweden
| | - John Wiseman
- Translational GenomicsDiscovery SciencesBioPharmaceuticals R&D, AstraZenecaPepparedsleden 1Mölndal431 50Sweden
| | - Janusz Rak
- Research Institute of the McGill University Health CentreGlen SiteMcGill UniversityMontrealQuebecH4A 3J1Canada
| | - Niek Dekker
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&D, AstraZenecaPepparedsleden 1Mölndal431 50Sweden
| | - Elisa Lázaro‐Ibáñez
- Discovery BiologyDiscovery SciencesBioPharmaceuticals R&D, AstraZenecaPepparedsleden 1Mölndal431 50Sweden
- Advanced Drug DeliveryPharmaceutical SciencesBioPharmaceuticals R&D, AstraZenecaPepparedsleden 1Mölndal431 50Sweden
| |
Collapse
|
20
|
Saiding Q, Zhang Z, Chen S, Xiao F, Chen Y, Li Y, Zhen X, Khan MM, Chen W, Koo S, Kong N, Tao W. Nano-bio interactions in mRNA nanomedicine: Challenges and opportunities for targeted mRNA delivery. Adv Drug Deliv Rev 2023; 203:115116. [PMID: 37871748 DOI: 10.1016/j.addr.2023.115116] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Upon entering the biological milieu, nanomedicines swiftly interact with the surrounding tissue fluid, subsequently being enveloped by a dynamic interplay of biomacromolecules, such as carbohydrates, nucleic acids, and cellular metabolites, but with predominant serum proteins within the biological corona. A notable consequence of the protein corona phenomenon is the unintentional loss of targeting ligands initially designed to direct nanomedicines toward particular cells or organs within the in vivo environment. mRNA nanomedicine displays high demand for specific cell and tissue-targeted delivery to effectively transport mRNA molecules into target cells, where they can exert their therapeutic effects with utmost efficacy. In this review, focusing on the delivery systems and tissue-specific applications, we aim to update the nanomedicine population with the prevailing and still enigmatic paradigm of nano-bio interactions, a formidable hurdle in the pursuit of targeted mRNA delivery. We also elucidate the current impediments faced in mRNA therapeutics and, by contemplating prospective avenues-either to modulate the corona or to adopt an 'ally from adversary' approach-aim to chart a course for advancing mRNA nanomedicine.
Collapse
Affiliation(s)
- Qimanguli Saiding
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Zhongyang Zhang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States; The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Shuying Chen
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China; Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Yumeng Chen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Yongjiang Li
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Xueyan Zhen
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Muhammad Muzamil Khan
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Wei Chen
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Seyoung Koo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China; Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| | - Wei Tao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
21
|
Hong BV, Agus JK, Tang X, Zheng JJ, Romo EZ, Lei S, Zivkovic AM. Precision Nutrition and Cardiovascular Disease Risk Reduction: the Promise of High-Density Lipoproteins. Curr Atheroscler Rep 2023; 25:663-677. [PMID: 37702886 PMCID: PMC10564829 DOI: 10.1007/s11883-023-01148-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
PURPOSE OF REVIEW Emerging evidence supports the promise of precision nutritional approaches for cardiovascular disease (CVD) prevention. Here, we discuss current findings from precision nutrition trials and studies reporting substantial inter-individual variability in responses to diets and dietary components relevant to CVD outcomes. We highlight examples where early precision nutrition research already points to actionable intervention targets tailored to an individual's biology and lifestyle. Finally, we make the case for high-density lipoproteins (HDL) as a compelling next generation target for precision nutrition aimed at CVD prevention. HDL possesses complex structural features including diverse protein components, lipids, size distribution, extensive glycosylation, and interacts with the gut microbiome, all of which influence HDL's anti-inflammatory, antioxidant, and cholesterol efflux properties. Elucidating the nuances of HDL structure and function at an individual level may unlock personalized dietary and lifestyle strategies to optimize HDL-mediated atheroprotection and reduce CVD risk. RECENT FINDINGS Recent human studies have demonstrated that HDL particles are key players in the reduction of CVD risk. Our review highlights the role of HDL and the importance of personalized therapeutic approaches to improve their potential for reducing CVD risk. Factors such as diet, genetics, glycosylation, and gut microbiome interactions can modulate HDL structure and function at the individual level. We emphasize that fractionating HDL into size-based subclasses and measuring particle concentration are necessary to understand HDL biology and for developing the next generation of diagnostics and biomarkers. These discoveries underscore the need to move beyond a one-size-fits-all approach to HDL management. Precision nutrition strategies that account for personalized metabolic, genetic, and lifestyle data hold promise for optimizing HDL therapies and function to mitigate CVD risk more potently. While human studies show HDL play a key role in reducing CVD risk, recent findings indicate that factors such as diet, genetics, glycosylation, and gut microbes modulate HDL function at the individual level, underscoring the need for precision nutrition strategies that account for personalized variability to optimize HDL's potential for mitigating CVD risk.
Collapse
Affiliation(s)
- Brian V Hong
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Joanne K Agus
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Jack Jingyuan Zheng
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Eduardo Z Romo
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Susan Lei
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|