1
|
Abel DL. Selection in molecular evolution. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2024; 107:54-63. [PMID: 39137534 DOI: 10.1016/j.shpsa.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/29/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Evolution requires selection. Molecular/chemical/preDarwinian evolution is no exception. One molecule must be selected over another for molecular evolution to occur and advance. Evolution, however, has no goal. The laws of physics have no utilitarian desire, intent or proficiency. Laws and constraints are blind to "usefulness." How then were potential multi-step processes anticipated, valued and pursued by inanimate nature? Can orchestration of formal systems be physico-chemically spontaneous? The purely physico-dynamic self-ordering of Chaos Theory and irreversible non-equilibrium thermodynamic "engines of disequilibria conversion" achieve neither orchestration nor formal organization. Natural selection is a passive and after-the-fact-of-life selection. Darwinian selection reduces to the differential survival and reproduction of the fittest already-living organisms. In the case of abiogenesis, selection had to be 1) Active, 2) Pre-Function, and 3) Efficacious. Selection had to take place at the molecular level prior to the existence of non-trivial functional processes. It could not have been passive or secondary. What naturalistic mechanisms might have been at play?
Collapse
Affiliation(s)
- David Lynn Abel
- The Gene Emergence Project, Proto-BioCybernetics & Proto-Cellular Metabolomics, The Origin of Life Science Foundation, Inc., 14005 Youderian Drive, Bowie, MD, 20721-2225, USA.
| |
Collapse
|
2
|
Ma H, Zhu S, Huang Z, Zheng W, Liu C, Meng F, Chen JL, Lin YJ, Dang Z, Feng C. Photochemical Origins of Iron Flocculation in Acid Mine Drainage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39271452 DOI: 10.1021/acs.est.4c06699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Acid mine drainage (AMD) raises a global environmental concern impacting the iron cycle. Although the formation of Fe(III) minerals in AMD-impacted waters has previously been reported to be regulated by biological processes, the role of abiotic processes remains largely unknown. This study first reported that a photochemical reaction coupled with O2 significantly accelerated the formation of Fe(III) flocculates (i.e., schwertmannite) in the AMD, as evidenced by the comparison of samples from contaminated sites across different natural conditions at latitudes 24-29° N. Combined with experimental and modeling results, it is further discovered that the intramolecular oxidation of photogenerated Fe(II) with a five-coordinative pyramidal configuration (i.e., [(H2O)5Fe]2+) by O2 was the key in enhancing the photooxidation of Fe(II) in the simulated AMD. The in situ attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR), UV-vis spectroscopy, solvent substitution, and quantum yield analyses indicated that, acting as a precursor for flocculation, [(H2O)5Fe]2+ likely originated from both the dissolved and colloidal forms of Fe(III) through homogeneous and surface ligand-to-metal charge transfers. Density functional theory calculations and X-ray absorption spectroscopy results further suggested that the specific oxidation pathways of Fe(II) produced the highly reactive iron species and triggered the hydrolysis and formation of transient dihydroxo dimers. The proposed new pathways of Fe cycle are crucial in controlling the mobility of heavy metal anions in acidic waters and enhance the understanding of complicated iron biochemistry that is related to the fate of contaminants and nutrients.
Collapse
Affiliation(s)
- Huanxin Ma
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Shishu Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ziyuan Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P.R. China
| | - Fangyuan Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P.R. China
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan R.O.C
| | - Yu-Jung Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan R.O.C
| | - Zhi Dang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
3
|
Ye J, Zhuang M, Hong M, Zhang D, Ren G, Hu A, Yang C, He Z, Zhou S. Methanogenesis in the presence of oxygenic photosynthetic bacteria may contribute to global methane cycle. Nat Commun 2024; 15:5682. [PMID: 38971854 PMCID: PMC11227571 DOI: 10.1038/s41467-024-50108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
Accumulating evidences are challenging the paradigm that methane in surface water primarily stems from the anaerobic transformation of organic matters. Yet, the contribution of oxygenic photosynthetic bacteria, a dominant species in surface water, to methane production remains unclear. Here we show methanogenesis triggered by the interaction between oxygenic photosynthetic bacteria and anaerobic methanogenic archaea. By introducing cyanobacterium Synechocystis PCC6803 and methanogenic archaea Methanosarcina barkeri with the redox cycling of iron, CH4 production was induced in coculture biofilms through both syntrophic methanogenesis (under anoxic conditions in darkness) and abiotic methanogenesis (under oxic conditions in illumination) during the periodic dark-light cycles. We have further demonstrated CH4 production by other model oxygenic photosynthetic bacteria from various phyla, in conjunction with different anaerobic methanogenic archaea exhibiting diverse energy conservation modes, as well as various common Fe-species. These findings have revealed an unexpected link between oxygenic photosynthesis and methanogenesis and would advance our understanding of photosynthetic bacteria's ecological role in the global CH4 cycle. Such light-driven methanogenesis may be widely present in nature.
Collapse
Affiliation(s)
- Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Minghan Zhuang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingqiu Hong
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dong Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Andong Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaohui Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Ma Y, Qu Y, Yao X, Xia C, Lv M, Lin X, Zhang L, Zhang M, Hu B. Unveiling the unique role of iron in the metabolism of methanogens: A review. ENVIRONMENTAL RESEARCH 2024; 250:118495. [PMID: 38367837 DOI: 10.1016/j.envres.2024.118495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Methanogens are the main participants in the carbon cycle, catalyzing five methanogenic pathways. Methanogens utilize different iron-containing functional enzymes in different methanogenic processes. Iron is a vital element in methanogens, which can serve as a carrier or reactant in electron transfer. Therefore, iron plays an important role in the growth and metabolism of methanogens. In this paper, we cast light on the types and functions of iron-containing functional enzymes involved in different methanogenic pathways, and the roles iron play in energy/substance metabolism of methanogenesis. Furthermore, this review provides certain guiding significance for lowering CH4 emissions, boosting the carbon sink capacity of ecosystems and promoting green and low-carbon development in the future.
Collapse
Affiliation(s)
- Yuxin Ma
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Qu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangwu Yao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chujun Xia
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengjie Lv
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Lin
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lili Zhang
- Beijing Enterprises Water Group Limited, Beijing, China
| | - Meng Zhang
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Ye J, Hu A, Gao C, Li F, Li L, Guo Y, Ren G, Li B, Rensing C, Nealson KH, Zhou S, Xiong Y. Abiotic Methane Production Driven by Ubiquitous Non-Fenton-Type Reactive Oxygen Species. Angew Chem Int Ed Engl 2024; 63:e202403884. [PMID: 38489233 DOI: 10.1002/anie.202403884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/17/2024]
Abstract
Abiotic CH4 production driven by Fenton-type reactive oxygen species (ROS) has been confirmed to be an indispensable component of the atmospheric CH4 budget. While the chemical reactions independent of Fenton chemistry to ROS are ubiquitous in nature, it remains unknown whether the produced ROS can drive abiotic CH4 production. Here, we first demonstrated the abiotic CH4 production at the soil-water interface under illumination. Leveraging this finding, polymeric carbon nitrides (CNx) as a typical analogue of natural geobattery material and dimethyl sulfoxide (DMSO) as a natural methyl donor were used to unravel the underlying mechanisms. We revealed that the ROS, photocatalytically produced by CNx, can oxidize DMSO into CH4 with a high selectivity of 91.5 %. Such an abiotic CH4 production process was further expanded to various non-Fenton-type reaction systems, such as electrocatalysis, pyrocatalysis and sonocatalysis. This work provides insights into the geochemical cycle of abiotic CH4, and offers a new route to CH4 production via integrated energy development.
Collapse
Affiliation(s)
- Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Andong Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Gao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Fengqi Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lei Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yulin Guo
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bing Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kenneth H Nealson
- Department of Earth Science, University of Southern California, Los Angeles, California, 90089, United States
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Owusu SM, Adomako MO, Qiao H. Organic amendment in climate change mitigation: Challenges in an era of micro- and nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168035. [PMID: 37907110 DOI: 10.1016/j.scitotenv.2023.168035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
As a global strategy for mitigating climate change, organic amendments play critical roles in restoring stocks in carbon (C) depleted soils, preserving existing stocks to prevent further soil organic carbon (SOC) loss, and enhancing C sequestration. However, recent emerging evidence of a significant proportion of micro- and nanoplastics (M/NPs) occurrence in most organic substrates (e.g., compost manure, farmyard manure, and sewage sludge) compromises its role in climate change mitigation. Given the predicted surge of soil M/NPs proliferation in the coming years, we argued whether organic amendment remains a reliable climate change mitigation strategy. Toxicity effects of M/NPs influx within the soil matrix disrupt plants and their associated key microbial taxa responsible for crucial biogeochemical processes and restructuring of SOC, leading to increasing emissions of potent greenhouse gases (GHGs, e.g., CO2, CH4, and N2O) that feedback to aggravate the rapidly changing climate. Here, we summarize evidence based on literature that the discovery of M/NPs in organic substrates compromises its role in the climate change mitigation strategy. We briefly discuss the overview of synthetic fertilizers and their impact on SOC and atmospheric emissions. We discuss the role of organic amends in climate change mitigation and the emergence of M/NPs in it. We discuss M/NPs-induced damages to SOC and subsequent emissions of GHGs. We briefly highlight management approaches to clean organic substrates of M/NPs to improve their use in agrosystems and provide recommendations for future research studies. We found that organic amendment plays pivotal role in modulating the biotic and abiotic drivers responsible for climate mitigation. However, M/NPs in organic amendments weaken the regulatory mechanisms of organic amendments in plant-soil systems. We conclude that organic amendments of soils are critical for restoring SOC and mitigating the rapidly changing climate; yet, the discovery of M/NPs in organic substrates put their usage in a dilemma.
Collapse
Affiliation(s)
- Samuel Mensah Owusu
- Schoo of Business, Jinggangshan University, Qingyuan District, Ji'an City 343009, Jiangxi, China.
| | - Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Hu Qiao
- Schoo of Business, Jinggangshan University, Qingyuan District, Ji'an City 343009, Jiangxi, China
| |
Collapse
|
7
|
Mao Y, Lin T, Li H, He R, Ye K, Yu W, He Q. Aerobic methane production by phytoplankton as an important methane source of aquatic ecosystems: Reconsidering the global methane budget. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167864. [PMID: 37866611 DOI: 10.1016/j.scitotenv.2023.167864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Biological methane, a major source of global methane budget, is traditionally thought to be produced in anaerobic environments. However, the recent reports about methane supersaturation occurring in oxygenated water layer, termed as "methane paradox", have challenged this prevailing paradigm. Significantly, growing evidence has indicated that phytoplankton including prokaryotic cyanobacteria and eukaryotic algae are capable of generating methane under aerobic conditions. In this regard, a systematic review of aerobic methane production by phytoplankton is expected to arouse the public attention, contributing to the understanding of methane paradox. Here, we comprehensively summarize the widespread phenomena of methane supersaturation in oxic layers. The remarkable correlation relationships between methane concentration and several key indicators (depth, chlorophyll a level and organic sulfide concentration) indicate the significance of phytoplankton in in-situ methane accumulation. Subsequently, four mechanisms of aerobic methane production by phytoplankton are illustrated in detail, including photosynthesis-driven metabolism, reactive oxygen species (ROS)-driven demethylation of methyl donors, methanogenesis catalyzed by nitrogenase and demethylation of phosphonates catalyzed by CP lyase. The first two pathways occur in various phytoplankton, while the latter two have been specially discovered in cyanobacteria. Additionally, the effects of four crucial factors on aerobic methane production by phytoplankton are also discussed, including phytoplankton species, light, temperature and crucial nutrients. Finally, the measures to control global methane emissions from phytoplankton, the precise intracellular mechanisms of methane production and a more complete global methane budget model are definitely required in the future research on methane production by phytoplankton. This review would provide guidance for future studies of aerobic methane production by phytoplankton and emphasize the potential contribution of aquatic ecosystems to global methane budget.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China; Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China; Lingzhi Environmental Protection Co., Ltd, Wuxi 214200, China
| | - Tong Lin
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Ruixu He
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Kailai Ye
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
8
|
Hädeler J, Velmurugan G, Lauer R, Radhamani R, Keppler F, Comba P. Natural Abiotic Iron-Oxido-Mediated Formation of C 1 and C 2 Compounds from Environmentally Important Methyl-Substituted Substrates. J Am Chem Soc 2023. [PMID: 37930326 DOI: 10.1021/jacs.3c06709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Organic and inorganic volatile compounds containing one carbon atom (C1), such as carbon dioxide, methane, methanol, formaldehyde, carbon monoxide, and chloromethane, are ubiquitous in the environment, are key components in global carbon cycling, play an important role in atmospheric physics and chemistry, e.g., as greenhouse gases, destroy stratospheric and tropospheric ozone, and control the atmospheric oxidation capacity. Up to now, most C1 compounds in the environment were associated with complex metabolic and enzymatic pathways in organisms or to combustion processes of organic matter. We now present compelling evidence that many C1 and C2 compounds have a common origin in methyl groups of methyl-substituted substrates that are cleaved by the iron oxide-mediated formation of methyl radicals. This scenario is derived from experiments with a mechanistically well-studied bispidine-iron-oxido complex as oxidant and dimethyl sulfoxide as the environmentally relevant model substrate and is supported by computational modeling based on density functional theory and ab initio quantum-chemical studies. The exhaustive experimental model studies, also involving extensive isotope labeling, are complemented with the substitution of the bispidine model system by environmentally relevant iron oxides and, finally, a collection of soils with varying iron and organic matter contents. The combination of all data suggests that the iron oxide-mediated formation of methyl radicals from methyl-substituted substrates is a common abiotic source for widespread C1 and C2 compounds in the environment.
Collapse
Affiliation(s)
- Jonas Hädeler
- Institut für Geowissenschaften, INF 234-236, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Gunasekaran Velmurugan
- Anorganisch-Chemisches Institut INF 270, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Rebekka Lauer
- Institut für Geowissenschaften, INF 234-236, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Rejith Radhamani
- Anorganisch-Chemisches Institut INF 270, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Frank Keppler
- Institut für Geowissenschaften, INF 234-236, Universität Heidelberg, D-69120 Heidelberg, Germany
- Heidelberg Center for the Environment (HCE), Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Peter Comba
- Anorganisch-Chemisches Institut INF 270, Universität Heidelberg, D-69120 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, INF 205, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
9
|
Farr O, Gaudu N, Danger G, Russell MJ, Ferry D, Nitschke W, Duval S. Methanol on the rocks: green rust transformation promotes the oxidation of methane. J R Soc Interface 2023; 20:20230386. [PMID: 37727071 PMCID: PMC10509593 DOI: 10.1098/rsif.2023.0386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
Shared coordination geometries between metal ions within reactive minerals and enzymatic metal cofactors hints at mechanistic and possibly evolutionary homology between particular abiotic chemical mineralogies and biological metabolism. The octahedral coordination of reactive Fe2+/3+ minerals such as green rusts, endemic to anoxic sediments and the early Earth's oceans, mirrors the di-iron reaction centre of soluble methane monooxygenase (sMMO), responsible for methane oxidation in methanotrophy. We show that methane oxidation occurs in tandem with the oxidation of green rust to lepidocrocite and magnetite, mimicking radical-mediated methane oxidation found in sMMO to yield not only methanol but also halogenated hydrocarbons in the presence of seawater. This naturally occurring geochemical pathway for CH4 oxidation elucidates a previously unidentified carbon cycling mechanism in modern and ancient environments and reveals clues into mineral-mediated reactions in the synthesis of organic compounds necessary for the emergence of life.
Collapse
Affiliation(s)
- Orion Farr
- CNRS, CINaM, Aix-Marseille Univ, 13009 Marseille, France
- CNRS, BIP (UMR 7281), Aix Marseille Univ, Marseille, France
| | - Nil Gaudu
- CNRS, BIP (UMR 7281), Aix Marseille Univ, Marseille, France
| | | | | | - Daniel Ferry
- CNRS, CINaM, Aix-Marseille Univ, 13009 Marseille, France
| | | | - Simon Duval
- CNRS, BIP (UMR 7281), Aix Marseille Univ, Marseille, France
| |
Collapse
|