1
|
Zhou Y, Ćorović M, Hoch-Kraft P, Meiser N, Mesitov M, Körtel N, Back H, Naarmann-de Vries IS, Katti K, Obrdlík A, Busch A, Dieterich C, Vaňáčová Š, Hengesbach M, Zarnack K, König J. m6A sites in the coding region trigger translation-dependent mRNA decay. Mol Cell 2024; 84:4576-4593.e12. [PMID: 39577428 DOI: 10.1016/j.molcel.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/19/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024]
Abstract
N6-Methyladenosine (m6A) is the predominant internal RNA modification in eukaryotic messenger RNAs (mRNAs) and plays a crucial role in mRNA stability. Here, using human cells, we reveal that m6A sites in the coding sequence (CDS) trigger CDS-m6A decay (CMD), a pathway that is distinct from previously reported m6A-dependent degradation mechanisms. Importantly, CDS m6A sites act considerably faster and more efficiently than those in the 3' untranslated region, which to date have been considered the main effectors. Mechanistically, CMD depends on translation, whereby m6A deposition in the CDS triggers ribosome pausing and transcript destabilization. The subsequent decay involves the translocation of the CMD target transcripts to processing bodies (P-bodies) and recruitment of the m6A reader protein YT521-B homology domain family protein 2 (YTHDF2). Our findings highlight CMD as a previously unknown pathway, which is particularly important for controlling the expression of developmental regulators and retrogenes.
Collapse
Affiliation(s)
- You Zhou
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany; Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Miona Ćorović
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | - Nathalie Meiser
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt a.M., Germany
| | | | - Nadine Körtel
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Hannah Back
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Isabel S Naarmann-de Vries
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Kritika Katti
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/E35, 625 00 Brno, Czech Republic
| | - Aleš Obrdlík
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/E35, 625 00 Brno, Czech Republic
| | - Anke Busch
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/E35, 625 00 Brno, Czech Republic
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt a.M., Germany; Institute for Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany; Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Julian König
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| |
Collapse
|
2
|
Meng S, Wang C. Analysis of METTL14 expression in pancreatic cancer and adjacent tissues and its prognostic value for patient outcomes. Clin Exp Med 2024; 25:3. [PMID: 39527301 PMCID: PMC11554755 DOI: 10.1007/s10238-024-01506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
This study aims to analyze the differential expression of METTL14 in pancreatic cancer (PC) tissues and adjacent normal tissues, and its correlation with clinical outcomes. According to the inclusion and exclusion criteria, a total of 80 patients diagnosed in our hospital from January 2021 to January 2023 were chosen as research subjects. RTQ-PCR has detected the mRNA level expression of METTL14 in cancer and para-cancerous tissues. Immunohistochemistry was used to detect the protein expression of METTL14 in cancer and para-cancerous tissues. To compare the relationship between METTL14 expression and clinicopathological parameters in different PC patients. Kaplan-Meier survival analysis of the relationship between METTL14 expression in PC tissues and patient survival prognosis. The Multifactor COX model evaluates factors affecting the prognosis of PC. The expression level of METTL14 mRNA in PC tissues was 5.51 ± 0.35 (kDa), and the positive rate of METTL14 protein expression in PC tissues of all patients was 73.75 (59/80). Tumor location (P = 0.012), tumor differentiation degree (P = 0.028), tumor AJCC stage (P = 0.000), and lymph node metastasis (P = 0.000) were significantly related to the positive rate of METTL14 protein expression in PC tissue. Follow-up results showed that among 80 patients, 63 died. The three-year survival rate of the METTL14 positive group was 13.56% (8/59), and the three-year survival rate of the negative group was 42.86% (9/21). The difference in the three-year survival rate between METTL14 positive and negative expression groups was statistically significant (P = 0.031). Multivariate COX regression analysis results showed that METTL14 was positive (OR 2.797, 95% CI 1.233-5.877), tumor AJCC stage II-III (OR 1.628, 95% CI 1.435-3.859) and lymph node metastasis (OR 1.733, 95% CI 1.122-2.372) were substantive risk factors for poor prognosis in patients with PC. METTL14 expression increases in PC tissue, which is related to tumor AJCC stage, tumor differentiation, and lymph node metastasis, and can be evaluated in the survival prognosis of patients with PC.
Collapse
Affiliation(s)
- Siyu Meng
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Cong Wang
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University Shenbei Campus, No. 16 Puhe Avenue, Shenbei New District, Shenyang, 110000, Liaoning Province, China.
| |
Collapse
|
3
|
Appasamy SD, Zirbel CL. R3DMCS: a web server for visualizing structural variation in RNA motifs across experimental 3D structures from the same organism or across species. Bioinformatics 2024; 40:btae682. [PMID: 39546379 PMCID: PMC11588024 DOI: 10.1093/bioinformatics/btae682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/17/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024] Open
Abstract
MOTIVATION The recent progress in RNA structure determination methods has resulted in a surge of newly solved RNA 3D structures. However, there is an absence of a user-friendly browser-based tool that can facilitate the comparison and visualization of RNA motifs across multiple 3D structures. RESULTS We introduce R3DMCS, a web server that allows users to compare selected RNA nucleotides across all 3D structures of a given molecule from a given species, or across all 3D structures mapped to a single Rfam family. Starting from one instance of the motif, R3DMCS retrieves, aligns, annotates, organizes, and displays 3D coordinates of corresponding sets of nucleotides from other 3D structures. With R3DMCS, one can explore conformational changes of motifs due to 3D structures being solved in different functional states or different experimental conditions. One can also investigate conservation of 3D structure across species, or changes in 3D structure due to changes in sequence. AVAILABILITY AND IMPLEMENTATION R3DMCS is open-source software and freely available at https://rna.bgsu.edu/correspondence/ and https://github.com/BGSU-RNA/RNA-3D-correspondence.
Collapse
Affiliation(s)
- Sri Devan Appasamy
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Craig L Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, United States
| |
Collapse
|
4
|
Chen H, Liu D, Aditham A, Guo J, Huang J, Kostas F, Maher K, Friedrich MJ, Xavier RJ, Zhang F, Wang X. Chemical and topological design of multicapped mRNA and capped circular RNA to augment translation. Nat Biotechnol 2024:10.1038/s41587-024-02393-y. [PMID: 39313647 DOI: 10.1038/s41587-024-02393-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024]
Abstract
Protein and vaccine therapies based on mRNA would benefit from an increase in translation capacity. Here, we report a method to augment translation named ligation-enabled mRNA-oligonucleotide assembly (LEGO). We systematically screen different chemotopological motifs and find that a branched mRNA cap effectively initiates translation on linear or circular mRNAs without internal ribosome entry sites. Two types of chemical modification, locked nucleic acid (LNA) N7-methylguanosine modifications on the cap and LNA + 5 × 2' O-methyl on the 5' untranslated region, enhance RNA-eukaryotic translation initiation factor (eIF4E-eIF4G) binding and RNA stability against decapping in vitro. Through multidimensional chemotopological engineering of dual-capped mRNA and capped circular RNA, we enhanced mRNA protein production by up to tenfold in vivo, resulting in 17-fold and 3.7-fold higher antibody production after prime and boost doses in a severe acute respiratory syndrome coronavirus 2 vaccine setting, respectively. The LEGO platform opens possibilities to design unnatural RNA structures and topologies beyond canonical linear and circular RNAs for both basic research and therapeutic applications.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dangliang Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Abhishek Aditham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jianting Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jiahao Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Franklin Kostas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kamal Maher
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mirco J Friedrich
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Park D, Cenik C. Long-read RNA sequencing reveals allele-specific N 6-methyladenosine modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602538. [PMID: 39026828 PMCID: PMC11257478 DOI: 10.1101/2024.07.08.602538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Long-read sequencing technology enables highly accurate detection of allele-specific RNA expression, providing insights into the effects of genetic variation on splicing and RNA abundance. Furthermore, the ability to directly sequence RNA promises the detection of RNA modifications in tandem with ascertaining the allelic origin of each molecule. Here, we leverage these advantages to determine allele-biased patterns of N6-methyladenosine (m6A) modifications in native mRNA. We utilized human and mouse cells with known genetic variants to assign allelic origin of each mRNA molecule combined with a supervised machine learning model to detect read-level m6A modification ratios. Our analyses revealed the importance of sequences adjacent to the DRACH-motif in determining m6A deposition, in addition to allelic differences that directly alter the motif. Moreover, we discovered allele-specific m6A modification (ASM) events with no genetic variants in close proximity to the differentially modified nucleotide, demonstrating the unique advantage of using long reads and surpassing the capabilities of antibody-based short-read approaches. This technological advancement promises to advance our understanding of the role of genetics in determining mRNA modifications.
Collapse
Affiliation(s)
- Dayea Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
6
|
Biffo S, Ruggero D, Santoro MM. The crosstalk between metabolism and translation. Cell Metab 2024; 36:1945-1962. [PMID: 39232280 PMCID: PMC11586076 DOI: 10.1016/j.cmet.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Metabolism and mRNA translation represent critical steps involved in modulating gene expression and cellular physiology. Being the most energy-consuming process in the cell, mRNA translation is strictly linked to cellular metabolism and in synchrony with it. Indeed, several mRNAs for metabolic pathways are regulated at the translational level, resulting in translation being a coordinator of metabolism. On the other hand, there is a growing appreciation for how metabolism impacts several aspects of RNA biology. For example, metabolic pathways and metabolites directly control the selectivity and efficiency of the translational machinery, as well as post-transcriptional modifications of RNA to fine-tune protein synthesis. Consistently, alterations in the intricate interplay between translational control and cellular metabolism have emerged as a critical axis underlying human diseases. A better understanding of such events will foresee innovative therapeutic strategies in human disease states.
Collapse
Affiliation(s)
- Stefano Biffo
- National Institute of Molecular Genetics and Biosciences Department, University of Milan, Milan, Italy.
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Massimo Mattia Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
7
|
Tang X, Guo M, Zhang Y, Lv J, Gu C, Yang Y. Examining the evidence for mutual modulation between m6A modification and circular RNAs: current knowledge and future prospects. J Exp Clin Cancer Res 2024; 43:216. [PMID: 39095902 PMCID: PMC11297759 DOI: 10.1186/s13046-024-03136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The resistance of cancer cells to treatment significantly impedes the success of therapy, leading to the recurrence of various types of cancers. Understanding the specific mechanisms of therapy resistance may offer novel approaches for alleviating drug resistance in cancer. Recent research has shown a reciprocal relationship between circular RNAs (circRNAs) and N6-methyladenosine (m6A) modification, and their interaction can affect the resistance and sensitivity of cancer therapy. This review aims to summarize the latest developments in the m6A modification of circRNAs and their importance in regulating therapy resistance in cancer. Furthermore, we explore their mutual interaction and exact mechanisms and provide insights into potential future approaches for reversing cancer resistance.
Collapse
Affiliation(s)
- Xiaozhu Tang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengjie Guo
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junxian Lv
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
8
|
Komar AA, Samatova E, Rodnina MV. Translation Rates and Protein Folding. J Mol Biol 2024; 436:168384. [PMID: 38065274 DOI: 10.1016/j.jmb.2023.168384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
The mRNA coding sequence defines not only the amino acid sequence of the protein, but also the speed at which the ribosomes move along the mRNA while making the protein. The non-uniform local kinetics - denoted as translational rhythm - is similar among mRNAs coding for related protein folds. Deviations from this conserved rhythm can result in protein misfolding. In this review we summarize the experimental evidence demonstrating how local translation rates affect cotranslational protein folding, with the focus on the synonymous codons and patches of charged residues in the nascent peptide as best-studied examples. Alterations in nascent protein conformations due to disturbed translational rhythm can persist off the ribosome, as demonstrated by the effects of synonymous codon variants of several disease-related proteins. Charged amino acid patches in nascent chains also modulate translation and cotranslational protein folding, and can abrogate translation when placed at the N-terminus of the nascent peptide. During cotranslational folding, incomplete nascent chains navigate through a unique conformational landscape in which earlier intermediate states become inaccessible as the nascent peptide grows. Precisely tuned local translation rates, as well as interactions with the ribosome, guide the folding pathway towards the native structure, whereas deviations from the natural translation rhythm may favor pathways leading to trapped misfolded states. Deciphering the 'folding code' of the mRNA will contribute to understanding the diseases caused by protein misfolding and to rational protein design.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA; Department of Biochemistry and Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Ekaterina Samatova
- Max Planck Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Max Planck Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany.
| |
Collapse
|
9
|
Seitz F, Jungnickel T, Kleiber N, Kretschmer J, Dietzsch J, Adelmann J, Bohnsack KE, Bohnsack MT, Höbartner C. Atomic Mutagenesis of N6-Methyladenosine Reveals Distinct Recognition Modes by Human m 6A Reader and Eraser Proteins. J Am Chem Soc 2024; 146:7803-7810. [PMID: 38445613 DOI: 10.1021/jacs.4c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
N6-methyladenosine (m6A) is an important modified nucleoside in cellular RNA associated with multiple cellular processes and is implicated in diseases. The enzymes associated with the dynamic installation and removal of m6A are heavily investigated targets for drug research, which requires detailed knowledge of the recognition modes of m6A by proteins. Here, we use atomic mutagenesis of m6A to systematically investigate the mechanisms of the two human m6A demethylase enzymes FTO and ALKBH5 and the binding modes of YTH reader proteins YTHDF2/DC1/DC2. Atomic mutagenesis refers to atom-specific changes that are introduced by chemical synthesis, such as the replacement of nitrogen by carbon atoms. Synthetic RNA oligonucleotides containing site-specifically incorporated 1-deaza-, 3-deaza-, and 7-deaza-m6A nucleosides were prepared by solid-phase synthesis and their RNA binding and demethylation by recombinant proteins were evaluated. We found distinct differences in substrate recognition and transformation and revealed structural preferences for the enzymatic activity. The deaza m6A analogues introduced in this work will be useful probes for other proteins in m6A research.
Collapse
Affiliation(s)
- Florian Seitz
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Tina Jungnickel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Nicole Kleiber
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Jens Kretschmer
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Julia Dietzsch
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Juliane Adelmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, Göttingen 37073, Germany
- Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
- Center for Nanosystems Chemistry, University of Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| |
Collapse
|
10
|
Guca E, Alarcon R, Palo MZ, Santos L, Alonso-Gil S, Davyt M, de Lima LHF, Boissier F, Das S, Zagrovic B, Puglisi JD, Hashem Y, Ignatova Z. N 6-methyladenosine in 5' UTR does not promote translation initiation. Mol Cell 2024; 84:584-595.e6. [PMID: 38244546 PMCID: PMC10909339 DOI: 10.1016/j.molcel.2023.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/19/2023] [Accepted: 12/16/2023] [Indexed: 01/22/2024]
Abstract
The most abundant N6-methyladenosine (m6A) modification on mRNAs is installed non-stoichiometrically across transcripts, with 5' untranslated regions (5' UTRs) being the least conductive. 5' UTRs are essential for translation initiation, yet the molecular mechanisms orchestrated by m6A remain poorly understood. Here, we combined structural, biochemical, and single-molecule approaches and show that at the most common position, a single m6A does not affect translation yields, the kinetics of translation initiation complex assembly, or start codon recognition both under permissive growth and following exposure to oxidative stress. Cryoelectron microscopy (cryo-EM) structures of the late preinitiation complex reveal that m6A purine ring established stacking interactions with an arginine side chain of the initiation factor eIF2α, although with only a marginal energy contribution, as estimated computationally. These findings provide molecular insights into m6A interactions with the initiation complex and suggest that the subtle stabilization is unlikely to affect the translation dynamics under homeostatic conditions or stress.
Collapse
Affiliation(s)
- Ewelina Guca
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Rodrigo Alarcon
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Michael Z Palo
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Leonardo Santos
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Santiago Alonso-Gil
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, 1030, Vienna, Austria; Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria
| | - Marcos Davyt
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Leonardo H F de Lima
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France; Department of Exact and Biological Sciences, Federal University of São João Del Rei, Sete Lagoas Campus, Sete Lagoas 35701-970, Minas Gerais, Brazil
| | - Fanny Boissier
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Sarada Das
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, 1030, Vienna, Austria; Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Yaser Hashem
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| |
Collapse
|
11
|
Höfler S, Duss O. Interconnections between m 6A RNA modification, RNA structure, and protein-RNA complex assembly. Life Sci Alliance 2024; 7:e202302240. [PMID: 37935465 PMCID: PMC10629537 DOI: 10.26508/lsa.202302240] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
Protein-RNA complexes exist in many forms within the cell, from stable machines such as the ribosome to transient assemblies like the spliceosome. All protein-RNA assemblies rely on spatially and temporally coordinated interactions between specific proteins and RNAs to achieve a functional form. RNA folding and structure are often critical for successful protein binding and protein-RNA complex formation. RNA modifications change the chemical nature of a given RNA and often alter its folding kinetics. Both these alterations can affect how and if proteins or other RNAs can interact with the modified RNA and assemble into complexes. N6-methyladenosine (m6A) is the most common base modification on mRNAs and regulatory noncoding RNAs and has been shown to impact RNA structure and directly modulate protein-RNA interactions. In this review, focusing on the mechanisms and available quantitative information, we discuss first how the METTL3/14 m6A writer complex is specifically targeted to RNA assisted by protein-RNA and other interactions to enable site-specific and co-transcriptional RNA modification and, once introduced, how the m6A modification affects RNA folding and protein-RNA interactions.
Collapse
Affiliation(s)
- Simone Höfler
- Structural and Computational Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Olivier Duss
- Structural and Computational Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Grünberger F, Schmid G, El Ahmad Z, Fenk M, Vogl K, Reichelt R, Hausner W, Urlaub H, Lenz C, Grohmann D. Uncovering the temporal dynamics and regulatory networks of thermal stress response in a hyperthermophile using transcriptomics and proteomics. mBio 2023; 14:e0217423. [PMID: 37843364 PMCID: PMC10746257 DOI: 10.1128/mbio.02174-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Extreme environments provide unique challenges for life, and the study of extremophiles can shed light on the mechanisms of adaptation to such conditions. Pyrococcus furiosus, a hyperthermophilic archaeon, is a model organism for studying thermal stress response mechanisms. In this study, we used an integrated analysis of RNA-sequencing and mass spectrometry data to investigate the transcriptomic and proteomic responses of P. furiosus to heat and cold shock stress and recovery. Our results reveal the rapid and dynamic changes in gene and protein expression patterns associated with these stress responses, as well as the coordinated regulation of different gene sets in response to different stressors. These findings provide valuable insights into the molecular adaptations that facilitate life in extreme environments and advance our understanding of stress response mechanisms in hyperthermophilic archaea.
Collapse
Affiliation(s)
- Felix Grünberger
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Georg Schmid
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Zubeir El Ahmad
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Martin Fenk
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Katharina Vogl
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Robert Reichelt
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Winfried Hausner
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Dina Grohmann
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Zhang H, Yin M, Huang H, Zhao G, Lu M. METTL16 in human diseases: What should we do next? Open Med (Wars) 2023; 18:20230856. [PMID: 38045858 PMCID: PMC10693013 DOI: 10.1515/med-2023-0856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
METTL16 is a class-I methyltransferase that is responsible for depositing a vertebrate-conserved S-adenosylmethionine site. Since 2017, there has been a growing body of research focused on METTL16, particularly in the field of structural studies. However, the role of METTL16 in cell biogenesis and human diseases has not been extensively studied, with limited understanding of its function in disease pathology. Recent studies have highlighted the complex and sometimes contradictory role that METTL16 plays in various diseases. In this work, we aim to provide a comprehensive summary of the current research on METTL16 in human diseases.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Gastroenterology, Wuhan Tongji Aerospace City Hospital, Wuhan, Hubei Province, 430000, China
| | - Mengqi Yin
- Department of Neurology, Wuhan No. 1 Hospital, Wuhan, Hubei Province, 430000, China
| | - Hua Huang
- Department of Gastroenterology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 665000, Yunnan Province, China
| | - Gongfang Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 665000, Yunnan Province, China
| | - Mingliang Lu
- Department of Gastroenterology, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, PR China
| |
Collapse
|
14
|
Arzumanian VA, Kurbatov IY, Ptitsyn KG, Khmeleva SA, Kurbatov LK, Radko SP, Poverennaya EV. Identifying N6-Methyladenosine Sites in HepG2 Cell Lines Using Oxford Nanopore Technology. Int J Mol Sci 2023; 24:16477. [PMID: 38003667 PMCID: PMC10671286 DOI: 10.3390/ijms242216477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
RNA modifications, particularly N6-methyladenosine (m6A), are pivotal regulators of RNA functionality and cellular processes. We analyzed m6A modifications by employing Oxford Nanopore technology and the m6Anet algorithm, focusing on the HepG2 cell line. We identified 3968 potential m6A modification sites in 2851 transcripts, corresponding to 1396 genes. A gene functional analysis revealed the active involvement of m6A-modified genes in ubiquitination, transcription regulation, and protein folding processes, aligning with the known role of m6A modifications in histone ubiquitination in cancer. To ensure data robustness, we assessed reproducibility across technical replicates. This study underscores the importance of evaluating algorithmic reproducibility, especially in supervised learning. Furthermore, we examined correlations between transcriptomic, translatomic, and proteomic levels. A strong transcriptomic-translatomic correlation was observed. In conclusion, our study deepens our understanding of m6A modifications' multifaceted impacts on cellular processes and underscores the importance of addressing reproducibility concerns in analytical approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ekaterina V. Poverennaya
- Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 119121 Moscow, Russia; (V.A.A.); (I.Y.K.); (K.G.P.); (S.A.K.); (L.K.K.); (S.P.R.)
| |
Collapse
|