1
|
Wang S, Uriel M, Cheng H. Lung Cancer with Brain Metastasis-Treatment Strategies and Molecular Characteristics. J Clin Med 2024; 13:7371. [PMID: 39685828 DOI: 10.3390/jcm13237371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Lung cancer is a leading cause of brain metastases (BMs), with 10-20% of patients with non-small cell lung cancer (NSCLC) presenting with BMs at diagnosis and 25-50% developing them over the course of their disease. Historically, BMs have posed significant therapeutic challenges, partly due to the blood brain barrier (BBB), which restricts drug penetration to the central nervous system. Consequently, BMs were initially managed with local treatments, including surgical resection, stereotactic radiosurgery, and whole brain radiation therapy. In recent years, however, systemic treatments for BMs have advanced significantly, particularly with the development of molecularly-targeted therapies and immunotherapies. The discovery of driver mutations and the development of novel tyrosine kinase inhibitors (TKIs) have yielded encouraging intracranial responses in NSCLC patients with actionable genetic alterations (e.g., EGFR, ALK, ROS1). Genomic profiling has also suggested genetic heterogeneity between BMs and primary sites. Immunotherapies, alone or in combination with other treatments, have demonstrated promising results in NSCLC with BMs, although most clinical trials have included only selected patients with asymptomatic or previously treated BMs. In this review, we discuss the molecular and immune characteristics of NSCLC with BMs, analyze intracranial efficacy findings from clinical trials, and explore treatment strategies for lung cancer patients with BMs.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Matan Uriel
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Haiying Cheng
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
2
|
Jee J, Fong C, Pichotta K, Tran TN, Luthra A, Waters M, Fu C, Altoe M, Liu SY, Maron SB, Ahmed M, Kim S, Pirun M, Chatila WK, de Bruijn I, Pasha A, Kundra R, Gross B, Mastrogiacomo B, Aprati TJ, Liu D, Gao J, Capelletti M, Pekala K, Loudon L, Perry M, Bandlamudi C, Donoghue M, Satravada BA, Martin A, Shen R, Chen Y, Brannon AR, Chang J, Braunstein L, Li A, Safonov A, Stonestrom A, Sanchez-Vela P, Wilhelm C, Robson M, Scher H, Ladanyi M, Reis-Filho JS, Solit DB, Jones DR, Gomez D, Yu H, Chakravarty D, Yaeger R, Abida W, Park W, O'Reilly EM, Garcia-Aguilar J, Socci N, Sanchez-Vega F, Carrot-Zhang J, Stetson PD, Levine R, Rudin CM, Berger MF, Shah SP, Schrag D, Razavi P, Kehl KL, Li BT, Riely GJ, Schultz N. Automated real-world data integration improves cancer outcome prediction. Nature 2024; 636:728-736. [PMID: 39506116 DOI: 10.1038/s41586-024-08167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
The digitization of health records and growing availability of tumour DNA sequencing provide an opportunity to study the determinants of cancer outcomes with unprecedented richness. Patient data are often stored in unstructured text and siloed datasets. Here we combine natural language processing annotations1,2 with structured medication, patient-reported demographic, tumour registry and tumour genomic data from 24,950 patients at Memorial Sloan Kettering Cancer Center to generate a clinicogenomic, harmonized oncologic real-world dataset (MSK-CHORD). MSK-CHORD includes data for non-small-cell lung (n = 7,809), breast (n = 5,368), colorectal (n = 5,543), prostate (n = 3,211) and pancreatic (n = 3,109) cancers and enables discovery of clinicogenomic relationships not apparent in smaller datasets. Leveraging MSK-CHORD to train machine learning models to predict overall survival, we find that models including features derived from natural language processing, such as sites of disease, outperform those based on genomic data or stage alone as tested by cross-validation and an external, multi-institution dataset. By annotating 705,241 radiology reports, MSK-CHORD also uncovers predictors of metastasis to specific organ sites, including a relationship between SETD2 mutation and lower metastatic potential in immunotherapy-treated lung adenocarcinoma corroborated in independent datasets. We demonstrate the feasibility of automated annotation from unstructured notes and its utility in predicting patient outcomes. The resulting data are provided as a public resource for real-world oncologic research.
Collapse
Affiliation(s)
- Justin Jee
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Karl Pichotta
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Anisha Luthra
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michele Waters
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chenlian Fu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mirella Altoe
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Si-Yang Liu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steven B Maron
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Mehnaj Ahmed
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Susie Kim
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mono Pirun
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Ino de Bruijn
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arfath Pasha
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ritika Kundra
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Gross
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - David Liu
- Dana Farber Cancer Institute, Boston, MA, USA
| | | | | | - Kelly Pekala
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lisa Loudon
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Perry
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Mark Donoghue
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Axel Martin
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronglai Shen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuan Chen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Rose Brannon
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason Chang
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lior Braunstein
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Anyi Li
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anton Safonov
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Clare Wilhelm
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark Robson
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Howard Scher
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Marc Ladanyi
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - David B Solit
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David R Jones
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Gomez
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helena Yu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Rona Yaeger
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wassim Abida
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wungki Park
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Eileen M O'Reilly
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Julio Garcia-Aguilar
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Nicholas Socci
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Ross Levine
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Charles M Rudin
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Sohrab P Shah
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Deborah Schrag
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Pedram Razavi
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Bob T Li
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory J Riely
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | |
Collapse
|
3
|
Zhao Y, Zhang D, Meng B, Zhang Y, Ma S, Zeng J, Wang X, Peng T, Gong X, Zhai R, Dong L, Jiang Y, Dai X, Fang X, Jia W. Integrated proteomic and glycoproteomic analysis reveals heterogeneity and molecular signatures of brain metastases from lung adenocarcinomas. Cancer Lett 2024; 605:217262. [PMID: 39341452 DOI: 10.1016/j.canlet.2024.217262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/26/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Brain metastasis is a major cause of poor prognosis and death in lung adenocarcinoma (LUAD); however, the understanding of therapeutic strategies and mechanisms for brain metastases from LUAD (BM-LUAD) remains notably limited, especially at the proteomics levels. To address this issue, we conducted integrated proteomic and glycoproteomic analyses on 49 BM-LUAD tumors, revealing two distinct subtypes of the disease: BM-S1 and BM-S2. Whole exome sequencing analysis revealed that somatic mutations in STK11 and KEAP1, as well as copy number deletions on chr19p13.3, such as STK11, UQCR11, and SLC25A23, were more frequently detected in BM-S2. In BM-S1 tumors, we observed significant infiltration of GFAP + astrocytes, as evidenced by elevated levels of GFAP, GABRA2, GABRG1 and GAP43 proteins and an enrichment of astrocytic signatures in both our proteomic data and external spatial transcriptomic data. Conversely, BM-S2 tumors demonstrated higher levels of PD-1 immune cell infiltration, supported by the upregulation of PD-1 and LAG-3 genes. These findings suggest distinct microenvironmental adaptations required by the different BM-LUAD subtypes. Additionally, we observed unique glycosylation patterns between the subtypes, with increased fucosylation in BM-S1 and enhanced sialylation in BM-S2, primarily affected by glycosylation enzymes such as FUT9, B4GALT1, and ST6GAL1. Specifically, in BM-S2, these sialylation modifications are predominantly localized to the lysosomes, underscoring the critical role of N-glycosylation in the tumor progression of BM-LUAD. Overall, our study not only provides a comprehensive multi-omic data resource but also offers valuable biological insights into BM-LUAD, highlighting potential mechanisms and therapeutic targets for further investigation.
Collapse
Affiliation(s)
- Yang Zhao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Bo Meng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Yong Zhang
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shunchang Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Jiaming Zeng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Xi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Tao Peng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Lianhua Dong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China.
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China.
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
4
|
Hockemeyer KG, Rusthoven CG, Pike LRG. Advances in the Management of Lung Cancer Brain Metastases. Cancers (Basel) 2024; 16:3780. [PMID: 39594735 PMCID: PMC11593022 DOI: 10.3390/cancers16223780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Lung cancer, both non-small cell and small cell, harbors a high propensity for spreading to the central nervous system. Radiation therapy remains the backbone of the management of brain metastases. Recent advances in stereotactic radiosurgery have expanded its indications and ongoing studies seek to elucidate optimal fractionation and coordination with systemic therapies, especially targeted inhibitors with intracranial efficacy. Efforts in whole-brain radiotherapy aim to preserve neurocognition and to investigate the need for prophylactic cranial irradiation. As novel combinatorial strategies are tested and prognostic/predictive biomarkers are identified and tested, the management of brain metastases in lung cancer will become increasingly personalized to optimally balance intracranial efficacy with preserving neurocognitive function and patient values.
Collapse
Affiliation(s)
- Kathryn G. Hockemeyer
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chad G. Rusthoven
- Department of Radiation Oncology, University of Colorado, Aurora, CO 80045, USA
| | - Luke R. G. Pike
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
5
|
Dennis MJ, Pavlick DC, Kacew A, Wotman M, MacConaill LE, Jones SM, Pfaff KL, Rodig SJ, Eacker S, Malig M, Reister E, Piccioni D, Kesari S, Sehgal K, Haddad RI, Cohen E, Posner MR, Deichaite I, Hanna GJ. Low PD-L1 expression, MAP2K2 alterations, and enriched HPV gene signatures characterize brain metastases in head and neck squamous cell carcinoma. J Transl Med 2024; 22:960. [PMID: 39438862 PMCID: PMC11515687 DOI: 10.1186/s12967-024-05761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Brain metastasis (BM) is a rare but severe complication of head and neck squamous cell carcinoma (HNSCC), with limited knowledge of molecular characteristics and immunogenicity. METHODS We analyzed 61 cases of HNSCC-BM from three academic institutions (n = 24) and Foundation Medicine Inc (FMI, n = 37). A subset of cases underwent next-generation sequencing, multiple immunofluorescence, and proximity ligation sequencing. Gene enrichment analysis compared alterations in FMI BM samples (n = 37) with local samples (n = 4082). RESULTS Demographics included: median age of 59 years, 75% male, 55% current/former smokers, 75% oropharyngeal primary, and 67% human papillomavirus (HPV) +. ATM (54%), KMT2A (54%), PTEN (46%), RB1 (46%), and TP53 (46%) were frequently altered in BM samples from academic centers (62% HPV/p16+). Structural rearrangements ranged from 9 to 90 variants by proximity ligation sequencing. BMs had low densities of CD8+, PD-1+, PD-L1+, and FOXP3 + cells, and 92% had PD-L1 combined positive scores < 1%. CDKN2A (40.5%), TP53 (37.8%), and PIK3CA (27.0%) alterations were common in the FMI BMs (51% HPV+). MAP2K2 alterations and HPV + signature were enriched in FMI BMs compared to local tumors (11.8% vs. 6.4%, P = 0.005 and 51.25% vs. 26.11%, P = 0.001 respectively), and pathogenic TSC1 inactivating mutations were enriched in local tumors (67.3% vs. 37.8%, P = 0.008). Median overall survival from BM diagnosis was 9 months (range 0-27). CONCLUSIONS HNSCC patients with BM frequently have oropharyngeal primary sites and are HPV+. Common molecular alterations in BM samples, including targetable PIK3CA and ATM, were identified. MAP2K2 alterations were enriched and densities of immune cells were low, highlighting potential targets for further research and immunotherapy considerations.
Collapse
Affiliation(s)
- Michael J Dennis
- Center for Head & Neck Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room 2128, Boston, MA, 02215, USA.
| | | | - Alec Kacew
- Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
| | - Michael Wotman
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Stephanie M Jones
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathleen L Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - David Piccioni
- Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA
| | | | - Kartik Sehgal
- Center for Head & Neck Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Robert I Haddad
- Center for Head & Neck Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ezra Cohen
- Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA
| | - Marshall R Posner
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ida Deichaite
- University of California San Diego, La Jolla, CA, USA
| | - Glenn J Hanna
- Center for Head & Neck Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
6
|
Gritsch D, Brastianos PK. Molecular evolution of central nervous system metastasis and therapeutic implications. Trends Mol Med 2024:S1471-4914(24)00265-X. [PMID: 39424530 DOI: 10.1016/j.molmed.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
The increasing prevalence and poor prognosis of central nervous system (CNS) metastases pose a significant challenge in oncology, necessitating improved therapeutic strategies. Recent research has shed light on the complex genomic landscape of brain metastases, identifying unique and potentially actionable genetic alterations. These insights offer new avenues for targeted therapy, highlighting the potential of precision medicine approaches in treating CNS metastases. However, translating these discoveries into clinical practice requires overcoming challenges such as availability of tissue for characterization, access to molecular testing, drug delivery across the blood-brain barrier (BBB) and addressing intra- and intertumoral genetic heterogeneity. This review explores novel insights into the evolution of CNS metastases, the molecular mechanisms underlying their development, and implications for therapeutic interventions.
Collapse
Affiliation(s)
- David Gritsch
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Priscilla K Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
7
|
Choi AR, D’Agostino RB, Farris MK, Abdulhaleem M, Hunting JC, Wang Y, Smith MR, Ruiz J, Lycan TW, Petty WJ, Cramer CK, Tatter SB, Laxton AW, White JJ, Li W, Su J, Whitlow C, Xing F, Chan MD. Genomic signature for oligometastatic disease in non-small cell lung cancer patients with brain metastases. Front Endocrinol (Lausanne) 2024; 15:1364021. [PMID: 39355617 PMCID: PMC11443040 DOI: 10.3389/fendo.2024.1364021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Purpose/objectives Biomarkers for extracranial oligometastatic disease remain elusive and few studies have attempted to correlate genomic data to the presence of true oligometastatic disease. Methods Patients with non-small cell lung cancer (NSCLC) and brain metastases were identified in our departmental database. Electronic medical records were used to identify patients for whom liquid biopsy-based comprehensive genomic profiling (Guardant Health) was available. Extracranial oligometastatic disease was defined as patients having ≤5 non-brain metastases without diffuse involvement of a single organ. Widespread disease was any spread beyond oligometastatic. Fisher's exact tests were used to screen for mutations statistically associated (p<0.1) with either oligometastatic or widespread extracranial disease. A risk score for the likelihood of oligometastatic disease was generated and correlated to the likelihood of having oligometastatic disease vs widespread disease. For oligometastatic patients, a competing risk analysis was done to assess for cumulative incidence of oligometastatic progression. Cox regression was used to determine association between oligometastatic risk score and oligoprogression. Results 130 patients met study criteria and were included in the analysis. 51 patients (39%) had extracranial oligometastatic disease. Genetic mutations included in the Guardant panel that were associated (p<0.1) with the presence of oligometastatic disease included ATM, JAK2, MAP2K2, and NTRK1, while ARID1A and CCNE1 were associated with widespread disease. Patients with a positive, neutral and negative risk score for oligometastatic disease had a 78%, 41% and 11.5% likelihood of having oligometastatic disease, respectively (p<0.0001). Overall survival for patients with positive, neutral and negative risk scores for oligometastatic disease was 86% vs 82% vs 64% at 6 months (p=0.2). Oligometastatic risk score was significantly associated with the likelihood of oligoprogression based on the Wald chi-square test. Patients with positive, neutral and negative risk scores for oligometastatic disease had a cumulative incidence of oligometastatic progression of 77% vs 35% vs 33% at 6 months (p=0.03). Conclusions Elucidation of a genomic signature for extracranial oligometastatic disease derived from non-invasive liquid biopsy appears feasible for NSCLC patients. Patients with this signature exhibited higher rates of early oligoprogression. External validation could lead to a biomarker that has the potential to direct local therapies in oligometastatic patients.
Collapse
Affiliation(s)
- Ariel R. Choi
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ralph B. D’Agostino
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael K. Farris
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mohammed Abdulhaleem
- Department of Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - John C. Hunting
- Department of Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Yuezhu Wang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Margaret R. Smith
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jimmy Ruiz
- Department of Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas W. Lycan
- Department of Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - W. Jeffrey Petty
- Department of Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christina K. Cramer
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Stephen B. Tatter
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Adrian W. Laxton
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jaclyn J. White
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Wencheng Li
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Christopher Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fei Xing
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael D. Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
8
|
Tang M, Wu Y, Bai X, Lu Y. KRAS G12C Inhibitors in Non-Small Cell Lung Cancer: A Review. Onco Targets Ther 2024; 17:683-695. [PMID: 39206059 PMCID: PMC11352592 DOI: 10.2147/ott.s473368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Rat sarcoma virus (RAS) GTPase is one of the most important drivers of non-small cell lung cancer (NSCLC). RAS has three different isoforms (Harvey rat sarcoma viral oncogene homolog [HRAS], Kirsten rat sarcoma viral oncogene homolog [KRAS] and Neuroblastoma ras viral oncogene homolog [NRAS]), of which KRAS is most commonly mutated in NSCLC. The mutated KRAS protein was historically thought to be "undruggable" until the development of KRASG12C inhibitors. In this review, from the aspect of brain metastasis, we aim to provide an overview of the advances in therapies that target KRASG12C, the limitations of the current treatments, and future prospects in patients with KRAS p.G12C mutant NSCLC.
Collapse
Affiliation(s)
- Min Tang
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yijun Wu
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xiufeng Bai
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
9
|
Guan C, Zhang X, Yu L. A Review of Recent Advances in the Molecular Mechanisms Underlying Brain Metastasis in Lung Cancer. Mol Cancer Ther 2024; 23:627-637. [PMID: 38123448 DOI: 10.1158/1535-7163.mct-23-0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Brain metastasis from lung cancer is a prevalent mode of treatment failure associated with a poor prognosis. The incidence of brain metastasis has recently shown a dramatic increase. The early detection and risk stratification of lung cancer-related brain metastasis would be highly advantageous for patients. However, our current knowledge and comprehension of the underlying mechanisms driving brain metastasis in lung cancer pose significant challenges. This review summarizes the mechanisms underlying brain metastasis, focusing on the intricate interplay between lung cancer-derived tumor cells and the unique characteristics of the brain, recent advancements in the identification of driver genes, concomitant genes, epigenetic features, including miRNAs and long noncoding RNAs, as well as the molecular characterization of brain metastasis originating from other organs, which may further enhance risk stratification and facilitate precise treatment strategies.
Collapse
Affiliation(s)
- Chao Guan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoye Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
11
|
Dymerska D, Marusiak AA. Drivers of cancer metastasis - Arise early and remain present. Biochim Biophys Acta Rev Cancer 2024; 1879:189060. [PMID: 38151195 DOI: 10.1016/j.bbcan.2023.189060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Cancer and its metastases arise from mutations of genes, drivers that promote a tumor's growth. Analyses of driver events provide insights into cancer cell history and may lead to a better understanding of oncogenesis. We reviewed 27 metastatic research studies, including pan-cancer studies, individual cancer studies, and phylogenetic analyses, and summarized our current knowledge of metastatic drivers. All of the analyzed studies had a high level of consistency of driver mutations between primary tumors and metastasis, indicating that most drivers appear early in cancer progression and are maintained in metastatic cells. Additionally, we reviewed data from around 50,000 metastatic cancer patients and compiled a list of genes altered in metastatic lesions. We performed Gene Ontology analysis and confirmed that the most significantly enriched processes in metastatic lesions were the epigenetic regulation of gene expression, signal transduction, cell cycle, programmed cell death, DNA damage, hypoxia and EMT. In this review, we explore the most recent discoveries regarding genetic factors in the advancement of cancer, specifically those that drive metastasis.
Collapse
Affiliation(s)
- Dagmara Dymerska
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.
| | - Anna A Marusiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
12
|
Liu Y, Liu D, Liu Y, Fu B, Ji S, Wang R, Yan F, Wang H, Zhao D, Yang W, Wang J, Tang L. Comprehensive Proteomics Analysis Reveals Dynamic Phenotypes of Tumor-Associated Macrophages and Their Precursor Cells in Tumor Progression. J Proteome Res 2024; 23:822-833. [PMID: 38173118 DOI: 10.1021/acs.jproteome.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Tumor-associated macrophages (TAMs) are key regulators in tumor progression, but the precise role of bone marrow-derived monocytes (Mons) as TAM precursors and their dynamic phenotypes regulated by the tumor microenvironment (TME) remain unclear. Here, we developed an optimized microproteomics workflow to analyze low-cell-number mouse myeloid cells. We sorted TAMs and their corresponding Mons (1 × 105 per sample) from individual melanoma mouse models at both the early and late stages. We established the protein expression profiles for these cells by mass spectrometry. Subsequently, we analyzed the dynamics phenotypes of TAMs and identified a characteristic protein expression profile characterized by upregulated cholesterol metabolism and downregulated immune responses during tumor progression. Moreover, we found the downregulation of both STAT5 and PYCARD expression not only in late-stage TAMs but also in late-stage Mons, indicating a loss of the ability to induce inflammatory responses prior to Mons infiltration into TME. Taken together, our study provides valuable insights into the progression-dependent transitions between TAMs and their precursor cells, as well as the cross-organ communications of tumor and bone marrow.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Di Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yuchen Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Bin Fu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Shuhui Ji
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ruixuan Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fang Yan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Huan Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Dianyuan Zhao
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wenting Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jian Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Li Tang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|