1
|
Luo W, Song R, Whetten BG, Huang D, Cheng X, Belyanin A, Jiang T, Raschke MB. Nonlinear Nano-Imaging of Interlayer Coupling in 2D Graphene-Semiconductor Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307345. [PMID: 38279570 DOI: 10.1002/smll.202307345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/13/2023] [Indexed: 01/28/2024]
Abstract
The emergent electronic, spin, and other quantum properties of 2D heterostructures of graphene and transition metal dichalcogenides are controlled by the underlying interlayer coupling and associated charge and energy transfer dynamics. However, these processes are sensitive to interlayer distance and crystallographic orientation, which are in turn affected by defects, grain boundaries, or other nanoscale heterogeneities. This obfuscates the distinction between interlayer charge and energy transfer. Here, nanoscale imaging in coherent four-wave mixing (FWM) and incoherent two-photon photoluminescence (2PPL) is combined with a tip distance-dependent coupled rate equation model to resolve the underlying intra- and inter-layer dynamics while avoiding the influence of structural heterogeneities in mono- to multi-layer graphene/WSe2 heterostructures. With selective insertion of hBN spacer layers, it is shown that energy, as opposed to charge transfer, dominates the interlayer-coupled optical response. From the distinct nano-FWM and -2PPL tip-sample distance-dependent modification of interlayer and intralayer relaxation by tip-induced enhancement and quenching, an interlayer energy transfer time ofτ ET ≈ ( 0 . 35 - 0.15 + 0.65 ) $\tau _{\rm ET} \approx (0.35^{+0.65}_{-0.15})$ ps consistent with recent reports is derived. As a local probe technique, this approach highlights the ability to determine intrinsic sample properties even in the presence of large sample heterogeneity.
Collapse
Affiliation(s)
- Wenjin Luo
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering and School of Physics Science and Engineering Tongji University, Shanghai, 200092, China
- Department of Physics and JILA, University of Colorado, Boulder, CO, 80309, USA
| | - Renkang Song
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering and School of Physics Science and Engineering Tongji University, Shanghai, 200092, China
| | - Benjamin G Whetten
- Department of Physics and JILA, University of Colorado, Boulder, CO, 80309, USA
| | - Di Huang
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering and School of Physics Science and Engineering Tongji University, Shanghai, 200092, China
| | - Xinbin Cheng
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering and School of Physics Science and Engineering Tongji University, Shanghai, 200092, China
| | - Alexey Belyanin
- Department of Physics and Astronomy, Texas A&M University, College Station, TX, 77843, USA
| | - Tao Jiang
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering and School of Physics Science and Engineering Tongji University, Shanghai, 200092, China
| | - Markus B Raschke
- Department of Physics and JILA, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
2
|
Saida Y, Gauthier T, Suzuki H, Ohmura S, Shikata R, Iwasaki Y, Noyama G, Kishibuchi M, Tanaka Y, Yajima W, Godin N, Privault G, Tokunaga T, Ono S, Koshihara SY, Tsuruta K, Hayashi Y, Bertoni R, Hada M. Photoinduced dynamics during electronic transfer from narrow to wide bandgap layers in one-dimensional heterostructured materials. Nat Commun 2024; 15:4600. [PMID: 38816382 PMCID: PMC11139937 DOI: 10.1038/s41467-024-48880-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Electron transfer is a fundamental energy conversion process widely present in synthetic, industrial, and natural systems. Understanding the electron transfer process is important to exploit the uniqueness of the low-dimensional van der Waals (vdW) heterostructures because interlayer electron transfer produces the function of this class of material. Here, we show the occurrence of an electron transfer process in one-dimensional layer-stacking of carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). This observation makes use of femtosecond broadband optical spectroscopy, ultrafast time-resolved electron diffraction, and first-principles theoretical calculations. These results reveal that near-ultraviolet photoexcitation induces an electron transfer from the conduction bands of CNT to BNNT layers via electronic decay channels. This physical process subsequently generates radial phonons in the one-dimensional vdW heterostructure material. The gathered insights unveil the fundamentals physics of interfacial interactions in low dimensional vdW heterostructures and their photoinduced dynamics, pushing their limits for photoactive multifunctional applications.
Collapse
Affiliation(s)
- Yuri Saida
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Thomas Gauthier
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000, Rennes, France
| | - Hiroo Suzuki
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Satoshi Ohmura
- Faculty of Engineering, Hiroshima Institute of Technology, Hiroshima, 731-5193, Japan.
| | - Ryo Shikata
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Yui Iwasaki
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Godai Noyama
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Misaki Kishibuchi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yuichiro Tanaka
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Wataru Yajima
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Nicolas Godin
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000, Rennes, France
| | - Gaël Privault
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000, Rennes, France
| | - Tomoharu Tokunaga
- Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Shota Ono
- Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Shin-Ya Koshihara
- School of Science, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Kenji Tsuruta
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yasuhiko Hayashi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Roman Bertoni
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000, Rennes, France.
| | - Masaki Hada
- Institute of Pure and Applied Science and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, 305-8573, Japan.
| |
Collapse
|
3
|
Tebbe D, Schütte M, Watanabe K, Taniguchi T, Stampfer C, Beschoten B, Waldecker L. Distance Dependence of the Energy Transfer Mechanism in WS_{2}-Graphene Heterostructures. PHYSICAL REVIEW LETTERS 2024; 132:196902. [PMID: 38804923 DOI: 10.1103/physrevlett.132.196902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/19/2024] [Accepted: 03/21/2024] [Indexed: 05/29/2024]
Abstract
We report on the mechanism of energy transfer in Van der Waals heterostructures of the two-dimensional semiconductor WS_{2} and graphene with varying interlayer distances, achieved through spacer layers of hexagonal boron nitride (h-BN). We record photoluminescence and reflection spectra at interlayer distances between 0.5 and 5.8 nm (0-16 h-BN layers). We find that the energy transfer is dominated by states outside the light cone, indicative of a Förster transfer process, with an additional contribution from a Dexter process at 0.5 nm interlayer distance. We find that the measured dependence of the luminescence intensity on interlayer distances above 1 nm can be quantitatively described using recently reported values of the Förster transfer rates of thermalized charge carriers. At smaller interlayer distances, the experimentally observed transfer rates exceed the predictions and, furthermore, depend on excess energy as well as on excitation density. Since the transfer probability of the Förster mechanism depends on the momentum of electron-hole pairs, we conclude that, at these distances, the transfer is driven by nonrelaxed charge carrier distributions.
Collapse
Affiliation(s)
- David Tebbe
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| | - Marc Schütte
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| | - K Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - T Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Christoph Stampfer
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Bernd Beschoten
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Lutz Waldecker
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|