1
|
Yan K, Miskolzie M, Banales Mejia F, Peng C, Ekanayake AI, Atrazhev A, Cao J, Maly DJ, Derda R. Late-Stage Reshaping of Phage-Displayed Libraries to Macrocyclic and Bicyclic Landscapes using a Multipurpose Linchpin. J Am Chem Soc 2024. [PMID: 39702930 DOI: 10.1021/jacs.4c13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Genetically encoded libraries (GEL) are increasingly being used for the discovery of ligands for "undruggable" targets that cannot be addressed with small molecules. Foundational GEL platforms like phage-, yeast-, ribosome-, and mRNA-display have enabled the display of libraries composed of 20 natural amino acids (20AA). Unnatural amino acids (UAA) and chemical post-translational modification (cPTM) expanded GEL beyond the 20AA space to yield unnatural linear, cyclic, and bicyclic peptides. The standard operating procedure incorporates UAA and cPTM into a "naive" library with 108-1012 compounds and uses a chemically upgraded library in multiple rounds of selection to discover target-binding hits. However, such an approach uses zero knowledge of natural peptide-receptor interactions that might have been discovered in selections performed with 20AA libraries. There is currently no consensus regarding whether "zero-knowledge" naive libraries or libraries with pre-existing knowledge can offer a more effective path to discovery of molecular interactions. In this manuscript, we evaluated the feasibility of discovery of macrocyclic and bicyclic peptides from "nonzero-knowledge" libraries. We approach this problem by late-stage chemical reshaping of a preselected phage-displayed landscape of 20AA binders to NS3aH1 protease. The reshaping is performed using a novel multifunctional C2-symmetric linchpin, 3,5-bis(bromomethyl)benzaldehyde (termed KYL), that combines two electrophiles that react with thiols and an aldehyde group that reacts with N-terminal amine. KYL diversified phage-displayed peptides into bicyclic architectures and delineated 2 distinct sequence populations: (i) peptides with the HXDMT motif that retained binding upon bicyclization and (ii) peptides without the HXDMT motif that lost binding once chemically modified. The same HXDMT family can be found in traditional selections starting from the naive KYL-modified library. Our report provides a case study for discovering advanced, chemically upgraded macrocycles and bicycles from libraries with pre-existing knowledge. The results imply that other selection campaigns completed in 20AA space, potentially, can serve for late-stage reshaping and as a starting point for the discovery of advanced peptide-derived ligands.
Collapse
Affiliation(s)
- Kejia Yan
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Mark Miskolzie
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Fernando Banales Mejia
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, Washington 98195, United States
| | - Chuanhao Peng
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Arunika I Ekanayake
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Alexey Atrazhev
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- 48Hour Discovery, Nanotechnology Research Centre, Edmonton, AB T6G 2M9, Canada
| | - Jessica Cao
- 48Hour Discovery, Nanotechnology Research Centre, Edmonton, AB T6G 2M9, Canada
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
2
|
Lima GM, Jame-Chenarboo Z, Sojitra M, Sarkar S, Carpenter EJ, Yang CY, Schmidt E, Lai J, Atrazhev A, Yazdan D, Peng C, Volker EA, Ho R, Monteiro G, Lai R, Mahal LK, Macauley MS, Derda R. The liquid lectin array detects compositional glycocalyx differences using multivalent DNA-encoded lectins on phage. Cell Chem Biol 2024; 31:1986-2001.e9. [PMID: 39454580 DOI: 10.1016/j.chembiol.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/05/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Selective detection of disease-associated changes in the glycocalyx is an emerging field in modern targeted therapies. Detecting minor glycan changes on the cell surface is a challenge exacerbated by the lack of correspondence between cellular DNA/RNA and glycan structures. We demonstrate that multivalent displays of lectins on DNA-barcoded phages-liquid lectin array (LiLA)-detect subtle differences in density of glycans on cells. LiLA constructs displaying 73 copies of diCBM40 (CBM) lectin per virion (φ-CBM73) exhibit non-linear ON/OFF-like recognition of sialoglycans on the surface of normal and cancer cells. A high-valency φ-CBM290 display, or soluble CBM protein, cannot amplify the subtle differences detected by φ-CBM73. Similarly, multivalent displays of CBM and Siglec-7 detect differences in the glycocalyx between stem-like and non-stem populations in cancer. Multivalent display of lectins offer in situ detection of minor differences in glycocalyx in cells both in vitro and in vivo not feasible to currently available technologies.
Collapse
Affiliation(s)
- Guilherme M Lima
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | - Mirat Sojitra
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Eric J Carpenter
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Claire Y Yang
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Edward Schmidt
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Justine Lai
- Department of Medicine, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Alexey Atrazhev
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Danial Yazdan
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Chuanhao Peng
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Elizabeth A Volker
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ray Ho
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP 05508 000, Brazil
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2J7, Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
3
|
Heimburg-Molinaro J, Mehta AY, Tilton CA, Cummings RD. Insights Into Glycobiology and the Protein-Glycan Interactome Using Glycan Microarray Technologies. Mol Cell Proteomics 2024; 23:100844. [PMID: 39307422 PMCID: PMC11585810 DOI: 10.1016/j.mcpro.2024.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 11/11/2024] Open
Abstract
Glycans linked to proteins and lipids and also occurring in free forms have many functions, and these are partly elicited through specific interactions with glycan-binding proteins (GBPs). These include lectins, adhesins, toxins, hemagglutinins, growth factors, and enzymes, but antibodies can also bind glycans. While humans and other animals generate a vast repertoire of GBPs and different glycans in their glycomes, other organisms, including phage, microbes, protozoans, fungi, and plants also express glycans and GBPs, and these can also interact with their host glycans. This can be termed the protein-glycan interactome, and in nature is likely to be vast, but is so far very poorly described. Understanding the breadth of the protein-glycan interactome is also a key to unlocking our understanding of infectious diseases involving glycans, and immunology associated with antibodies binding to glycans. A key technological advance in this area has been the development of glycan microarrays. This is a display technology in which minute quantities of glycans are attached to the surfaces of slides or beads. This allows the arrayed glycans to be interrogated by GBPs and antibodies in a relatively high throughput approach, in which a protein may bind to one or more distinct glycans. Such binding can lead to novel insights and hypotheses regarding both the function of the GBP, the specificity of an antibody and the function of the glycan within the context of the protein-glycan interactome. This article focuses on the types of glycan microarray technologies currently available to study animal glycobiology and examples of breakthroughs aided by these technologies.
Collapse
Affiliation(s)
- Jamie Heimburg-Molinaro
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA
| | - Akul Y Mehta
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine A Tilton
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA
| | - Richard D Cummings
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Sojitra M, Schmidt EN, Lima GM, Carpenter EJ, McCord KA, Atrazhev A, Macauley MS, Derda R. Measuring carbohydrate recognition profile of lectins on live cells using liquid glycan array (LiGA). Nat Protoc 2024:10.1038/s41596-024-01070-3. [PMID: 39415074 DOI: 10.1038/s41596-024-01070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/05/2024] [Indexed: 10/18/2024]
Abstract
Glycans constitute a significant fraction of biomolecular diversity on cellular surfaces across all kingdoms of life. As the structure of glycans is not directly encoded by the organism's DNA, it is impossible to use high-throughput DNA technologies to study the role of cellular glycosylation or to understand how glycocalyx is recognized by glycan-binding proteins (GBPs). To address this gap, we recently described a liquid glycan array (LiGA) platform that allows profiling of glycan-GBP interactions on the surface of live cells in vitro and in vivo using next-generation sequencing. LiGA is a library of DNA-barcoded bacteriophages, where each clonal bacteriophage displays 5-1,500 copies of a glycan and the distinct DNA barcode inside each bacteriophage clone encodes the structure and density of the displayed glycans. Deep sequencing of the glycophages associated with live cells yields a glycan-binding profile of GBPs expressed on the surface of cells. This protocol provides detailed instructions for how to use LiGA to probe cell surface receptors and includes information on the preparation of glycophages, analysis by MALDI-TOF mass spectrometry, the assembly of a LiGA library and its deep sequencing. Using this protocol, we measure glycan-binding profiles of the immunomodulatory sialic acid-binding immunoglobulin-like lectins‑1, -2, -6, -7 and -9 expressed on the surface of different cell types. Compared with existing methods that require complex specialist equipment, this method allows users with basic molecular biology expertise to measure the precise glycan-binding profile of GBPs on the surface of any cell type expressing exogenous GBP within 2-3 d.
Collapse
Affiliation(s)
- Mirat Sojitra
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Guilherme M Lima
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Eric J Carpenter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kelli A McCord
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Alexey Atrazhev
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Leslie K, Berry SS, Miller GJ, Mahon CS. Sugar-Coated: Can Multivalent Glycoconjugates Improve upon Nature's Design? J Am Chem Soc 2024; 146:27215-27232. [PMID: 39340450 PMCID: PMC11467903 DOI: 10.1021/jacs.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Multivalent interactions between receptors and glycans play an important role in many different biological processes, including pathogen infection, self-recognition, and the immune response. The growth in the number of tools and techniques toward the assembly of multivalent glycoconjugates means it is possible to create synthetic systems that more and more closely resemble the diversity and complexity we observe in nature. In this Perspective we present the background to the recognition and binding enabled by multivalent interactions in nature, and discuss the strategies used to construct synthetic glycoconjugate equivalents. We highlight key discoveries and the current state of the art in their applications to glycan arrays, vaccines, and other therapeutic and diagnostic tools, with an outlook toward some areas we believe are of most interest for future work in this area.
Collapse
Affiliation(s)
- Kathryn
G. Leslie
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Sian S. Berry
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Clare S. Mahon
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
6
|
Lan T, Peng C, Yao X, Chan RST, Wei T, Rupanya A, Radakovic A, Wang S, Chen S, Lovell S, Snyder SA, Bogyo M, Dickinson BC. Discovery of Thioether-Cyclized Macrocyclic Covalent Inhibitors by mRNA Display. J Am Chem Soc 2024; 146:24053-24060. [PMID: 39136646 DOI: 10.1021/jacs.4c07851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Macrocyclic peptides are promising scaffolds for the covalent ligand discovery. However, platforms enabling the direct identification of covalent macrocyclic ligands in a high-throughput manner are limited. In this study, we present an mRNA display platform allowing selection of covalent macrocyclic inhibitors using 1,3-dibromoacetone-vinyl sulfone (DBA-VS). Testcase selections on TEV protease resulted in potent covalent inhibitors with diverse cyclic structures, among which cTEV6-2, a macrocyclic peptide with a unique C-terminal cyclization, emerged as the most potent covalent inhibitor of TEV protease described to-date. This study outlines the workflow for integrating chemical functionalization─installation of a covalent warhead─with mRNA display and showcases its application in targeted covalent ligand discovery.
Collapse
Affiliation(s)
- Tong Lan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Cheng Peng
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Xiyuan Yao
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rachel Shu Ting Chan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Tongyao Wei
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Anuchit Rupanya
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Aleksandar Radakovic
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sijie Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Shiyu Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Scott A Snyder
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, United States
| |
Collapse
|
7
|
Jame-Chenarboo Z, Gray TE, Macauley MS. Advances in understanding and exploiting Siglec-glycan interactions. Curr Opin Chem Biol 2024; 80:102454. [PMID: 38631213 DOI: 10.1016/j.cbpa.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Sialic-acid-binding immunoglobulin-type lectins (Siglecs) are a family of cell-surface immunomodulatory receptors that recognize sialic-acid-containing glycans. The majority of Siglecs have an inhibitory motif in their intercellular domain and can regulate the cellular activation of immune cells. Importantly, the immunomodulatory role of Siglecs is regulated by engagement with distinct sialoglycan ligands. However, there are still many unanswered questions about the precise ligand(s) recognized by individual Siglec family members. New tools and approaches to study Siglec-ligand interactions are rapidly filling this knowledge gap. This review provides an overview of recent advances in discovering Siglec ligands as well as the development of approaches to modulate the function of Siglecs. In both aspects, chemical biology approaches are emphasized with a discussion on how these are complementing biochemical and genetic strategies.
Collapse
Affiliation(s)
| | - Taylor E Gray
- Department of Chemistry, University of Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Canada.
| |
Collapse
|
8
|
Hampton JT, Liu WR. Diversification of Phage-Displayed Peptide Libraries with Noncanonical Amino Acid Mutagenesis and Chemical Modification. Chem Rev 2024; 124:6051-6077. [PMID: 38686960 PMCID: PMC11082904 DOI: 10.1021/acs.chemrev.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Sitting on the interface between biologics and small molecules, peptides represent an emerging class of therapeutics. Numerous techniques have been developed in the past 30 years to take advantage of biological methods to generate and screen peptide libraries for the identification of therapeutic compounds, with phage display being one of the most accessible techniques. Although traditional phage display can generate billions of peptides simultaneously, it is limited to expression of canonical amino acids. Recently, several groups have successfully undergone efforts to apply genetic code expansion to introduce noncanonical amino acids (ncAAs) with novel reactivities and chemistries into phage-displayed peptide libraries. In addition to biological methods, several different chemical approaches have also been used to install noncanonical motifs into phage libraries. This review focuses on these recent advances that have taken advantage of both biological and chemical means for diversification of phage libraries with ncAAs.
Collapse
Affiliation(s)
- J. Trae Hampton
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, College of Medicine, Texas A&M University, College
Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
9
|
Chen PH, Guo XS, Zhang HE, Dubey GK, Geng ZZ, Fierke CA, Xu S, Hampton JT, Liu WR. Leveraging a Phage-Encoded Noncanonical Amino Acid: A Novel Pathway to Potent and Selective Epigenetic Reader Protein Inhibitors. ACS CENTRAL SCIENCE 2024; 10:782-792. [PMID: 38680566 PMCID: PMC11046469 DOI: 10.1021/acscentsci.3c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 05/01/2024]
Abstract
Epigenetic reader proteins interpret histone epigenetic marks to regulate gene expression. Given their vital roles and the link between their dysfunction and various diseases, these proteins present compelling targets for therapeutic interventions. Nevertheless, designing selective inhibitors for these proteins poses significant challenges, primarily due to their unique properties such as shallow binding sites and similarities with homologous proteins. To overcome these challenges, we propose an innovative strategy that uses phage display with a genetically encoded noncanonical amino acid (ncAA) containing an epigenetic mark. This ncAA guides binding to the reader protein's active site, allowing the identification of peptide inhibitors with enhanced affinity and selectivity. In this study, we demonstrate this novel approach's effectiveness by identifying potent inhibitors for the ENL YEATS domain that plays a critical role in leukemogenesis. Our strategy involved genetically incorporating Nε-butyryl-l-lysine (BuK), known for its binding to ENL YEATS, into a phage display library for enriching the pool of potent inhibitors. One resultant hit was further optimized by substituting BuK with other pharmacophores to exploit a unique π-π-π stacking interaction with ENL YEATS. This led to the creation of selective ENL YEATS inhibitors with a KD value of 2.0 nM and a selectivity 28 times higher for ENL YEATS than its close homologue AF9 YEATS. One such inhibitor, tENL-S1f, demonstrated robust cellular target engagement and on-target effects to inhibit leukemia cell growth and suppress the expression of ENL target genes. As a pioneering study, this work opens up extensive avenues for the development of potent and selective peptidyl inhibitors for a broad spectrum of epigenetic reader proteins.
Collapse
Affiliation(s)
- Peng-Hsun
Chase Chen
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xuejiao Shirley Guo
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hanyuan Eric Zhang
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gopal K. Dubey
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zhi Zachary Geng
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Carol A. Fierke
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Shiqing Xu
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Texas A&M
University, College
Station, Texas 77843, United States
| | - J. Trae Hampton
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Texas A&M
University, College
Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
10
|
Wißfeld J, Abou Assale T, Cuevas-Rios G, Liao H, Neumann H. Therapeutic potential to target sialylation and SIGLECs in neurodegenerative and psychiatric diseases. Front Neurol 2024; 15:1330874. [PMID: 38529039 PMCID: PMC10961342 DOI: 10.3389/fneur.2024.1330874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Sialic acids, commonly found as the terminal carbohydrate on the glycocalyx of mammalian cells, are pivotal checkpoint inhibitors of the innate immune system, particularly within the central nervous system (CNS). Sialic acid-binding immunoglobulin-like lectins (SIGLECs) expressed on microglia are key players in maintaining microglial homeostasis by recognizing intact sialylation. The finely balanced sialic acid-SIGLEC system ensures the prevention of excessive and detrimental immune responses in the CNS. However, loss of sialylation and SIGLEC receptor dysfunctions contribute to several chronic CNS diseases. Genetic variants of SIGLEC3/CD33, SIGLEC11, and SIGLEC14 have been associated with neurodegenerative diseases such as Alzheimer's disease, while sialyltransferase ST8SIA2 and SIGLEC4/MAG have been linked to psychiatric diseases such as schizophrenia, bipolar disorders, and autism spectrum disorders. Consequently, immune-modulatory functions of polysialic acids and SIGLEC binding antibodies have been exploited experimentally in animal models of Alzheimer's disease and inflammation-induced CNS tissue damage, including retinal damage. While the potential of these therapeutic approaches is evident, only a few therapies to target either sialylation or SIGLEC receptors have been tested in patient clinical trials. Here, we provide an overview of the critical role played by the sialic acid-SIGLEC axis in shaping microglial activation and function within the context of neurodegeneration and synaptopathies and discuss the current landscape of therapies that target sialylation or SIGLECs.
Collapse
Affiliation(s)
- Jannis Wißfeld
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Tawfik Abou Assale
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital Bonn, University of Bonn, Bonn, Germany
| | - German Cuevas-Rios
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Huan Liao
- Florey Institute of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Szymanski CM. Bacteriophages and their unique components provide limitless resources for exploitation. Front Microbiol 2024; 15:1342544. [PMID: 38380101 PMCID: PMC10877033 DOI: 10.3389/fmicb.2024.1342544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Affiliation(s)
- Christine M. Szymanski
- Department of Microbiology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
12
|
Lin CL, Carpenter EJ, Li T, Ahmed T, Derda R. Liquid Glycan Array. Methods Mol Biol 2024; 2793:143-159. [PMID: 38526729 DOI: 10.1007/978-1-0716-3798-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The M13 phage platform is a stable and monodisperse nanoscale carrier, which can be modified with different molecules by chemical conjugation strategies. Here, we describe M13 phage acylated on pVIII protein with a dibenzocyclooctyne reacting with azido glycan to yield 30-1500 copy numbers of glycan per phage and monitored by MALDI-TOF spectrometry to generate multivalent glycoconjugates that contain desired densities of glycans. We prepared the liquid glycan arrays (LiGA) such that both the structure and density of glycans were encoded in the DNA of the bacteriophage. The LiGA can be used to validate the binding properties of glycans to purified lectins and explore the effect of glycan density on such binding. From a mixture of multivalent glycan probes, LiGAs can also identify the glycoconjugates with optimal avidity necessary for binding to lectins on living cells in vitro and live animals in vivo.
Collapse
Affiliation(s)
- Chih-Lan Lin
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Eric J Carpenter
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Taoran Li
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Tareq Ahmed
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
13
|
Lin CL, Sojitra M, Carpenter EJ, Hayhoe ES, Sarkar S, Volker EA, Wang C, Bui DT, Yang L, Klassen JS, Wu P, Macauley MS, Lowary TL, Derda R. Chemoenzymatic synthesis of genetically-encoded multivalent liquid N-glycan arrays. Nat Commun 2023; 14:5237. [PMID: 37640713 PMCID: PMC10462762 DOI: 10.1038/s41467-023-40900-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Cellular glycosylation is characterized by chemical complexity and heterogeneity, which is challenging to reproduce synthetically. Here we show chemoenzymatic synthesis on phage to produce a genetically-encoded liquid glycan array (LiGA) of complex type N-glycans. Implementing the approach involved by ligating an azide-containing sialylglycosyl-asparagine to phage functionalized with 50-1000 copies of dibenzocyclooctyne. The resulting intermediate can be trimmed by glycosidases and extended by glycosyltransferases yielding a phage library with different N-glycans. Post-reaction analysis by MALDI-TOF MS allows rigorous characterization of N-glycan structure and mean density, which are both encoded in the phage DNA. Use of this LiGA with fifteen glycan-binding proteins, including CD22 or DC-SIGN on cells, reveals optimal structure/density combinations for recognition. Injection of the LiGA into mice identifies glycoconjugates with structures and avidity necessary for enrichment in specific organs. This work provides a quantitative evaluation of the interaction of complex N-glycans with GBPs in vitro and in vivo.
Collapse
Affiliation(s)
- Chih-Lan Lin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Mirat Sojitra
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Eric J Carpenter
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ellen S Hayhoe
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Elizabeth A Volker
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Chao Wang
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Duong T Bui
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Loretta Yang
- Lectenz Bio, 111 Riverbend Rd, Athens, GA, 30602, USA
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|