1
|
Wang Y, Zhang Q, Shen C, Wang H, Li Y, Wu H, Sun X, Shi L. Decreased adenosine 3',5'-cyclic monophosphate is a driving factor of P300/SIRT1-mediated histone hyperacetylation in obesity-related hypertension. J Hypertens 2025; 43:841-851. [PMID: 40079831 DOI: 10.1097/hjh.0000000000003981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/27/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Obesity is the most significant risk factor associated with primary hypertension. A high-fat diet may lead to obesity-related hypertension, with evidence indicating that individuals with this condition exhibit a diminished adenosine 3',5'-cyclic monophosphate (cAMP) signaling pathway, although the exact mechanisms remain unclear. This study aimed to investigate the regulatory role of the cAMP signaling pathway in obesity-related hypertension. METHODS A rat model of obesity-related hypertension was established by feeding with a high-fat diet for 16 weeks. Changes in the cAMP signaling pathway and SIRT1 in rat renal tissues were explored using immunohistochemistry, immunofluorescence, and RT-qPCR. The effects and mechanisms of the cAMP signaling pathway on histone 3 lysine 27 acetylation and ACE1 were investigated by intervening in human renal tubular epithelial cells with P300, cAMP activators, SIRT1, cAMP inhibitors, and oleic acid. RESULTS The cAMP signaling pathway was found to be suppressed in rat renal tissue after feeding a high-fat diet, and a simultaneous decrease in histone deacetylase was observed. Furthermore, we identified that the inhibition of cAMP leads to the reduction of SIRT1 and the induction of P300. In addition, vitro experiments suggested that oleic acid suppressed the cAMP signaling pathway, which subsequently upregulated histone 3 lysine 27 acetylation and angiotensin converting enzyme 1 (ACE1) by increasing the expression of P300 and decreasing the expression of SIRT1. CONCLUSION The reduced cAMP signaling pathway in obesity could promote histone 3 lysine 27 acetylation modification and upregulate ACE1 expression by regulating P300 and SIRT1 levels, which may have important implications in the management of obesity-related hypertension.
Collapse
Affiliation(s)
- Yuting Wang
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Chen Shen
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics
| | - Hui Wang
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics
| | - Yaqi Li
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics
| | - Haojie Wu
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics
| | - Xiaodong Sun
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics
| | - Lin Shi
- Department of Cardiology, Children's Hospital, Capital Institute of Pediatrics
| |
Collapse
|
2
|
Conca F, Bayburtlu DK, Vismara M, Surdo NC, Tavoni A, Nogara L, Sarra A, Ciciliot S, Di Benedetto G, Iannucci LF, Lefkimmiatis K. Phosphatases Control the Duration and Range of cAMP/PKA Microdomains. FUNCTION 2025; 6:zqaf007. [PMID: 39986267 PMCID: PMC11931618 DOI: 10.1093/function/zqaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025] Open
Abstract
The spatiotemporal interplay between the second messenger cyclic AMP (cAMP) and its main effector, protein kinase A (PKA), is crucial for the pleiotropic nature of this cascade. To maintain a high degree of specificity, the cAMP/PKA axis is organised into functional units called microdomains, precisely distributed within the cell. While the subcellular allocation of PKA is guaranteed by a family of tethers called A-Kinase-anchoring Proteins (AKAPs), the mechanisms underlying the efficient confinement of a microdomain's functional effects are not fully understood. Here, we used FRET-based sensors to detect cAMP levels and PKA-dependent phosphorylation within specific subcellular compartments. We find that cellular cAMP levels may depend on different mechanisms and are responsible for the activation of local PKA enzymes. On the other hand, the dephosphorylating actions of phosphatases dictate the duration of the microdomain's effects. To test the range of action of PKA microdomains, we used rigid aminoacidic nanorulers to distance our FRET sensors from their original location for 10 or 30 nm. Interestingly, we established that cAMP levels do not affect the spatial range of the microdomain while on the contrary, phosphatase activity provides a functional boundary for phosphorylated PKA targets. Finally, using the same strategy to distance phosphatases from the mitochondria, we found that enzymes close to the outer mitochondrial membrane produced a fragmented phenotype that was not observed when phosphatases were moved to 30 nm from the organelle's surface. Our findings contribute to the design of a picture where 2 microdomain-forming events have distinct roles. Cyclic AMP elevations trigger the initial activation of subcellular PKA moieties, while the temporal and spatial extent of the PKA's actions are regulated by phosphatases.
Collapse
Affiliation(s)
- Filippo Conca
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | | | - Mauro Vismara
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Nicoletta C Surdo
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Neuroscience institute, Italian National Research Council, 35129 Padova, Italy
| | - Alessandra Tavoni
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Leonardo Nogara
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35129 Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35129 Padova, Italy
| | - Adamo Sarra
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Stefano Ciciliot
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Giulietta Di Benedetto
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Neuroscience institute, Italian National Research Council, 35129 Padova, Italy
| | - Liliana F Iannucci
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Konstantinos Lefkimmiatis
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Neuroscience institute, Italian National Research Council, 35129 Padova, Italy
| |
Collapse
|
3
|
Massah S, Pinette N, Foo J, Datta S, Guo M, Bell R, Haegert A, Tekoglu TE, Terrado M, Volik S, Bihan SL, Bui JM, Lack NA, Gleave ME, Rhie SK, Collins CC, Gsponer J, Lallous N. AR-V7 condensates drive androgen-independent transcription in castration resistant prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631986. [PMID: 39868336 PMCID: PMC11760419 DOI: 10.1101/2025.01.08.631986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Biomolecular condensates organize cellular environments and regulate key processes such as transcription. We previously showed that full-length androgen receptor (AR-FL), a major oncogenic driver in prostate cancer (PCa), forms nuclear condensates upon androgen stimulation in androgen-sensitive PCa cells. Disrupting these condensates impairs AR-FL transcriptional activity, highlighting their functional importance. However, resistance to androgen deprivation therapy often leads to castration-resistant prostate cancer (CRPC), driven by constitutively active splice variants like AR variant 7 (AR-V7). The mechanisms underlying AR-V7's role in CRPC remain unclear. In this study, we characterized the condensate-forming ability of AR-V7 and compared its phase behavior with AR-FL across a spectrum of PCa models and in vitro conditions. Our findings indicate that cellular context can influence AR-V7's condensate-forming capacity. Unlike AR-FL, AR-V7 spontaneously forms condensates in the absence of androgen stimulation and functions independently of AR-FL in CRPC models. However, AR-V7 requires a higher concentration to form condensates, both in cellular contexts and in vitro . We further reveal that AR-V7 drives transcription via both condensate-dependent and condensate-independent mechanisms. Using an AR-V7 mutant incapable of forming condensates, while retaining nuclear localization and DNA-binding ability, we reveal that the condensate-dependent regime activates part of the oncogenic KRAS pathway in CRPC models. Genes under this condensate-dependent regime were found to harbor significantly higher numbers of AR-binding sites and exhibited boosted expression in response to AR-V7. These findings uncover a previously unrecognized role of AR-V7 condensate formation in driving oncogenic transcriptional programs and shed light on its unique contribution to CRPC progression. Highlights AR-V7 condensates form independently of both androgens and AR-FL in CRPC models.AR-V7 mediates condensate-dependent and independent transcriptionCondensate-dependent transcription enables boosted expression of oncogenic KRAS genesCondensate-dependent genes exhibit an exponential increase in expression, with a higher number of AR binding sites potentially playing a key role in their reliance on condensate formation.
Collapse
|
4
|
Komives E, Sanchez-Rodriguez R, Taghavi H, Fuxreiter M. Fuzzy protein-DNA interactions and beyond: A common theme in transcription? Curr Opin Struct Biol 2024; 89:102941. [PMID: 39423710 DOI: 10.1016/j.sbi.2024.102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/17/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Gene expression regulation requires both diversity and specificity. How can these two contradictory conditions be reconciled? Dynamic DNA recognition mechanisms lead to heterogeneous bound conformations, which can be shifted by the cellular cues. Here we summarise recent experimental evidence on how fuzzy interactions contribute to chromatin remodelling, regulation of DNA replication and repair and transcription factor binding. We describe how the binding mode continuum between DNA and regulatory factors lead to variable, multisite contact patterns; polyelectrolyte competitions; on-the-fly shape readouts; autoinhibition controlled by posttranslational modifications or dynamic oligomerisation mechanisms. Increasing experimental evidence supports the rugged energy landscape of the bound protein-DNA assembly, modulation of which leads to distinct functional outcomes. Recent results suggest the evolutionary conservation of these combinatorial mechanisms with moderate sequence constraints in the malleable transcriptional machinery.
Collapse
Affiliation(s)
- Elisabeth Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | | | - Hamed Taghavi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Department of Physics and Astronomy, University of Padova, Padova, Italy.
| |
Collapse
|
5
|
Eubanks E, VanderSleen K, Mody J, Patel N, Sacks B, Farahani MD, Wang J, Elliott J, Jaber N, Akçimen F, Bandres-Ciga S, Helweh F, Liu J, Archakam S, Kimelman R, Sharma B, Socha P, Guntur A, Bartels T, Dettmer U, Mouradian MM, Bahrami AH, Dai W, Baum J, Shi Z, Hardy J, Kara E. Increased burden of rare risk variants across gene expression networks predisposes to sporadic Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610195. [PMID: 39257816 PMCID: PMC11384021 DOI: 10.1101/2024.08.30.610195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Alpha-synuclein (αSyn) is an intrinsically disordered protein that accumulates in the brains of patients with Parkinson's disease and forms intraneuronal inclusions called Lewy Bodies. While the mechanism underlying the dysregulation of αSyn in Parkinson's disease is unclear, it is thought that prionoid cell-to-cell propagation of αSyn has an important role. Through a high throughput screen, we recently identified 38 genes whose knock down modulates αSyn propagation. Follow up experiments were undertaken for two of those genes, TAX1BP1 and ADAMTS19, to study the mechanism with which they regulate αSyn homeostasis. We used a recently developed M17D neuroblastoma cell line expressing triple mutant (E35K+E46K+E61K) "3K" αSyn under doxycycline induction. 3K αSyn spontaneously forms inclusions that show ultrastructural similarities to Lewy Bodies. Experiments using that cell line showed that TAX1BP1 and ADAMTS19 regulate how αSyn interacts with lipids and phase separates into inclusions, respectively, adding to the growing body of evidence implicating those processes in Parkinson's disease. Through RNA sequencing, we identified several genes that are differentially expressed after knock-down of TAX1BP1 or ADAMTS19. Burden analysis revealed that those differentially expressed genes (DEGs) carry an increased frequency of rare risk variants in Parkinson's disease patients versus healthy controls, an effect that was independently replicated across two separate cohorts (GP2 and AMP-PD). Weighted gene co-expression network analysis (WGCNA) showed that the DEGs cluster within modules in regions of the brain that develop high degrees of αSyn pathology (basal ganglia, cortex). We propose a novel model for the genetic architecture of sporadic Parkinson's disease: increased burden of risk variants across genetic networks dysregulates pathways underlying αSyn homeostasis, thereby leading to pathology and neurodegeneration.
Collapse
Affiliation(s)
- Elena Eubanks
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Katelyn VanderSleen
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Jiya Mody
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Neha Patel
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Benjamin Sacks
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | | | - Jinying Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jordan Elliott
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Nora Jaber
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Fulya Akçimen
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Fadel Helweh
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
| | - Jun Liu
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Sanjana Archakam
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Robert Kimelman
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Bineet Sharma
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Socha
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Ananya Guntur
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London W1T 7NF, United Kingdom
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - M. Maral Mouradian
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Amir Houshang Bahrami
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
- Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Wei Dai
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - John Hardy
- UK Dementia Research Institute, University College London, London W1T 7NF, United Kingdom
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Eleanna Kara
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
Yang W, Mei FC, Lin W, White MA, Li L, Li Y, Pan S, Cheng X. Protein SUMOylation promotes cAMP-independent EPAC1 activation. Cell Mol Life Sci 2024; 81:283. [PMID: 38963422 PMCID: PMC11335207 DOI: 10.1007/s00018-024-05315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Protein SUMOylation is a prevalent stress-response posttranslational modification crucial for maintaining cellular homeostasis. Herein, we report that protein SUMOylation modulates cellular signaling mediated by cAMP, an ancient and universal stress-response second messenger. We identify K561 as a primary SUMOylation site in exchange protein directly activated by cAMP (EPAC1) via site-specific mapping of SUMOylation using mass spectrometry. Sequence and site-directed mutagenesis analyses reveal that a functional SUMO-interacting motif in EPAC1 is required for the binding of SUMO-conjugating enzyme UBC9, formation of EPAC1 nuclear condensate, and EPAC1 cellular SUMOylation. Heat shock-induced SUMO modification of EPAC1 promotes Rap1/2 activation in a cAMP-independent manner. Structural modeling and molecular dynamics simulation studies demonstrate that SUMO substituent on K561 of EPAC1 promotes Rap1 interaction by increasing the buried surface area between the SUMOylated receptor and its effector. Our studies identify a functional SUMOylation site in EPAC1 and unveil a novel mechanism in which SUMOylation of EPAC1 leads to its autonomous activation. The findings of SUMOylation-mediated activation of EPAC1 not only provide new insights into our understanding of cellular regulation of EPAC1 but also will open up a new field of experimentation concerning the cross-talk between cAMP/EPAC1 signaling and protein SUMOylation, two major cellular stress response pathways, during cellular homeostasis.
Collapse
Affiliation(s)
- Wenli Yang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Wei Lin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Mark A White
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Li Li
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Yue Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Cell Therapy Manufacturing Center, 2130 W Holcombe Blvd, Houston, TX, 77030, USA
| | - Sheng Pan
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA.
- Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX, USA.
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
7
|
Yang W, Mei FC, Lin W, White MA, Li L, Li Y, Pan S, Cheng X. Protein SUMOylation promotes cAMP-independent EPAC1 activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574738. [PMID: 38260470 PMCID: PMC10802480 DOI: 10.1101/2024.01.08.574738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Exchange protein directly activated by cAMP (EPAC1) mediates the intracellular functions of a critical stress-response second messenger, cAMP. Herein, we report that EPAC1 is a cellular substrate of protein SUMOylation, a prevalent stress-response posttranslational modification. Site-specific mapping of SUMOylation by mass spectrometer leads to identifying K561 as a primary SUMOylation site in EPAC1. Sequence and site-directed mutagenesis analyses reveal a functional SUMO-interacting motif required for cellular SUMOylation of EPAC1. SUMO modification of EPAC1 mediates its heat shock-induced Rap1/2 activation in a cAMP-independent manner. Structural modeling and molecular dynamics simulation studies demonstrate that SUMO substituent on K561 of EPAC1 promotes Rap1 interaction by increasing the buried surface area between the SUMOylated receptor and its effector. Our studies identify a functional SUMOylation site in EPAC1 and unveil a novel mechanism in which SUMOylation of EPAC1 leads to its autonomous activation. The findings of SUMOylation-mediated activation of EPAC1 not only provide new insights into our understanding of cellular regulation of EPAC1 but also will open up a new field of experimentation concerning the cross-talk between cAMP/EPAC1 signaling and protein SUMOylation, two major cellular stress response pathways, during cellular homeostasis.
Collapse
|
8
|
Geisler MS, Kemp JP, Duronio RJ. Histone locus bodies: a paradigm for how nuclear biomolecular condensates control cell cycle regulated gene expression. Nucleus 2023; 14:2293604. [PMID: 38095604 PMCID: PMC10730174 DOI: 10.1080/19491034.2023.2293604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Histone locus bodies (HLBs) are biomolecular condensates that assemble at replication-dependent (RD) histone genes in animal cells. These genes produce unique mRNAs that are not polyadenylated and instead end in a conserved 3' stem loop critical for coordinated production of histone proteins during S phase of the cell cycle. Several evolutionarily conserved factors necessary for synthesis of RD histone mRNAs concentrate only in the HLB. Moreover, because HLBs are present throughout the cell cycle even though RD histone genes are only expressed during S phase, changes in HLB composition during cell cycle progression drive much of the cell cycle regulation of RD histone gene expression. Thus, HLBs provide a powerful opportunity to determine the cause-and-effect relationships between nuclear body formation and cell cycle regulated gene expression. In this review, we focus on progress during the last five years that has advanced our understanding of HLB biology.
Collapse
Affiliation(s)
- Mark S. Geisler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - James P. Kemp
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J. Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|