1
|
Sihn D, Kim J, Kim MJ, Kim SP. The intrinsic propagation directionality of fMRI infra-slow activity during visual tasks. Neuroscience 2025; 564:52-59. [PMID: 39561955 DOI: 10.1016/j.neuroscience.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
The temporal order of propagation in the blood-oxygen-level-dependent (BOLD) infra-slow activity (ISA, 0.01-0.1 Hz) of functional magnetic resonance imaging (fMRI) can indicate the functional organization of the brain. While prior studies have revealed the temporal order of propagation of BOLD ISA during rest, how it emerges during cognitive tasks remains unclear. Furthermore, its differences between the gray and white matters at the whole-brain scale are unexplored. In this study, we probed the propagation of BOLD ISA using a publicly available fMRI dataset from participants performing visual detection and discrimination tasks (N = 46, 29 females). We examined the temporal order of propagation based on ISA oscillatory phase differences among brain parcels. During visual task performance, ISA in both the gray and white matters propagated in a direction from the visual cortex to the association cortex, including the default mode network (DMN). This result differs from the previously reported propagation direction during rest that traveled from the visual and somatosensory cortices to the DMN, suggesting that the functional organization may change when performing cognitive tasks. In addition, the propagation in the white matter represented more complex patterns than that in the gray matter, exhibiting that the cingulum preceded DMN. Our results may help the understanding of how task performance alters the sensory-DMN propagation according of ISA.
Collapse
Affiliation(s)
- Duho Sihn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Junsuk Kim
- School of Information Convergence, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Myung Joon Kim
- Department of Big Data Application, Hannam University, Daejeon 34430, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
2
|
Davis ZW, Busch A, Steward C, Muller L, Reynolds J. Horizontal cortical connections shape intrinsic traveling waves into feature-selective motifs that regulate perceptual sensitivity. Cell Rep 2024; 43:114707. [PMID: 39243374 PMCID: PMC11485754 DOI: 10.1016/j.celrep.2024.114707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024] Open
Abstract
Intrinsic cortical activity forms traveling waves that modulate sensory-evoked responses and perceptual sensitivity. These intrinsic traveling waves (iTWs) may arise from the coordination of synaptic activity through long-range feature-dependent horizontal connectivity within cortical areas. In a spiking network model that incorporates feature-selective patchy connections, we observe iTW motifs that result from shifts in excitatory/inhibitory balance as action potentials traverse these patchy connections. To test whether feature-selective motifs occur in vivo, we examined data recorded in the middle temporal visual area (Area MT) of marmosets performing a visual detection task. We find that some iTWs form motifs that are feature selective, exhibiting direction-selective modulations in spiking activity. Further, motifs modulate the gain of target-evoked responses and perceptual sensitivity if the target matches the preference of the motif. These results suggest that iTWs are shaped by the patchy horizontal fiber projections in the cortex and can regulate neural and perceptual sensitivity in a feature-selective manner.
Collapse
Affiliation(s)
- Zachary W Davis
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; John Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| | - Alexandra Busch
- Department of Applied Mathematics, Western University, London, ON N6A 3K7, Canada; Brain and Mind Institute, Western University, London, ON N6A 3K7, Canada
| | - Christopher Steward
- Department of Applied Mathematics, Western University, London, ON N6A 3K7, Canada; Brain and Mind Institute, Western University, London, ON N6A 3K7, Canada
| | - Lyle Muller
- Department of Applied Mathematics, Western University, London, ON N6A 3K7, Canada; Brain and Mind Institute, Western University, London, ON N6A 3K7, Canada
| | - John Reynolds
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Sihn D, Kim SP. A neural basis for learning sequential memory in brain loop structures. Front Comput Neurosci 2024; 18:1421458. [PMID: 39161702 PMCID: PMC11330804 DOI: 10.3389/fncom.2024.1421458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction Behaviors often involve a sequence of events, and learning and reproducing it is essential for sequential memory. Brain loop structures refer to loop-shaped inter-regional connection structures in the brain such as cortico-basal ganglia-thalamic and cortico-cerebellar loops. They are thought to play a crucial role in supporting sequential memory, but it is unclear what properties of the loop structure are important and why. Methods In this study, we investigated conditions necessary for the learning of sequential memory in brain loop structures via computational modeling. We assumed that sequential memory emerges due to delayed information transmission in loop structures and presented a basic neural activity model and validated our theoretical considerations with spiking neural network simulations. Results Based on this model, we described the factors for the learning of sequential memory: first, the information transmission delay should decrease as the size of the loop structure increases; and second, the likelihood of the learning of sequential memory increases as the size of the loop structure increases and soon saturates. Combining these factors, we showed that moderate-sized brain loop structures are advantageous for the learning of sequential memory due to the physiological restrictions of information transmission delay. Discussion Our results will help us better understand the relationship between sequential memory and brain loop structures.
Collapse
Affiliation(s)
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
4
|
Vaz A, Wathen C, Miranda S, Thomas R, Darlington T, Jabarkheel R, Tomlinson S, Arena J, Bond K, Salwi S, Ajmera S, Bachschmid-Romano L, Gugger J, Sandsmark D, Diaz-Arrastia R, Schuster J, Ramayya AG, Cajigas I, Pesaran B, Chen HI, Petrov D. Return of intracranial beta oscillations and traveling waves with recovery from traumatic brain injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604293. [PMID: 39091808 PMCID: PMC11291083 DOI: 10.1101/2024.07.19.604293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Traumatic brain injury (TBI) remains a pervasive clinical problem associated with significant morbidity and mortality. However, TBI remains clinically and biophysically ill-defined, and prognosis remains difficult even with the standardization of clinical guidelines and advent of multimodality monitoring. Here we leverage a unique data set from TBI patients implanted with either intracranial strip electrodes during craniotomy or quad-lumen intracranial bolts with depth electrodes as part of routine clinical practice. By extracting spectral profiles of this data, we found that the presence of narrow-band oscillatory activity in the beta band (12-30 Hz) closely corresponds with the neurological exam as quantified with the standard Glasgow Coma Scale (GCS). Further, beta oscillations were distributed over the cortical surface as traveling waves, and the evolution of these waves corresponded to recovery from coma, consistent with the putative role of waves in perception and cognitive activity. We consequently propose that beta oscillations and traveling waves are potential biomarkers of recovery from TBI. In a broader sense, our findings suggest that emergence from coma results from recovery of thalamo-cortical interactions that coordinate cortical beta rhythms.
Collapse
Affiliation(s)
- Alex Vaz
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Connor Wathen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen Miranda
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rachel Thomas
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Timothy Darlington
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rashad Jabarkheel
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel Tomlinson
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Arena
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kamila Bond
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sanjana Salwi
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sonia Ajmera
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - James Gugger
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Danielle Sandsmark
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James Schuster
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ashwin G Ramayya
- Department of Neurosurgery, Stanford University, Palo Alto, CA, 94305, USA
| | - Iahn Cajigas
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bijan Pesaran
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - H Isaac Chen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Dmitriy Petrov
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
5
|
Lundqvist M, Miller EK, Nordmark J, Liljefors J, Herman P. Beta: bursts of cognition. Trends Cogn Sci 2024; 28:662-676. [PMID: 38658218 DOI: 10.1016/j.tics.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Beta oscillations are linked to the control of goal-directed processing of sensory information and the timing of motor output. Recent evidence demonstrates they are not sustained but organized into intermittent high-power bursts mediating timely functional inhibition. This implies there is a considerable moment-to-moment variation in the neural dynamics supporting cognition. Beta bursts thus offer new opportunities for studying how sensory inputs are selectively processed, reshaped by inhibitory cognitive operations and ultimately result in motor actions. Recent method advances reveal diversity in beta bursts that provide deeper insights into their function and the underlying neural circuit activity motifs. We propose that brain-wide, spatiotemporal patterns of beta bursting reflect various cognitive operations and that their dynamics reveal nonlinear aspects of cortical processing.
Collapse
Affiliation(s)
- Mikael Lundqvist
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden; The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Earl K Miller
- The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonatan Nordmark
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Johan Liljefors
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Pawel Herman
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden; Digital Futures, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
6
|
Sihn D, Kim SP. Disruption of alpha oscillation propagation in patients with schizophrenia. Clin Neurophysiol 2024; 162:262-270. [PMID: 38480063 DOI: 10.1016/j.clinph.2024.02.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 02/17/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE Propagation of electroencephalogram (EEG) oscillations, often referred to as traveling waves, reflects the role of brain oscillations in neural information transmission. This propagation can be distorted by brain disorders such as schizophrenia that features disconnection of neural information transmission (i.e., disconnection syndrome). However, this possibility of the disruption of EEG oscillation propagation in patients with schizophrenia remains largely unexplored. METHODS Using a publicly shared dataset (N = 19 and 24; patients with schizophrenia and healthy controls, respectively), we investigated EEG oscillation propagation by analyzing the local phase gradients (LPG) of alpha (8-12 Hz) oscillations in both healthy participants and patients with schizophrenia. RESULTS Our results showed significant directionality in the propagation of alpha oscillations in healthy participants. Specifically, alpha oscillations propagated in an anterior-to-posterior direction along mid-line and a posterior-to-anterior direction laterally. In patients with schizophrenia, some of alpha oscillation propagation were notably disrupted, particularly in the central midline area where alpha oscillations propagated from anterior to posterior areas. CONCLUSION Our finding lends support to the hypothesis of a disconnection syndrome in schizophrenia, underscoring a disruption in the anterior-to-posterior propagation of alpha oscillations. SIGNIFICANCE This study identified disruption of alpha oscillation propagation observed in scalp EEG as a biomarker for schizophrenia.
Collapse
Affiliation(s)
- Duho Sihn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
7
|
Mohan UR, Zhang H, Ermentrout B, Jacobs J. The direction of theta and alpha travelling waves modulates human memory processing. Nat Hum Behav 2024; 8:1124-1135. [PMID: 38459263 DOI: 10.1038/s41562-024-01838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/24/2024] [Indexed: 03/10/2024]
Abstract
To support a range of behaviours, the brain must flexibly coordinate neural activity across widespread brain regions. One potential mechanism for this coordination is a travelling wave, in which a neural oscillation propagates across the brain while organizing the order and timing of activity across regions. Although travelling waves are present across the brain in various species, their potential functional relevance has remained unknown. Here, using rare direct human brain recordings, we demonstrate a distinct functional role for travelling waves of theta- and alpha-band (2-13 Hz) oscillations in the cortex. Travelling waves propagate in different directions during separate cognitive processes. In episodic memory, travelling waves tended to propagate in a posterior-to-anterior direction during successful memory encoding and in an anterior-to-posterior direction during recall. Because travelling waves of oscillations correspond to local neuronal spiking, these patterns indicate that rhythmic pulses of activity move across the brain in different directions for separate behaviours. More broadly, our results suggest a fundamental role for travelling waves and oscillations in dynamically coordinating neural connectivity, by flexibly organizing the timing and directionality of network interactions across the cortex to support cognition and behaviour.
Collapse
Affiliation(s)
- Uma R Mohan
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | | | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
- Department of Neurological Surgery, Columbia University, New York City, NY, USA.
| |
Collapse
|
8
|
Davis ZW, Busch A, Stewerd C, Muller L, Reynolds J. Horizontal cortical connections shape intrinsic traveling waves into feature-selective motifs that regulate perceptual sensitivity. RESEARCH SQUARE 2024:rs.3.rs-3830199. [PMID: 38260448 PMCID: PMC10802692 DOI: 10.21203/rs.3.rs-3830199/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Intrinsic, ongoing fluctuations of cortical activity form traveling waves that modulate the gain of sensory-evoked responses and perceptual sensitivity. Several lines of evidence suggest that intrinsic traveling waves (iTWs) may arise, in part, from the coordination of synaptic activity through the recurrent horizontal connectivity within cortical areas, which include long range patchy connections that link neurons with shared feature preferences. In a spiking network model with anatomical topology that incorporates feature-selective patchy connections, which we call the Balanced Patchy Network (BPN), we observe repeated iTWs, which we refer to as motifs. In the model, motifs stem from fluctuations in the excitability of like-tuned neurons that result from shifts in E/I balance as action potentials traverse these patchy connections. To test if feature-selective motifs occur in vivo, we examined data previously recorded using multielectrode arrays in Area MT of marmosets trained to perform a threshold visual detection task. Using a newly developed method for comparing the similarity of wave patterns we found that some iTWs can be grouped into motifs. As predicted by the BPN, many of these motifs are feature selective, exhibiting direction-selective modulations in ongoing spiking activity. Further, motifs modulate the gain of the response evoked by a target and perceptual sensitivity to the target if the target matches the preference of the motif. These results provide evidence that iTWs are shaped by the patterns of horizontal fiber projections in the cortex and that patchy connections enable iTWs to regulate neural and perceptual sensitivity in a feature selective manner.
Collapse
Affiliation(s)
- Zachary W Davis
- The Salk Institute for Biological Studies, La Jolla, CA, USA. 92037
- Department of Ophthalmology and Visual Science, University of Utah, SLC, UT, USA 84112
| | - Alexandria Busch
- Department of Applied Mathematics, Western University, London, ON, Canada. N6A 3K7
- Brain and Mind Institute, Western University, London, ON, Canada. N6A 3K7
| | - Christopher Stewerd
- Department of Applied Mathematics, Western University, London, ON, Canada. N6A 3K7
- Brain and Mind Institute, Western University, London, ON, Canada. N6A 3K7
| | - Lyle Muller
- Department of Applied Mathematics, Western University, London, ON, Canada. N6A 3K7
- Brain and Mind Institute, Western University, London, ON, Canada. N6A 3K7
| | - John Reynolds
- The Salk Institute for Biological Studies, La Jolla, CA, USA. 92037
| |
Collapse
|