1
|
Gan N, Lin Y, Wu B, Qiu Y, Sun H, Su J, Yu J, Lin Q, Matsuyama H. Supramolecular-coordinated nanofiltration membranes with quaternary-ammonium Cyclen for efficient lithium extraction from high magnesium/lithium ratio brine. WATER RESEARCH 2024; 268:122703. [PMID: 39492143 DOI: 10.1016/j.watres.2024.122703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Ion-selective membranes (ISM) with sub-nanosized pore channels hold significant potential for applications in saline wastewater treatment and resource recovery. Herein, novel synergistic ion channels featuring bi-periodic structures were constructed through the coordination of functional Cyclen (quaternary_1,4,7,10-tetraazacyclododecane, Q_Cyclen) and Cu2+-m-Phenylenediamine (Cu2+-MPD) to develop supramolecular membranes for lithium extraction. The exterior quaternary ammonium-rich sites exhibit a significant Donnan exclusion effect, resulting in tremendous mono/divalent (Li+/Mg2+) ion selectivity; while the interior regular-confined channels of Cyclen yield a fast vehicular pathway, facilitating water molecules and Li+ ion-selective transport. The optimized membrane exhibited an increased water permeance of 19.2 L·m-2·h-1·bar-1 and simultaneously promoted Li+/Mg2+ selectivity (achieving a selectivity of 18.5 under a Mg2+/Li+ mass ratio of 30), surpassing the trade-off limit of conventional nanofiltration membranes. Due to the acquired excellent Li+/Mg2+ selectivity, lithium extraction from simulated salt-lake brines was successfully achieved through a two-stage nanofiltration process, reducing the Mg2+/Li+ mass ratio from 40 to 1.1. This work validates the applicability of macrocyclic with intrinsic sub-nanosized channels and desired multifunctionality for developing high-performance ISM for efficient lithium separation and beyond.
Collapse
Affiliation(s)
- Ning Gan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuqing Lin
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Baolong Wu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulong Qiu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haopan Sun
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Su
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianguo Yu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Lin
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
2
|
Han Y, An L, Yang Y, Ma Y, Sun H, Yao J, Zhang T, Wang W. Eliminating the effect of pH: Dual-matrix modulation adsorbent enables efficient lithium extraction from concentrated seawater. WATER RESEARCH 2024; 268:122571. [PMID: 39383802 DOI: 10.1016/j.watres.2024.122571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Lithium ion sieve adsorbents frequently extract liquid lithium resources due to their adsorption effect and cost advantages. However, the adsorption effect is significantly influenced by the ambient pH. The pH effects on the adsorption process can be categorized into two main areas: the competition adsorption of impurity ions and the difference in surface zeta potential. A dual-matrix modulation adsorbent was prepared, comprising a carrier matrix modified with zwitterionic quaternary ammonium bases and an adsorption matrix modified with carboxylation. The zwitterionic quaternary ammonium base groups were employed to mitigate the competitive adsorption of impurity ions by acid-base neutralization. Furthermore, the negative charge of carboxyl groups was employed to diminish the discrepancy in surface zeta potential. The adsorption effect of the ion sieve adsorbent under natural conditions appeared to be significantly enhanced by the dual-matrix modulation, with the saturated adsorption capacity (28 mg/g) and adsorption selectivity (α(Li+/Mg2+)=24.23) being 6.3 and 7.8 times higher than that of the manganese-based adsorbent (HMO) under the same conditions, respectively. Moreover, the adsorption effect was found to be consistent with HMO under alkaline conditions. The results demonstrate that by optimizing the adsorption conditions of the adsorbent, the detrimental impact of pH on the adsorption process of lithium ion sieves can be eliminated.
Collapse
Affiliation(s)
- Yu Han
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Liuqian An
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yan Yang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yuling Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Hongliang Sun
- Yunnan International Joint Laboratory of Bionic Science and Engineering, Kunming, 650223, PR China
| | - Jinxin Yao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Tao Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
3
|
Yu X, Yu S, Lin J, Gupta V, Gao H, Li W, Appleberry M, Liu P, Chen Z. Multifunctional Scavenger Boosts Cathode Interfacial Stability with Reduced Water Footprint for Direct Recycling of Spent Lithium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408463. [PMID: 39221676 DOI: 10.1002/adma.202408463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/09/2024] [Indexed: 09/04/2024]
Abstract
The burgeoning accumulation of spent lithium-ion batteries (LIBs), a byproduct from the widespread adoption of portable electronics and electric vehicles, necessitates efficient recycling strategies. Direct recycling represents a promising strategy to maximize the value of LIB waste and minimize harmful environmental outcomes. However, current efforts to large-scale direct recycling face challenges stemming from heterophase residues (e.g., Li2CO3, LiOH) in the recycled products and uncontrolled interfacial instability, often requiring repeated washing that generates significant wastewater. Here, a refined direct recycling process is proposed to improve cathode interface stability by leveraging in situ reaction between surface residual lithium species and a weak inorganic acid to form a conformal Li+ conductive coating that stabilizes the regenerated Ni-rich cathodes with significantly reduced water footprint. The findings reveal that the conductive coating also prevents direct contact between contaminants and the cathode surface, thus improving the ambient storage stability. By eliminating the need for extensive washing, this intensified recycling process offers a more sustainable approach with the potential to transition from laboratory to industrial-scale applications, improving both product quality and environmental sustainability.
Collapse
Affiliation(s)
- Xiaolu Yu
- Program of Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sicen Yu
- Program of Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jiao Lin
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Varun Gupta
- Program of Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hongpeng Gao
- Program of Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Weikang Li
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Maura Appleberry
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ping Liu
- Program of Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Sustainable Power and Energy Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zheng Chen
- Program of Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Sustainable Power and Energy Center, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
4
|
Geng H, Zhang W, Zhao X, Shao W, Wang H. Research on Reverse Osmosis (RO)/Nanofiltration (NF) Membranes Based on Thin Film Composite (TFC) Structures: Mechanism, Recent Progress and Application. MEMBRANES 2024; 14:190. [PMID: 39330531 PMCID: PMC11434543 DOI: 10.3390/membranes14090190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
The global shortage of clean water is a major problem, even in water-rich regions. To solve this problem, low-cost and energy-efficient water treatment methods are needed. Membrane separation technology (MST), as a separation method with low energy consumption, low cost, and good separation effect, has been widely used to deal with seawater desalination, resource recovery, industrial wastewater treatment, and other fields. With the continuous progress of scientific and technological innovation and the increasing demand for use, NF/RO membranes based on the TFC structure are constantly being upgraded. This paper presents the recent research progress of NF and RO membranes based on TFC structures and their applications in different fields, especially the formation mechanism and regulation of selective layer structures and the modification methods of selective layers. Our summary provides fundamental insights into the understanding of NF and RO membrane processes and hopefully triggers further thinking on the development of membrane filtration process optimization.
Collapse
Affiliation(s)
- Huibin Geng
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Weihao Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Xiaoxu Zhao
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Shao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Haitao Wang
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
5
|
Fan F, Ren Y, Zhang S, Tang Z, Wang J, Han X, Yang Y, Lu G, Zhang Y, Chen L, Wang Z, Zhang K, Gao J, Zhao J, Cui G, Tang B. A Bioinspired Membrane with Ultrahigh Li +/Na + and Li +/K + Separations Enables Direct Lithium Extraction from Brine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402898. [PMID: 39030996 PMCID: PMC11425256 DOI: 10.1002/advs.202402898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/16/2024] [Indexed: 07/22/2024]
Abstract
Membranes with precise Li+/Na+ and Li+/K+ separations are imperative for lithium extraction from brine to address the lithium supply shortage. However, achieving this goal remains a daunting challenge due to the similar valence, chemical properties, and subtle atomic-scale distinctions among these monovalent cations. Herein, inspired by the strict size-sieving effect of biological ion channels, a membrane is presented based on nonporous crystalline materials featuring structurally rigid, dimensionally confined, and long-range ordered ion channels that exclusively permeate naked Li+ but block Na+ and K+. This naked-Li+-sieving behavior not only enables unprecedented Li+/Na+ and Li+/K+ selectivities up to 2707.4 and 5109.8, respectively, even surpassing the state-of-the-art membranes by at least two orders of magnitude, but also demonstrates impressive Li+/Mg2+ and Li+/Ca2+ separation capabilities. Moreover, this bioinspired membrane has to be utilized for creating a one-step lithium extraction strategy from natural brines rich in Na+, K+, and Mg2+ without utilizing chemicals or creating solid waste, and it simultaneously produces hydrogen. This research has proposed a new type of ion-sieving membrane and also provides an envisioning of the design paradigm and development of advanced membranes, ion separation, and lithium extraction.
Collapse
Affiliation(s)
- Faying Fan
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yongwen Ren
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Shu Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Zhilei Tang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jia Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Xiaolei Han
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yuanyuan Yang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Guoli Lu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yaojian Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Lin Chen
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Zhe Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | | | - Jun Gao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jingwen Zhao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Bo Tang
- Tang Bo's institution, Laoshan Laboratory, Qingdao, China
| |
Collapse
|
6
|
Liu H, Liang L, Tian F, Xi X, Zhang Y, Zhang P, Cao X, Bai Y, Zhang C, Dong L. Scalable Preparation of Ultraselective and Highly Permeable Fully Aromatic Polyamide Nanofiltration Membranes for Antibiotic Desalination. Angew Chem Int Ed Engl 2024; 63:e202402509. [PMID: 38588046 DOI: 10.1002/anie.202402509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Membranes are important in the pharmaceutical industry for the separation of antibiotics and salts. However, its widespread adoption has been hindered by limited control of the membrane microstructure (pore architecture and free-volume elements), separation threshold, scalability, and operational stability. In this study, 4,4',4'',4'''-methanetetrayltetrakis(benzene-1,2-diamine) (MTLB) as prepared as a molecular building block for fabricating thin-film composite membranes (TFCMs) via interfacial polymerization. The relatively large molecular size and rigid molecular structure of MTLB, along with its non-coplanar and distorted conformation, produced thin and defect-free selective layers (~27 nm) with ideal microporosities for antibiotic desalination. These structural advantages yielded an unprecedented high performance with a water permeance of 45.2 L m-2 h-1 bar-1 and efficient antibiotic desalination (NaCl/adriamycin selectivity of 422). We demonstrated the feasibility of the industrial scaling of the membrane into a spiral-wound module (with an effective area of 2.0 m2). This module exhibited long-term stability and performance that surpassed those of state-of-the-art membranes used for antibiotic desalination. This study provides a scientific reference for the development of high-performance TFCMs for water purification and desalination in the pharmaceutical industry.
Collapse
Affiliation(s)
- Haohao Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Lijun Liang
- College of Automation, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Feng Tian
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Xugang Xi
- College of Automation, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Yanqin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Peng Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Xingzhong Cao
- Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yunxiang Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Chunfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| |
Collapse
|
7
|
Liu M, Xu Q, Zeng G. Ionic Covalent Organic Frameworks in Adsorption and Catalysis. Angew Chem Int Ed Engl 2024; 63:e202404886. [PMID: 38563659 DOI: 10.1002/anie.202404886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
The ion extraction and electro/photo catalysis are promising methods to address environmental and energy issues. Covalent organic frameworks (COFs) are a class of promising template to construct absorbents and catalysts because of their stable frameworks, high surface areas, controllable pore environments, and well-defined catalytic sites. Among them, ionic COFs as unique class of crystalline porous materials, with charges in the frameworks or along the pore walls, have shown different properties and resulting performance in these applications with those from charge-neutral COFs. In this review, current research progress based on the ionic COFs for ion extraction and energy conversion, including cationic/anionic materials and electro/photo catalysis is reviewed in terms of the synthesis strategy, modification methods, mechanisms of adsorption and catalysis, as well as applications. Finally, we demonstrated the current challenges and future development of ionic COFs in design strategies and applications.
Collapse
Affiliation(s)
- Minghao Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315199, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Fritz PW, Ashirov T, Coskun A. Porous organic polymers with heterocyclic crown ethers for selective lithium-ion capture. Chem 2024. [DOI: https:/doi.org/10.1016/j.chempr.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
|
9
|
Peng Q, Wang R, Zhao Z, Lin S, Liu Y, Dong D, Wang Z, He Y, Zhu Y, Jin J, Jiang L. Extreme Li-Mg selectivity via precise ion size differentiation of polyamide membrane. Nat Commun 2024; 15:2505. [PMID: 38509082 PMCID: PMC10954764 DOI: 10.1038/s41467-024-46887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
Achieving high selectivity of Li+ and Mg2+ is of paramount importance for effective lithium extraction from brines, and nanofiltration (NF) membrane plays a critical role in this process. The key to achieving high selectivity lies in the on-demand design of NF membrane pores in accordance with the size difference between Li+ and Mg2+ ions, but this poses a huge challenge for traditional NF membranes and difficult to be realized. In this work, we report the fabrication of polyamide (PA) NF membranes with ultra-high Li+/Mg2+ selectivity by modifying the interfacial polymerization (IP) process between piperazine (PIP) and trimesoyl chloride (TMC) with an oil-soluble surfactant that forms a monolayer at oil/water interface, referred to as OSARIP. The OSARIP benefits to regulate the membrane pores so that all of them are smaller than Mg2+ ions. Under the solely size sieving effect, an exceptional Mg2+ rejection rate of over 99.9% is achieved. This results in an exceptionally high Li+/Mg2+ selectivity, which is one to two orders of magnitude higher than all the currently reported pressure-driven membranes, and even higher than the microporous framework materials, including COFs, MOFs, and POPs. The large enhancement of ion separation performance of NF membranes may innovate the current lithium extraction process and greatly improve the lithium extraction efficiency.
Collapse
Affiliation(s)
- Quan Peng
- College of Chemistry, Chemical Engineering and Materials Science, Innovation Center for Chemical Science & Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, 215123, PR China
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Zilin Zhao
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ying Liu
- College of Chemistry, Chemical Engineering and Materials Science, Innovation Center for Chemical Science & Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, 215123, PR China
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Dianyu Dong
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Zheng Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Yiman He
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Yuzhang Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Innovation Center for Chemical Science & Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, 215123, PR China.
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China.
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Innovation Center for Chemical Science & Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, 215123, PR China.
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China.
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| |
Collapse
|
10
|
Li J, Peng H, Liu K, Zhao Q. Polyester Nanofiltration Membranes for Efficient Cations Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309406. [PMID: 37907065 DOI: 10.1002/adma.202309406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Indexed: 11/02/2023]
Abstract
Polyester nanofiltration membranes highlight beneficial chlorine resistance, but their loose structures and negative charge result in poor cations retention precluding advanced use in cations separation. This work designs a new monomer (TET) containing "hydroxyl-ammonium" entities that confer dense structures and positive charge to polyester nanofiltration membranes. The TET monomer undergoes efficient interfacial polymerization with the trimesoyl chloride (TMC) monomer, and the resultant TET-TMC membranes feature one of the lowest molecular weight cut-offs (389 Da) and the highest zeta potential (4 mv, pH: 7) among all polyester nanofiltration membranes. The MgCl2 rejection of the TET-TMC membrane is 95.5%, significantly higher than state-of-the-art polyester nanofiltration membranes (<50%). The Li+ /Mg2+ separation performance of TET-TMC membrane is on par with cutting-edge polyamide membranes, while additionally, the membrane is stable against NaClO though polyamide membranes readily degrade. Thus the TET-TMC is the first polyester nanofiltration membrane for efficient cations separation.
Collapse
Affiliation(s)
- Jiapeng Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huawen Peng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kuankuan Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
11
|
Wang E, Lv X, Liu S, Dong Q, Li J, Li H, Su B. A Selective Separation Mechanism for Mono/divalent Cations and Properties of a Hollow-Fiber Composite Nanofiltration Membrane Having a Positively Charged Surface. MEMBRANES 2023; 14:1. [PMID: 38276314 PMCID: PMC10818550 DOI: 10.3390/membranes14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024]
Abstract
Positively charged nanofiltration (NF) technology is considered a green and low-cost method for mono/divalent cation separation. Nevertheless, the separation rejection mechanisms of these NF membranes have yet to be extensively investigated. In this work, we fabricated a thin-film composite (TFC) hollow-fiber (HF) NF membrane with a positively charged surface via modification of the nascent interfacial polymerization layer using a branched polyethyleneimine (BPEI)/ethanol solution. Then, we extensively investigated its selective separation mechanism for mono/divalent cations. We proposed and proved that there exists a double-charged layer near the membrane surface, which helps to repel the divalent cations selectively via Donnan exclusion while promoting the fast penetration of monovalent cations. Meanwhile, the membrane skin layer is loose and hydrophilic due to the loose BPEI structure and the abundance of amine groups, as well as the changed fabrication conditions. In this way, we achieved very good mono/divalent cation selectivity and relatively high water permeance for the as-prepared HF NF membrane. We also obtained good anti-fouling, anti-scaling, and acid resistance, and long-term stability as well, which are urgently needed during practical application. Furthermore, we successfully amplified this HF NF membrane and proved that it has broad application prospects in mono/divalent cation separation.
Collapse
Affiliation(s)
- Enlin Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China; (E.W.); (X.L.); (S.L.); (Q.D.); (J.L.)
| | - Xinghua Lv
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China; (E.W.); (X.L.); (S.L.); (Q.D.); (J.L.)
| | - Shaoxiao Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China; (E.W.); (X.L.); (S.L.); (Q.D.); (J.L.)
| | - Qiang Dong
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China; (E.W.); (X.L.); (S.L.); (Q.D.); (J.L.)
| | - Jiayue Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China; (E.W.); (X.L.); (S.L.); (Q.D.); (J.L.)
| | - Honghai Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266045, China;
| | - Baowei Su
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China; (E.W.); (X.L.); (S.L.); (Q.D.); (J.L.)
| |
Collapse
|