1
|
Chen XX, Ju Q, Qiu D, Zhou Y, Wang Y, Zhang XX, Li JG, Wang M, Chang N, Xu XR, Zhang YB, Zhao T, Wang K, Zhang Y, Zhang J. Microbial dysbiosis with tryptophan metabolites alteration in lower respiratory tract is associated with clinical responses to anti-PD-1 immunotherapy in advanced non-small cell lung cancer. Cancer Immunol Immunother 2025; 74:140. [PMID: 40056186 PMCID: PMC11890711 DOI: 10.1007/s00262-025-03996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/22/2025] [Indexed: 03/10/2025]
Abstract
Lower respiratory tract microbiome constitutes a unique immune microenvironment for advanced non-small cell lung cancer as one of dominant localized microbial components. However, there exists little knowledge on the associations between this regional microbiome and clinical responses to anti-PD-1 immunotherapy from clinical perspectives. Here, we equivalently collected bronchoalveolar lavage fluids from 56 advanced NSCLC participants treated with none (untreated, n = 28) or anti-PD-1 immunotherapy (treated, n = 28), which was further divided into responder (n = 17) and non-responder (n = 11) subgroups according to clinical responses, aiming to compare their microbial discrepancy by performing metagenomic sequencing and targeted metabolic alterations by tryptophan sequencing. Correspondingly, microbial diversities transformed significantly after receiving immunotherapeutic agents, where Gammaproteobacteria and Campylobacter enriched, but Escherichia, Streptococcus, Chlamydia, and Staphylococcus reduced at the genus level, differences of which failed to be achieved among subgroups with various clinical responses (responder or non-responder; LDA > 2, P < 0.05*). And the relative abundance of Staphylococcus and Streptomyces was escalated in response subgroup to anti-PD-1 immunotherapy by microbial compositional analysis (as relative abundance ≥ 3%, P < 0.05*), no significance of which was achieved among treated and untreated groups. In addition, relative abundances of bacterial tryptophan metabolites and its derivatives were also higher in the responder subgroup, distinctively being associated with divergent genera (VIP > 1, P < 0.05*). Our study revealed predictive performance of lower respiratory tract microbiome to antitumoral immunotherapy and further suggested that anti-PD-1 immunotherapy may alter lower respiratory tract microbiome composition and interact with its tryptophan metabolites to regulate therapeutic efficacy in advanced NSCLC, performing as potential biomarkers to prognosis and interventional strategies.
Collapse
Affiliation(s)
- Xiang-Xiang Chen
- Department of Pulmonary Medicine, Chest Hospital in Xi'an People's Hospital, Xi'an, 710100, Shaanxi Province, China
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, and State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, 710032, Shaanxi Province, China
| | - Qing Ju
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Dan Qiu
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ying Zhou
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yuan Wang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xin-Xin Zhang
- College of Pulmonary and Critical Care Medicine, The 8th Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Jing-Geng Li
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Min Wang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ning Chang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xiang-Rui Xu
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yi-Bo Zhang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Tong Zhao
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ke Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, and State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, 710032, Shaanxi Province, China.
| | - Yong Zhang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, and State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, 710032, Shaanxi Province, China.
| | - Jian Zhang
- Department of Pulmonary Medicine, Chest Hospital in Xi'an People's Hospital, Xi'an, 710100, Shaanxi Province, China.
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
2
|
Nunzi E, Pariano M, Costantini C, Garaci E, Puccetti P, Romani L. Host-microbe serotonin metabolism. Trends Endocrinol Metab 2025; 36:83-95. [PMID: 39142913 DOI: 10.1016/j.tem.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
As a result of a long evolutionary history, serotonin plays a variety of physiological roles, including neurological, cardiovascular, gastrointestinal, and endocrine functions. While many of these activities can be accommodated within the serotoninergic activity, recent findings have revealed an unsuspected role of serotonin in orchestrating host and microbial dialogue at the tryptophan dining table, to the benefit of local and systemic homeostasis. Herein we review the dual role of serotonin at the host-microbe interface and discuss how unraveling the interconnections among the host and microbial pathways of tryptophan degradation may help to accommodate the versatility of serotonin in physiology and pathology.
Collapse
Affiliation(s)
- Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy; Casa di cura San Raffaele, Sulmona, L'Aquila, Italy.
| |
Collapse
|
3
|
Garaci E, Pariano M, Nunzi E, Costantini C, Bellet MM, Antognelli C, Russo MA, Romani L. Bacteria and fungi of the lung: allies or enemies? Front Pharmacol 2024; 15:1497173. [PMID: 39584143 PMCID: PMC11584946 DOI: 10.3389/fphar.2024.1497173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Moving from the earlier periods in which the lungs were believed to represent sterile environments, our knowledge on the lung microbiota has dramatically increased, from the first descriptions of the microbial communities inhabiting the healthy lungs and the definition of the ecological rules that regulate its composition, to the identification of the changes that occur in pathological conditions. Despite the limitations of lung as a microbiome reservoir due to the low microbial biomass and abundance, defining its microbial composition and function in the upper and lower airways may help understanding the impact on local homeostasis and its disruption in lung diseases. In particular, the understanding of the metabolic and immune significance of microbes, their presence or lack thereof, in health and disease states could be valuable in development of novel druggable targets in disease treatments. Next-generation sequencing has identified intricate inter-microbe association networks that comprise true mutualistic or antagonistic direct or indirect relationships in the respiratory tract. In this review, the tripartite interaction of bacteria, fungi and the mammalian host is addressed to provide an integrated view of the microbial-host cross-talk in lung health and diseases from an immune and metabolic perspective.
Collapse
Affiliation(s)
- Enrico Garaci
- San Raffaele Research Center, Sulmona, L’Aquila, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Luigina Romani
- San Raffaele Research Center, Sulmona, L’Aquila, Italy
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Silva-Gomes R, Caldeira I, Fernandes R, Cunha C, Carvalho A. Metabolic regulation of the host-fungus interaction: from biological principles to therapeutic opportunities. J Leukoc Biol 2024; 116:469-486. [PMID: 38498599 DOI: 10.1093/jleuko/qiae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Fungal infections present a significant global public health concern, impacting over 1 billion individuals worldwide and resulting in more than 3 million deaths annually. Despite considerable progress in recent years, the management of fungal infections remains challenging. The limited development of novel diagnostic and therapeutic approaches is largely attributed to our incomplete understanding of the pathogenetic mechanisms involved in these diseases. Recent research has highlighted the pivotal role of cellular metabolism in regulating the interaction between fungi and their hosts. In response to fungal infection, immune cells undergo complex metabolic adjustments to meet the energy demands necessary for an effective immune response. A comprehensive understanding of the metabolic circuits governing antifungal immunity, combined with the integration of individual host traits, holds the potential to inform novel medical interventions for fungal infections. This review explores recent insights into the immunometabolic regulation of host-fungal interactions and the infection outcome and discusses how the metabolic repurposing of immune cell function could be exploited in innovative and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Rita Silva-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Caldeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
5
|
Li X, Shang S, Wu M, Song Q, Chen D. Gut microbial metabolites in lung cancer development and immunotherapy: Novel insights into gut-lung axis. Cancer Lett 2024; 598:217096. [PMID: 38969161 DOI: 10.1016/j.canlet.2024.217096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Metabolic derivatives of numerous microorganisms inhabiting the human gut can participate in regulating physiological activities and immune status of the lungs through the gut-lung axis. The current well-established microbial metabolites include short-chain fatty acids (SCFAs), tryptophan and its derivatives, polyamines (PAs), secondary bile acids (SBAs), etc. As the study continues to deepen, the critical function of microbial metabolites in the occurrence and treatment of lung cancer has gradually been revealed. Microbial derivates can enter the circulation system to modulate the immune microenvironment of lung cancer. Mechanistically, oncometabolites damage host DNA and promote the occurrence of lung cancer, while tumor-suppresive metabolites directly affect the immune system to combat the malignant properties of cancer cells and even show considerable application potential in improving the efficacy of lung cancer immunotherapy. Considering the crosstalk along the gut-lung axis, in-depth exploration of microbial metabolites in patients' feces or serum will provide novel guidance for lung cancer diagnosis and treatment selection strategies. In addition, targeted therapeutics on microbial metabolites are expected to overcome the bottleneck of lung cancer immunotherapy and alleviate adverse reactions, including fecal microbiota transplantation, microecological preparations, metabolite synthesis and drugs targeting metabolic pathways. In summary, this review provides novel insights and explanations on the intricate interplay between gut microbial metabolites and lung cancer development, and immunotherapy through the lens of the gut-lung axis, which further confirms the possible translational potential of the microbiome metabolome in lung cancer treatment.
Collapse
Affiliation(s)
- Xinpei Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shijie Shang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qian Song
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
6
|
Gou H, Zeng R, Lau HCH, Yu J. Gut microbial metabolites: Shaping future diagnosis and treatment against gastrointestinal cancer. Pharmacol Res 2024; 208:107373. [PMID: 39197712 DOI: 10.1016/j.phrs.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Gastrointestinal cancer is a worldwide health challenge due to its dramatically increasing prevalence and as a leading cause of cancer-related mortality. Increasing evidence has illustrated the vital role of gut microbes-derived metabolites in gastrointestinal cancer progression and treatment. Microbial metabolites are produced by the gut microbiota that utilizes both extrinsic dietary components and intrinsic host-generated compounds. Meanwhile, certain categories of metabolites such as short-chain fatty acids, bile acids, tryptophan, and indole derivatives, are linked to gastrointestinal malignancy. In this review, the major classes of microbial metabolites and their impacts on various gastrointestinal cancers including colorectal cancer, gastric cancer, and hepatocellular carcinoma, have been introduced. The application of microbial metabolites as predictive biomarkers for early diagnosis and prognosis of gastrointestinal cancer has also been explored. In addition, therapeutic potential of strategies that target microbial metabolites against gastrointestinal cancer is further evaluated.
Collapse
Affiliation(s)
- Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ruijie Zeng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
7
|
Vegda HS, Patel B, Girdhar GA, Pathan MSH, Ahmad R, Haque M, Sinha S, Kumar S. Role of Nonalcoholic Fatty Liver Disease in Periodontitis: A Bidirectional Relationship. Cureus 2024; 16:e63775. [PMID: 39100036 PMCID: PMC11297857 DOI: 10.7759/cureus.63775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and periodontitis share common risk factors such as obesity, insulin resistance (IR), and dyslipidemia, which contribute to systemic inflammation. It has been suggested that a bidirectional relationship exists between NAFLD and periodontitis, indicating that one condition may exacerbate the other. NAFLD is characterized by excessive fat deposition in the liver and is associated with low-grade chronic inflammation. There are several risk factors for the development of NAFLD, including gender, geriatric community, race, ethnicity, poor sleep quality and sleep deprivation, physical activity, nutritional status, dysbiosis gut microbiota, increased oxidative stress, overweight, obesity, higher body mass index (BMI), IR, type 2 diabetes mellitus (T2DM), metabolic syndrome (MetS), dyslipidemia (hypercholesterolemia), and sarcopenia (decreased skeletal muscle mass). This systemic inflammation can contribute to the progression of periodontitis by impairing immune responses and exacerbating the inflammatory processes in the periodontal tissues. Furthermore, individuals with NAFLD often exhibit altered lipid metabolism, which may affect oral microbiota composition, leading to dysbiosis and increased susceptibility to periodontal disease. Conversely, periodontitis has been linked to the progression of NAFLD through mechanisms involving systemic inflammation and oxidative stress. Chronic periodontal inflammation can release pro-inflammatory cytokines and bacterial toxins into the bloodstream, contributing to liver inflammation and exacerbating hepatic steatosis. Moreover, periodontitis-induced oxidative stress may promote hepatic lipid accumulation and IR, further aggravating NAFLD. The interplay between NAFLD and periodontitis underscores the importance of comprehensive management strategies targeting both conditions. Lifestyle modifications such as regular exercise, a healthy diet, and proper oral hygiene practices are crucial for preventing and managing these interconnected diseases. Additionally, interdisciplinary collaboration between hepatologists and periodontists is essential for optimizing patient care and improving outcomes in individuals with NAFLD and periodontitis.
Collapse
Affiliation(s)
- Hardika S Vegda
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Bhavin Patel
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Gaurav A Girdhar
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mohd Shabankhan H Pathan
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Department of Research, Karnavati Scientific Research Center (KSRC) School of Dentistry, Karnavati University, Gandhinagar, IND
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Susmita Sinha
- Department of Physiology, Enam Medical College and Hospital, Dhaka, BGD
| | - Santosh Kumar
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
8
|
Chiappalupi S, Salvadori L, Borghi M, Mancuso F, Pariano M, Riuzzi F, Luca G, Romani L, Arato I, Sorci G. Grafted Sertoli Cells Exert Immunomodulatory Non-Immunosuppressive Effects in Preclinical Models of Infection and Cancer. Cells 2024; 13:544. [PMID: 38534388 PMCID: PMC10969358 DOI: 10.3390/cells13060544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
The Sertoli cells (SeCs) of the seminiferous tubules secrete a multitude of immunoregulatory and trophic factors to provide immune protection and assist in the orderly development of germ cells. Grafts of naked or encapsulated SeCs have been proved to represent an interesting therapeutic option in a plethora of experimental models of diseases. However, whether SeCs have immunosuppressive or immunomodulatory effects, which is imperative for their clinical translatability, has not been demonstrated. We directly assessed the immunopotential of intraperitoneally grafted microencapsulated porcine SeCs (MC-SeCs) in murine models of fungal infection (Aspergillus fumigatus or Candida albicans) or cancer (Lewis lung carcinoma/LLC or B16 melanoma cells). We found that MC-SeCs (i) provide antifungal resistance with minimum inflammatory pathology through the activation of the tolerogenic aryl hydrocarbon receptor/indoleamine 2,3-dioxygenase pathway; (ii) do not affect tumor growth in vivo; and (iii) reduce the LLC cell metastatic cancer spread associated with restricted Vegfr2 expression in primary tumors. Our results point to the fine immunoregulation of SeCs in the relative absence of overt immunosuppression in both infection and cancer conditions, providing additional support for the potential therapeutic use of SeC grafts in human patients.
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
| | - Laura Salvadori
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Monica Borghi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
| | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
| | - Francesca Riuzzi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale (CURGeF), 06132 Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
| | - Guglielmo Sorci
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale (CURGeF), 06132 Perugia, Italy
| |
Collapse
|