1
|
Tsubokawa A, Chihara K, Chihara Y, Takeuchi K, Fujieda S, Sada K. Adaptor protein 3BP2 regulates gene expression in addition to the ubiquitination and proteolytic activity of MALT1 in dectin-1-stimulated cells. J Biol Chem 2024:107980. [PMID: 39542253 DOI: 10.1016/j.jbc.2024.107980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
Dectin-1, a C-type lectin, plays important roles in the induction of antifungal immunity. Caspase recruitment domain-containing protein 9 (CARD9) is essential for the dectin-1-induced production of cytokines through the activation of NF-κB. However, the molecular mechanisms underlying the dectin-1-mediated activation of CARD9 have not been fully elucidated. Recently, we reported that the adaptor protein SH3 domain-binding protein 2 (3BP2) is required for the dectin-1-induced production of cytokines and activation of NF-κB, although the relationship between 3BP2 and CARD9 in dectin-1-mediated signaling remains unclear. Here, we report that 3BP2 is required for dectin-1-induced expression of several genes that may contribute to antifungal immunity in bone marrow-derived dendritic cells (BMDCs). The results of reporter assays using HEK-293T cells indicate that 3BP2 induces CARD9-mediated activation of NF-κB through B-cell leukemia/lymphoma 10, mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), and TNF receptor-associated factor 6-dependent mechanisms. In addition, we show that 3BP2 induces CARD9-mediated ubiquitination of cellular proteins and that MALT1 cleaves 3BP2 in a CARD9-dependent manner. Furthermore, we show that 3BP2 is required for the ubiquitination, in addition to the activation, of MALT1, which leads to MALT1-depenedent cleavage of 3BP2 in dectin-1-stimulated BMDCs. Finally, we identified hematopoietic cell-specific Lyn substrate 1 as a target of 3BP2, which is essential for dectin-1-induced expression of interleukin 10 in BMDCs. These results indicate that 3BP2 regulates gene expression and functions of MALT1 in dectin-1-stimulated cells and that 3BP2 plays an important role in the dectin-1-mediated antifungal immunity.
Collapse
Affiliation(s)
- Ayumi Tsubokawa
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan; Department of Otorhinolaryngology Head & Neck Surgery, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Kazuyasu Chihara
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan; Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan.
| | - Yuri Chihara
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Kenji Takeuchi
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan; Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology Head & Neck Surgery, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan; Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan
| | - Kiyonao Sada
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan; Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan
| |
Collapse
|
2
|
Huang HY, Chen YZ, Zhao C, Zheng XN, Yu K, Yue JX, Ju HQ, Shi YX, Tian L. Alternations in inflammatory macrophage niche drive phenotypic and functional plasticity of Kupffer cells. Nat Commun 2024; 15:9337. [PMID: 39472435 PMCID: PMC11522483 DOI: 10.1038/s41467-024-53659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Inflammatory signals lead to recruitment of circulating monocytes and induce their differentiation into pro-inflammatory macrophages. Therefore, whether blocking inflammatory monocytes can mitigate disease progression is being actively evaluated. Here, we employ multiple lineage-tracing models and show that monocyte-derived macrophages (mo-mac) are the major population of immunosuppressive, liver metastasis-associated macrophages (LMAM), while the proportion of Kupffer cells (KC) as liver-resident macrophages is diminished in metastatic nodules. Paradoxically, genetic ablation of mo-macs results in only a marginal decrease in LMAMs. Using a proliferation-recording system and a KC-tracing model in a monocyte-deficient background, we find that LMAMs can be replenished either via increased local macrophage proliferation or by promoting KC infiltration. In the latter regard, KCs undergo transient proliferation and exhibit substantial phenotypic and functional alterations through epigenetic reprogramming following the vacating of macrophage niches by monocyte depletion. Our data thus suggest that a simultaneous blockade of monocyte recruitment and macrophage proliferation may effectively target immunosuppressive myelopoiesis and reprogram the microenvironment towards an immunostimulatory state.
Collapse
Affiliation(s)
- Han-Ying Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan-Zhou Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuang Zhao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xin-Nan Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kai Yu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan-Xia Shi
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Lin Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
3
|
Ferrara B, Dugnani E, Citro A, Schiavo Lena M, Marra P, Camisa PR, Policardi M, Canu T, Esposito A, Doglioni C, Piemonti L. Establishment of a Transplantation Model of PDAC-Derived Liver Metastases. Ann Surg Oncol 2024; 31:6138-6146. [PMID: 38869763 PMCID: PMC11300624 DOI: 10.1245/s10434-024-15514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND The highly metastatic nature of pancreatic ductal adenocarcinoma (PDAC) and the difficulty to achieve favorable patient outcomes emphasize the need for novel therapeutic solutions. For preclinical evaluations, genetically engineered mouse models are often used to mimic human PDAC but frequently fail to replicate synchronous development and metastatic spread. This study aimed to develop a transplantation model to achieve synchronous and homogenous PDAC growth with controlled metastatic patterns in the liver. METHODS To generate an orthotopic PDAC model, the DT6606 cell line was injected into the pancreas head of C57BL/6 mice, and their survival was monitored over time. To generate a heterotopic transplantation model, growing doses of three PDAC cell lines (DT6606, DT6606lm, and K8484) were injected into the portal vein of mice. Magnetic resonance imaging (MRI) was used to monitor metastatic progression, and histologic analysis was performed. RESULTS Orthotopically injected mice succumbed to the tumor within an 11-week period (average survival time, 78.2 ± 4.45 days). Post-mortem examinations failed to identify liver metastasis. In the intraportal model, 2 × 105 DT6606 cells resulted in an absence of liver metastases by day 21, whereas 5 × 104 DT6606lm cells and 7 × 104 K8484 cells resulted in steady metastatic growth. Higher doses caused significant metastatic liver involvement. The use of K8484 cells ensured the growth of tumors closely resembling the histopathologic characteristics of human PDAC. CONCLUSIONS This report details the authors' efforts to establish an "optimal" murine model for inducing metastatic PDAC, which is critical for advancing our understanding of the disease and developing more effective treatments.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erica Dugnani
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Schiavo Lena
- Pathology Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Marra
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, University of Milano Bicocca, Bergamo, Italy
| | - Paolo Riccardo Camisa
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Martina Policardi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tamara Canu
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Esposito
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
4
|
Gewalt T, Diehl L, Meder L. Editorial: Tumor and immune cell interactions in the formation of organ-specific metastasis. Front Oncol 2024; 14:1373308. [PMID: 38444685 PMCID: PMC10914249 DOI: 10.3389/fonc.2024.1373308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Affiliation(s)
- Tabea Gewalt
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Linda Diehl
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lydia Meder
- Department of Experimental Medicine 1, Medical Faculty, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Kloc M, Kubiak JZ. The Role of Human and Animal Monocytes and Macrophages in Homeostasis and Disease. Int J Mol Sci 2023; 24:16397. [PMID: 38003587 PMCID: PMC10671400 DOI: 10.3390/ijms242216397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Monocytes and macrophages are the innate immune cells that are the first-line responders to invading pathogens or foreign objects[...].
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA
- The Houston Methodist Hospital, Department of Surgery, Houston, TX 77030, USA
- MD Anderson Cancer Center, Department of Genetics, The University of Texas, Houston, TX 77030, USA
| | - Jacek Z. Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute (WIM-PIB), Szaserow 128, 04-141 Warsaw, Poland
- Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes, Faculty of Medicine, University of Rennes, CNRS, UMR 6290, 35043 Rennes, France
| |
Collapse
|