1
|
El-Daher F, Enos SJ, Drake LK, Wehner D, Westphal M, Porter NJ, Becker CG, Becker T. Correction: Microglia are essential for tissue contraction in wound closure after brain injury in zebrafish larvae. Life Sci Alliance 2025; 8:e202403129. [PMID: 39586644 PMCID: PMC11588848 DOI: 10.26508/lsa.202403129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
Although in humans, the brain fails to heal after an injury, young zebrafish are able to restore tissue structural integrity in less than 24 h, thanks to the mechanical action of microglia.
Collapse
Affiliation(s)
- Francois El-Daher
- Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| | - Stephen J Enos
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| | - Louisa K Drake
- Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
| | - Daniel Wehner
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Markus Westphal
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| | - Nicola J Porter
- Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
| | - Catherina G Becker
- Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Thomas Becker
- Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| |
Collapse
|
2
|
Chen J, Sanchez-Iranzo H, Diotel N, Rastegar S. Comparative insight into the regenerative mechanisms of the adult brain in zebrafish and mouse: highlighting the importance of the immune system and inflammation in successful regeneration. FEBS J 2024; 291:4193-4205. [PMID: 39108082 DOI: 10.1111/febs.17231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024]
Abstract
Regeneration, the complex process of restoring damaged or absent cells, tissues, and organs, varies considerably between species. The zebrafish is a remarkable model organism for its impressive regenerative abilities, particularly in organs such as the heart, fin, retina, spinal cord, and brain. Unlike mammals, zebrafish can regenerate with limited or absent scarring, a phenomenon closely linked to the activation of stem cells and immune cells. This review examines the unique roles played by the immune response and inflammation in zebrafish and mouse during regeneration, highlighting the cellular and molecular mechanisms behind their divergent regenerative capacities. By focusing on zebrafish telencephalic regeneration and comparing it to that of the rodents, this review highlights the importance of a well-controlled, acute, and non-persistent immune response in zebrafish, which promotes an environment conducive to regeneration. The knowledge gained from understanding the mechanisms of zebrafish regeneration holds great promises for the treatment of human neurodegenerative diseases and brain damage (stroke and traumatic brain injuries), as well as for the advancement of regenerative medicine approaches.
Collapse
Affiliation(s)
- Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Hector Sanchez-Iranzo
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| |
Collapse
|
3
|
Saraswathy VM, Zhou L, Mokalled MH. Single-cell analysis of innate spinal cord regeneration identifies intersecting modes of neuronal repair. Nat Commun 2024; 15:6808. [PMID: 39147780 PMCID: PMC11327264 DOI: 10.1038/s41467-024-50628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Adult zebrafish have an innate ability to recover from severe spinal cord injury. Here, we report a comprehensive single nuclear RNA sequencing atlas that spans 6 weeks of regeneration. We identify cooperative roles for adult neurogenesis and neuronal plasticity during spinal cord repair. Neurogenesis of glutamatergic and GABAergic neurons restores the excitatory/inhibitory balance after injury. In addition, a transient population of injury-responsive neurons (iNeurons) show elevated plasticity 1 week post-injury. We found iNeurons are injury-surviving neurons that acquire a neuroblast-like gene expression signature after injury. CRISPR/Cas9 mutagenesis showed iNeurons are required for functional recovery and employ vesicular trafficking as an essential mechanism that underlies neuronal plasticity. This study provides a comprehensive resource of the cells and mechanisms that direct spinal cord regeneration and establishes zebrafish as a model of plasticity-driven neural repair.
Collapse
Affiliation(s)
- Vishnu Muraleedharan Saraswathy
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Lili Zhou
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Möckel C, Beck T, Kaliman S, Abuhattum S, Kim K, Kolb J, Wehner D, Zaburdaev V, Guck J. Estimation of the mass density of biological matter from refractive index measurements. BIOPHYSICAL REPORTS 2024; 4:100156. [PMID: 38718671 PMCID: PMC11090064 DOI: 10.1016/j.bpr.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
The quantification of physical properties of biological matter gives rise to novel ways of understanding functional mechanisms. One of the basic biophysical properties is the mass density (MD). It affects the dynamics in sub-cellular compartments and plays a major role in defining the opto-acoustical properties of cells and tissues. As such, the MD can be connected to the refractive index (RI) via the well known Lorentz-Lorenz relation, which takes into account the polarizability of matter. However, computing the MD based on RI measurements poses a challenge, as it requires detailed knowledge of the biochemical composition of the sample. Here we propose a methodology on how to account for assumptions about the biochemical composition of the sample and respective RI measurements. To this aim, we employ the Biot mixing rule of RIs alongside the assumption of volume additivity to find an approximate relation of MD and RI. We use Monte-Carlo simulations and Gaussian propagation of uncertainty to obtain approximate analytical solutions for the respective uncertainties of MD and RI. We validate this approach by applying it to a set of well-characterized complex mixtures given by bovine milk and intralipid emulsion and employ it to estimate the MD of living zebrafish (Danio rerio) larvae trunk tissue. Our results illustrate the importance of implementing this methodology not only for MD estimations but for many other related biophysical problems, such as mechanical measurements using Brillouin microscopy and transient optical coherence elastography.
Collapse
Affiliation(s)
- Conrad Möckel
- Max Planck Institute for the Science of Light, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Timon Beck
- Max Planck Institute for the Science of Light, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Sara Kaliman
- Max Planck Institute for the Science of Light, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Shada Abuhattum
- Max Planck Institute for the Science of Light, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Kyoohyun Kim
- Max Planck Institute for the Science of Light, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Julia Kolb
- Max Planck Institute for the Science of Light, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Wehner
- Max Planck Institute for the Science of Light, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Vasily Zaburdaev
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
5
|
Smith MM, Melrose J. Lumican, a Multifunctional Cell Instructive Biomarker Proteoglycan Has Novel Roles as a Marker of the Hypercoagulative State of Long Covid Disease. Int J Mol Sci 2024; 25:2825. [PMID: 38474072 DOI: 10.3390/ijms25052825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
This study has reviewed the many roles of lumican as a biomarker of tissue pathology in health and disease. Lumican is a structure regulatory proteoglycan of collagen-rich tissues, with cell instructive properties through interactions with a number of cell surface receptors in tissue repair, thereby regulating cell proliferation, differentiation, inflammation and the innate and humoral immune systems to combat infection. The exponential increase in publications in the last decade dealing with lumican testify to its role as a pleiotropic biomarker regulatory protein. Recent findings show lumican has novel roles as a biomarker of the hypercoagulative state that occurs in SARS CoV-2 infections; thus, it may also prove useful in the delineation of the complex tissue changes that characterize COVID-19 disease. Lumican may be useful as a prognostic and diagnostic biomarker of long COVID disease and its sequelae.
Collapse
Affiliation(s)
- Margaret M Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Arthropharm Pty Ltd., Bondi Junction, NSW 2022, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|