1
|
Qiu Q, Yang M, Gong D, Liang H, Chen T. Potassium and calcium channels in different nerve cells act as therapeutic targets in neurological disorders. Neural Regen Res 2025; 20:1258-1276. [PMID: 38845230 PMCID: PMC11624876 DOI: 10.4103/nrr.nrr-d-23-01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/18/2024] [Accepted: 04/07/2024] [Indexed: 07/31/2024] Open
Abstract
The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channel-specific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood-brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
Collapse
Affiliation(s)
- Qing Qiu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Mengting Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Danfeng Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Haiying Liang
- Department of Pharmacy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Tingting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Cogan PS. A cautionary tale of paradox and false positives in cannabidiol research. Expert Opin Drug Discov 2025; 20:5-15. [PMID: 39663751 DOI: 10.1080/17460441.2024.2441359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Decades of research on cannabidiol (CBD) have identified thousands of purported cellular effects, and many of these have been proposed to correlate with a vast therapeutic potential. Yet despite the large volume of findings fueling broad optimism in this regard, few have translated into any demonstrable clinical benefit or even notable side effects. Therein resides the great paradox of CBD: a drug that appears to affect almost everything in vitro does not clearly do much of anything in a clinical setting. AREAS COVERED Comparative critical evaluation of literature searched in PubMed and Google Scholar discovers multiple instances of inconsistent and contradictory findings regarding the pharmacology and clinical effects of CBD, as well as several uncelebrated reports that suggest potential explanations for these observations. Many of those effects attributed to the ostensible pharmacologic activity of cannabidiol are almost certainly the product of false-positive experimental results and artifactual findings that are unlikely to be realized under physiologic conditions. EXPERT OPINION Concerns regarding the physiological relevance and translational potential of in vitro findings across the field of cannabinoid research are both far-reaching and demanding of attention in the form of appropriate experimental controls that remain almost universally absent.
Collapse
Affiliation(s)
- Peter S Cogan
- School of Pharmacy, Regis University, Denver, CO, USA
| |
Collapse
|
3
|
Lemke J, Gollasch M, Tsvetkov D, Schulig L. Advances in the design and development of chemical modulators of the voltage-gated potassium channels K V7.4 and K V7.5. Expert Opin Drug Discov 2025; 20:47-62. [PMID: 39627683 DOI: 10.1080/17460441.2024.2438226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/20/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION Hypertension remains a major public health concern, with significant morbidity and mortality worldwide. Despite the availability of various antihypertensive medications, blood pressure control remains suboptimal in many individuals. During the last decades, KV7.4 and KV7.5, which were already known from the view of neuronal regulation, emerged as possible important players in the regulation of vascular tone and blood pressure. AREAS COVERED This review covers physiological functions and current advancements in the development of KV7.4 and KV7.5 channel modulators. The authors highlight the structural elements likely to be important for the future design of KV7 subtype-selective modulators, underscoring their potential as an innovative hypertension treatment. EXPERT OPINION Extensive research has been focused on targeting neuronal KV7.2 and KV7.3 channels, while KV7.4 and KV7.5 attracted less attention. Many of the developed compounds represent derivatives of flupirtine or retigabine, whereby subtype channel selectivity has only been demonstrated for a handful of individual compounds. Novel substances address additional sites within the binding pocket by incorporating new functional groups. A comprehensive and systematic evaluation of a compound set with significant subtype selectivity should be performed. The discovery of new highly active, less toxic, and selective compounds, therefore, remains the goal of further research in the coming years.
Collapse
Affiliation(s)
- Jana Lemke
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Maik Gollasch
- Department of Internal Medicine and Geriatrics, University Medicine, Greifswald, Germany
| | - Dmitry Tsvetkov
- Department of Internal Medicine and Geriatrics, University Medicine, Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Mkrtchyan L, Sahakyan H, Eldstrom J, Karapetyan T, Abrahamyan A, Nazaryan K, Schwarz JR, Kneussel M, Fedida D, Vardanyan V. Ion permeation through a narrow cavity constriction in KCNQ1 channels: Mechanism and implications for pathogenic variants. Proc Natl Acad Sci U S A 2024; 121:e2411182121. [PMID: 39671184 DOI: 10.1073/pnas.2411182121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
KCNQ1 potassium channels play a pivotal role in the physiology and pathophysiology of several human excitable and epithelial tissues. The latest cryo-electron microscopy (cryo-EM) structures provide unique insights into channel function and pharmacology, opening avenues for different therapeutic strategies against human diseases associated with KCNQ1 mutations. However, these structures also raise fundamental questions about the mechanisms of ion permeation. Cryo-EM structures thought to represent the open state of the channel feature a cavity region not wide enough for accommodation of hydrated K+. To understand how K+ passes through the cavity constriction, we utilized microsecond-scale molecular dynamics (MD) simulations using the KCNQ1/KCNE3 cryo-EM structure, characterized mutants at the G345 residue situated at the narrowest point of the cavity, and recorded single channels. The findings indicate that ions become partially dehydrated at the constriction, which enables permeation. MD simulations demonstrate that the constriction can impede the flow of ions through the channel's pore, a finding that is corroborated by mutational screening and single-channel recordings. Reduced channel conductance is the key mechanism underlying reported pathological KCNQ1 mutations at or near the constriction site.
Collapse
Affiliation(s)
- Liana Mkrtchyan
- Molecular Neuroscience Group, Institute of Molecular Biology, Yerevan 0014, Armenia
| | - Harutyun Sahakyan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, Yerevan 0014, Armenia
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tatev Karapetyan
- Molecular Neuroscience Group, Institute of Molecular Biology, Yerevan 0014, Armenia
| | - Astghik Abrahamyan
- Molecular Neuroscience Group, Institute of Molecular Biology, Yerevan 0014, Armenia
| | - Karen Nazaryan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, Yerevan 0014, Armenia
| | - Jürgen R Schwarz
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Matthias Kneussel
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Vitya Vardanyan
- Molecular Neuroscience Group, Institute of Molecular Biology, Yerevan 0014, Armenia
| |
Collapse
|
5
|
Yaghoobi A, Seyedmirzaei H, Jamaat M, Ala M. Epigenomic and clinical analyses of striatal DAT binding in healthy individuals reveal well-known loci of Parkinson's disease. Heliyon 2024; 10:e40618. [PMID: 39654757 PMCID: PMC11625257 DOI: 10.1016/j.heliyon.2024.e40618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Background Striatal dopamine transporter (DAT) binding is a sensitive and specific endophenotype for detecting dopaminergic deficits across Parkinson's disease (PD) spectrum. Molecular and clinical signatures of PD in asymptomatic phases help understand the earliest pathophysiological mechanisms underlying the disease. We aimed to investigate whether blood epigenetic markers are associated with inter-individual variation of striatal DAT binding among healthy elderly individuals. We also investigated whether this potential inter-individual variation can manifest as dysfunction of particular cognitive domains. Omics studies conducted on endophenotypes of PD among healthy asymptomatic individuals can provide invaluable insights into early detection, disease mechanisms, and potential therapeutic targets for PD. Method We conducted a blood epigenome-wide association study of striatal DAT binding on 96 healthy individuals using the Illumina EPIC array. For functional annotation of our top results, we employed the enhancer-gene mapping strategy using a midbrain single-nucleus multimodal dataset. Finally, we conducted several investigative regression analyses on several neuropsychological tests across five cognitive domains to assess their association with striatal DAT binding among 250 healthy subjects. Results We identified seven suggestive (P-value<10-5) CpG probes. Specifically, three probes were colocalized with three risk loci previously identified in PD's largest Genome-Wide Association Study (GWAS). UCN5A and APOE loci were identified as suggestive DMRs associated with striatal DAT binding. Functional analyses prioritized the FDFT1 gene as the potential target gene in the previously reported CTSB GWAS locus. We also showed that delayed recall memory impairment was correlated with reduced striatal DAT binding, irrespective of age. Conclusion Our study suggested epigenetic and cognitive signatures of striatal DAT binding among healthy individuals, providing valuable insights for future experimental and clinical studies of early PD.
Collapse
Affiliation(s)
- Arash Yaghoobi
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5746, Iran
| | - Homa Seyedmirzaei
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzie Jamaat
- Islamic Azad University, Tehran North Branch, Faculty of Biological Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Nappi M, Alberini G, Berselli A, Roscioni A, Soldovieri MV, Servettini I, Barrese V, Weckhuysen S, Chiu TGA, Scheffer IE, Benfenati F, Maragliano L, Miceli F, Taglialatela M. Constitutive opening of the Kv7.2 pore activation gate causes KCNQ2-developmental encephalopathy. Proc Natl Acad Sci U S A 2024; 121:e2412388121. [PMID: 39602259 PMCID: PMC11626135 DOI: 10.1073/pnas.2412388121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Pathogenic variants in KCNQ2 encoding Kv7.2 voltage-gated potassium channel subunits cause developmental encephalopathies (KCNQ2-encephalopathies), both with and without epilepsy. We herein describe the clinical, in vitro, and in silico features of two encephalopathy-causing variants (A317T, L318V) in Kv7.2 affecting two consecutive residues in the S6 activation gate that undergoes large structural rearrangements during pore opening; the disease-causing A356T variant in KCNQ3, paralogous to the A317T variant in KCNQ2, was also investigated. Currents through KCNQ2 mutant channels displayed increased density, hyperpolarizing shifts in activation gating, faster activation and slower deactivation kinetics, and resistance to changes in the cellular concentrations of phosphatidylinositol 4,5-bisphosphate (PIP2), a critical regulator of Kv7 channel function; all these features are consistent with a strong gain-of-function effect. An increase in the probability of single-channel opening, with no change in membrane abundance or single-channel conductance, was responsible for the observed gain-of-function effects. All-atom molecular dynamics simulations revealed that the mutations widened the inner pore gate and stabilized a constitutively open channel configuration in the closed state, with minimal effects on the open conformation. Thus, mutation-induced stabilization of the inner pore gate open configuration is a molecular pathogenetic mechanism for KCNQ2-related encephalopathies.
Collapse
Affiliation(s)
- Mario Nappi
- Department of Neuroscience, Section of Pharmacology, University of Naples Federico II, Naples80131, Italy
| | - Giulio Alberini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova16132, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova16132, Italy
| | - Alessandro Berselli
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova16132, Italy
- Department of Experimental Medicine, Università degli Studi di Genova, Genova16132, Italy
| | - Agnese Roscioni
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova16132, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona60131, Italy
| | | | - Ilenio Servettini
- Department of Medicine and Health Science, University of Molise, Campobasso86100, Italy
| | - Vincenzo Barrese
- Department of Neuroscience, Section of Pharmacology, University of Naples Federico II, Naples80131, Italy
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, Antwerp2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp2610, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp2610, Belgium
| | - Ting-Gee Annie Chiu
- Division of Medicine, Dentistry and Health Sciences, University of Melbourne, Austin Health, Melbourne, VIC3084, Australia
| | - Ingrid E. Scheffer
- The Florey Institute of Neuroscience and Mental Health and Murdoch Children’s Research Institutes, University of Melbourne, Austin and Royal Children’s Hospital, Melbourne, VIC3052, Australia
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova16132, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova16132, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova16132, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona60131, Italy
| | - Francesco Miceli
- Department of Neuroscience, Section of Pharmacology, University of Naples Federico II, Naples80131, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, Section of Pharmacology, University of Naples Federico II, Naples80131, Italy
| |
Collapse
|
7
|
Wang Q, Zhao G, Ding H, Wang Z, Wu J, Huang H, Cao L, Wang H, Gao Z, Feng J. Trpv1-lineage neuron-expressing Kcnq4 channel modulates itch sensation in mice. Pain 2024:00006396-990000000-00772. [PMID: 39560444 DOI: 10.1097/j.pain.0000000000003479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/13/2024] [Indexed: 11/20/2024]
Abstract
ABSTRACT Voltage-gated potassium channel subfamily q member 4 (Kcnq4) is predominantly expressed by hair cells and auditory neurons and regulates the neuronal excitability in the auditory pathway. Although it is further detected in myelinated large-diameter dorsal root ganglia (DRG) neurons in the periphery, the expression and function of Kcnq4 channel in nociceptors remains unknown. Here we showed that Kcnq4 is substantially expressed by unmyelinated small-diameter DRG neurons in both human and mouse. In spite of a dispensable role in acute pain and chronic skin inflammation, Kcnq4 is specifically involved in the regulation of scratching behavior through controlling action potential firing properties, evidenced by the increased neuronal excitability in small-diameter DRG neurons isolated from Kcnq4 deficient mice. Moreover, genetic ablation of Kcnq4 in Trpv1-positive neurons exacerbates both acute and chronic itch behavior in mice. Taken together, our results uncover a functional role of Trpv1-lineage neuron-expressing Kcnq4 channel in the modulation of itch-specific neuronal excitation in the periphery.
Collapse
Affiliation(s)
- Qiong Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guodun Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huijuan Ding
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zihan Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianwei Wu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Han Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Cao
- Department of Chinese Medicine, Tangdu Hospital, Xi'an, China
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaobing Gao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Huang J, Pan X, Yan N. Structural biology and molecular pharmacology of voltage-gated ion channels. Nat Rev Mol Cell Biol 2024; 25:904-925. [PMID: 39103479 DOI: 10.1038/s41580-024-00763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 08/07/2024]
Abstract
Voltage-gated ion channels (VGICs), including those for Na+, Ca2+ and K+, selectively permeate ions across the cell membrane in response to changes in membrane potential, thus participating in physiological processes involving electrical signalling, such as neurotransmission, muscle contraction and hormone secretion. Aberrant function or dysregulation of VGICs is associated with a diversity of neurological, psychiatric, cardiovascular and muscular disorders, and approximately 10% of FDA-approved drugs directly target VGICs. Understanding the structure-function relationship of VGICs is crucial for our comprehension of their working mechanisms and role in diseases. In this Review, we discuss how advances in single-particle cryo-electron microscopy have afforded unprecedented structural insights into VGICs, especially on their interactions with clinical and investigational drugs. We present a comprehensive overview of the recent advances in the structural biology of VGICs, with a focus on how prototypical drugs and toxins modulate VGIC activities. We explore how these structures elucidate the molecular basis for drug actions, reveal novel pharmacological sites, and provide critical clues to future drug discovery.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Xiaojing Pan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
| | - Nieng Yan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Abbott GW, Manville RW. Discovery of a potent, Kv7.3-selective potassium channel opener from a Polynesian traditional botanical anticonvulsant. Commun Chem 2024; 7:233. [PMID: 39390220 PMCID: PMC11467302 DOI: 10.1038/s42004-024-01318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Plants remain an important source of biologically active small molecules with high therapeutic potential. The voltage-gated potassium (Kv) channel formed by Kv7.2/3 (KCNQ2/3) heteromers is a major target for anticonvulsant drug development. Here, we screened 1444 extracts primarily from plants collected in California and the US Virgin Islands, for their ability to activate Kv7.2/3 but not inhibit Kv1.3, to select against tannic acid being the active component. We validated the 7 strongest hits, identified Thespesia populnea (miro, milo, portia tree) as the most promising, then discovered its primary active metabolite to be gentisic acid (GA). GA highly potently activated Kv7.2/3 (EC50, 2.8 nM). GA is, uniquely to our knowledge, 100% selective for Kv7.3 versus other Kv7 homomers; it requires S5 residue Kv7.3-W265 for Kv7.2/3 activation, and it ameliorates pentylenetetrazole-induced seizures in mice. Structure-activity studies revealed that the FDA-approved vasoprotective drug calcium dobesilate, a GA analog, is a previously unrecognized Kv7.2/3 channel opener. Also an active aspirin metabolite, GA provides a molecular rationale for the use of T. populnea as an anticonvulsant in Polynesian indigenous medicine and presents novel pharmacological prospects for potent, isoform-selective, therapeutic Kv7 channel activation.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| | - Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
10
|
Zhong L, Yan Z, Jiang D, Weng KC, Ouyang Y, Zhang H, Lin X, Xiao C, Yang H, Yao J, Kang X, Wang C, Huang C, Shen B, Chung SK, Jiang ZH, Zhu W, Neher E, Silva JR, Hou P. Targeting the I Ks Channel PKA Phosphorylation Axis to Restore Its Function in High-Risk LQT1 Variants. Circ Res 2024; 135:722-738. [PMID: 39166328 PMCID: PMC11392204 DOI: 10.1161/circresaha.124.325009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND The KCNQ1+KCNE1 (IKs) potassium channel plays a crucial role in cardiac adaptation to stress, in which β-adrenergic stimulation phosphorylates the IKs channel through the cyclic adenosine monophosphate (cAMP)/PKA (protein kinase A) pathway. Phosphorylation increases the channel current and accelerates repolarization to adapt to an increased heart rate. Variants in KCNQ1 can cause long-QT syndrome type 1 (LQT1), and those with defective cAMP effects predispose patients to the highest risk of cardiac arrest and sudden death. However, the molecular connection between IKs channel phosphorylation and channel function, as well as why high-risk LQT1 mutations lose cAMP sensitivity, remain unclear. METHODS Regular patch clamp and voltage clamp fluorometry techniques were utilized to record pore opening and voltage sensor movement of wild-type and mutant KCNQ1/IKs channels. The clinical phenotypic penetrance of each LQT1 mutation was analyzed as a metric for assessing their clinical risk. The patient-specific-induced pluripotent stem-cell model was used to test mechanistic findings in physiological conditions. RESULTS By systematically elucidating mechanisms of a series of LQT1 variants that lack cAMP sensitivity, we identified molecular determinants of IKs channel regulation by phosphorylation. These key residues are distributed across the N-terminus of KCNQ1 extending to the central pore region of IKs. We refer to this pattern as the IKs channel PKA phosphorylation axis. Next, by examining LQT1 variants from clinical databases containing 10 579 LQT1 carriers, we found that the distribution of the most high-penetrance LQT1 variants extends across the IKs channel PKA phosphorylation axis, demonstrating its clinical relevance. Furthermore, we found that a small molecule, ML277, which binds at the center of the phosphorylation axis, rescues the defective cAMP effects of multiple high-risk LQT1 variants. This finding was then tested in high-risk patient-specific induced pluripotent stem cell-derived cardiomyocytes, where ML277 remarkably alleviates the beating abnormalities. CONCLUSIONS Our findings not only elucidate the molecular mechanism of PKA-dependent IKs channel phosphorylation but also provide an effective antiarrhythmic strategy for patients with high-risk LQT1 variants.
Collapse
Affiliation(s)
- Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Dexiang Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Kuo-Chan Weng
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO (K.-C.W., J.R.S.)
| | - Yue Ouyang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Hangyu Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Xiaoqing Lin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Chenxin Xiao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University (H.Y.)
| | - Jing Yao
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, China (J.Y.)
| | - Xinjiang Kang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (X.K.)
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China (X.K.)
- College of Life Sciences, Liaocheng University, China (X.K.)
| | - Changhe Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Department of Neurology, First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, China (C.W.)
| | - Chen Huang
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Bing Shen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Zhi-Hong Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (W.Z.)
| | - Erwin Neher
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Jonathan R Silva
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO (K.-C.W., J.R.S.)
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| |
Collapse
|
11
|
Del-Bel E, Barros-Pereira N, Moraes RPD, Mattos BAD, Alves-Fernandes TA, Abreu LBD, Nascimento GC, Escobar-Espinal D, Pedrazzi JFC, Jacob G, Milan BA, Bálico GG, Antonieto LR. A journey through cannabidiol in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:65-93. [PMID: 39029991 DOI: 10.1016/bs.irn.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Parkinson's disease is a chronic neurodegenerative disorder with no known cure characterized by motor symptoms such as tremors, rigidity, bradykinesia (slowness of movement), and postural instability. Non-motor symptoms like cognitive impairment, mood disturbances, and sleep disorders often accompany the disease. Pharmacological treatments for these symptoms are limited and frequently induce significant adverse reactions, underscoring the necessity for appropriate treatment options. Cannabidiol is a phytocannabinoid devoid of the euphoric and cognitive effects of tetrahydrocannabinol. The study of cannabidiol's pharmacological effects has increased exponentially in recent years. Preclinical and preliminary clinical studies suggest that cannabidiol holds therapeutic potential for alleviating symptoms of Parkinson's disease, offering neuroprotective, anti-inflammatory, and antioxidant properties. However, knowledge of cannabidiol neuromolecular mechanisms is limited, and its pharmacology, which appears complex, has not yet been fully elucidated. By examining the evidence, this review aims to provide and synthesize scientifically proven evidence for the potential use of cannabidiol as a novel treatment option for Parkinson's disease. We focus on studies that administrated cannabidiol alone. The results of preclinical trials using cannabidiol in models of Parkinson's disease are encouraging. Nevertheless, drawing firm conclusions on the therapeutic efficacy of cannabidiol for patients is challenging. Cannabidiol doses, formulations, outcome measures, and methodologies vary considerably across studies. Though, cannabidiol holds promise as a novel therapeutic option for managing both motor and non-motor symptoms of Parkinson's disease, offering hope for improved quality of life for affected individuals.
Collapse
Affiliation(s)
- Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; National Institute for Science and Technology, Translational Medicine, University of Sao Paulo, Ribeirao Preto, SP Brazil; Center for Cannabinoid Research, Mental Health Building, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP Brazil.
| | - Nubia Barros-Pereira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Neurociences and Neurology, Medical School of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Rafaela Ponciano de Moraes
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Phisiology, Medical School of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Bianca Andretto de Mattos
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Phisiology, Medical School of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Thaís Antonia Alves-Fernandes
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Phisiology, Medical School of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Lorena Borges de Abreu
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Neurociences and Neurology, Medical School of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Glauce Crivelaro Nascimento
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Daniela Escobar-Espinal
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - João Francisco Cordeiro Pedrazzi
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Neurociences and Neurology, Medical School of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Gabrielle Jacob
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Bruna A Milan
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Gabriela Gonçalves Bálico
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Livia Rodrigues Antonieto
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
12
|
Schouten M, Dalle S, Mantini D, Koppo K. Cannabidiol and brain function: current knowledge and future perspectives. Front Pharmacol 2024; 14:1328885. [PMID: 38288087 PMCID: PMC10823027 DOI: 10.3389/fphar.2023.1328885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/19/2023] [Indexed: 01/31/2024] Open
Abstract
Cannabidiol (CBD) is a naturally occurring non-psychoactive cannabinoid found in Cannabis sativa, commonly known as cannabis or hemp. Although currently available CBD products do not meet the safety standards of most food safety authorities to be approved as a dietary supplement or food additive, CBD has been gaining widespread attention in recent years due to its various potential health benefits. While primarily known for its therapeutic effects in managing epileptic seizures, psychosis, anxiety, (neuropathic) pain, and inflammation, CBD's influence on brain function has also piqued the interest of researchers and individuals seeking to enhance cognitive performance. The primary objective of this review is to gather, synthesize, and consolidate scientifically proven evidence on the impact of CBD on brain function and its therapeutic significance in treating neurological and mental disorders. First, basic background information on CBD, including its biomolecular properties and mechanisms of action is presented. Next, evidence for CBD effects in the human brain is provided followed by a discussion on the potential implications of CBD as a neurotherapeutic agent. The potential effectiveness of CBD in reducing chronic pain is considered but also in reducing the symptoms of various brain disorders such as epilepsy, Alzheimer's, Huntington's and Parkinson's disease. Additionally, the implications of using CBD to manage psychiatric conditions such as psychosis, anxiety and fear, depression, and substance use disorders are explored. An overview of the beneficial effects of CBD on aspects of human behavior, such as sleep, motor control, cognition and memory, is then provided. As CBD products remain largely unregulated, it is crucial to address the ethical concerns associated with their use, including product quality, consistency, and safety. Therefore, this review discusses the need for responsible research and regulation of CBD to ensure its safety and efficacy as a therapeutic agent for brain disorders or to stimulate behavioral and cognitive abilities of healthy individuals.
Collapse
Affiliation(s)
- Moniek Schouten
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|