1
|
Abe R, Nagao K, Seki T, Hata D, Sasaki Y, Ohmiya H. Photoredox-Catalyzed Site-Selective Intermolecular C(sp 3)-H Alkylation of Tetrahydrofurfuryl Alcohol Derivatives. Org Lett 2025; 27:795-801. [PMID: 39806873 PMCID: PMC11773563 DOI: 10.1021/acs.orglett.4c04439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
4'-Selective alkylation of nucleosides has been recognized as one of the ideal and straightforward approaches to chemically modified nucleosides, but such a transformation has been scarce and less explored. In this Letter, we combine a visible-light-mediated photoredox catalysis and hydrogen atom transfer (HAT) auxiliary to achieve β-C(sp3)-H alkylation of alcohol on tetrahydrofurfuryl alcohol scaffolds and exploit it for 4'-selective alkylation of nucleosides. The reaction involves an intramolecular 1,5-HAT process and stereocontrolled Giese addition of the resultant radicals.
Collapse
Affiliation(s)
- Reiji Abe
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kazunori Nagao
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomohiro Seki
- Research,
Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Dai Hata
- Research,
Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Yusuke Sasaki
- Research,
Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Hirohisa Ohmiya
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
2
|
Lan J, Li X, Xu M, Zhang B, Luo J, Zhou Y, Wang T. Visible-Light-Induced Radical Carbon Oximation of Styrenes Using N-Nitrosoamine and Organic Halides. J Org Chem 2025; 90:250-258. [PMID: 39711500 DOI: 10.1021/acs.joc.4c02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
An efficient visible-light-induced radical carbon oximation of styrenes with 1-nitrosopyrrolidine and organic halides is developed. The reaction proceeds smoothly in the absence of a transition metal and a photocatalyst under mild conditions, producing a wide range of functionalized oximes in moderate to good yields. Mechanistic studies reveal that the reaction involves the generation of nucleophilic α-amino alkyl radicals and subsequent halogen atom transfer (XAT) with organic halides.
Collapse
Affiliation(s)
- Jinping Lan
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Xiaolong Li
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Mengyu Xu
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Bin Zhang
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jin Luo
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Yuan Zhou
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Tao Wang
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
3
|
Zhao HQ, Li WT, Yao Y, Zhao YL, Ouyang XH. Iron-Catalyzed Perfluoroalkylarylation of Styrenes with Arenes and Alkyl Iodides Enabled by Halogen Atom Transfer. Org Lett 2024; 26:10183-10188. [PMID: 39556037 DOI: 10.1021/acs.orglett.4c04095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A new iron-catalyzed three-component perfluoroalkylarylation of styrenes with alkyl halides and arenes has been established. Alkyl halides undergo halogen atom transfer with methyl radicals to form alkyl radicals in reactions initiated by a combination of tert-butyl peroxybenzoate and an iron catalyst, thus adducting to the olefins, which results in alkylarylation products. The protocol is compatible with a wide range of perfluoroalkyl and non-perfluoroalkyl halides, features excellent functional group tolerance, and enables the synthesis of structurally diverse 1,1-diaryl fluoro-substituted alkanes.
Collapse
Affiliation(s)
- Han-Qing Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
| | - Wan-Ting Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
| | - Yong Yao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
| | - Yi-Lin Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
4
|
Corpas J, Alonso M, Leonori D. Boryl radical-mediated halogen-atom transfer (XAT) enables the Sonogashira-like alkynylation of alkyl halides. Chem Sci 2024:d4sc06516f. [PMID: 39483251 PMCID: PMC11521202 DOI: 10.1039/d4sc06516f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Alkynes are a crucial class of materials with application across the wide range of chemical disciplines. The alkynylation of alkyl halides presents an ideal strategy for assembling these materials. Current methods rely on the intrinsic electrophilic nature of alkyl halides to couple with nucleophilic acetylenic systems, but these methods faces limitations in terms of applicability and generality. Herein, we introduce a different approach to alkynylation of alkyl halides that proceeds via radical intermediates and uses alkynyl sulfones as coupling partners. This strategy exploits the ability of amine-ligated boryl radicals to activate alkyl iodides and bromides through halogen-atom transfer (XAT). The resulting radicals then undergo a cascade of α-addition and β-fragmentation with the sulfone reagent, leading to the construction of C(sp3)-C(sp) bonds. The generality of the methodology has been demonstrated by its successful application in the alkynylation of complex and high-value molecules.
Collapse
Affiliation(s)
- Javier Corpas
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 Aachen 52056 Germany
| | - Maialen Alonso
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 Aachen 52056 Germany
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 Aachen 52056 Germany
| |
Collapse
|
5
|
Suo W, Qi JQ, Liu J, Sun S, Jiao L, Guo X. Overestimated Halogen Atom Transfer Reactivity of α-Aminoalkyl Radicals. J Am Chem Soc 2024; 146:25860-25869. [PMID: 39233359 DOI: 10.1021/jacs.4c09792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Halogen atom transfer (XAT) is a versatile method for generating carbon radicals. Recent interest has focused on α-aminoalkyl radicals as potential XAT reagents, previously reported to exhibit reactivity comparable to tin radicals. Utilizing an advanced time-resolved EPR technique, the XAT reactions between α-aminoalkyl radicals and organic halides were examined, allowing direct observation of the process through EPR spectroscopy and analysis of radical kinetics. Second-order rate constants for these reactions were determined, with some validated using transient absorption spectroscopy. The key finding is that the reactivity of α-aminoalkyl radicals in XAT reactions is 103 to 105 times lower than that of tin and silicon radicals and only slightly higher than alkyl radicals. This challenges the belief that α-aminoalkyl radicals are as reactive as tin radicals. The study on the solvent effect indicates that the XAT reaction of α-aminoalkyl radicals does not involve a highly polarized transition state, suggesting that the kinetic polar effect in this XAT process is not as significant as previously believed. The present study provides a reliable XAT reactivity scale for α-aminoalkyl radicals, which is crucial for designing XAT reactions and understanding their mechanisms.
Collapse
Affiliation(s)
- Weiqun Suo
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jian-Qing Qi
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jing Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Songtao Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xingwei Guo
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Kong P, Ye Y, Zhang X, Bao X, Huo C. Alkylation of Glycine Derivatives through a Synergistic Single-Electron Transfer and Halogen-Atom Transfer Process. Org Lett 2024; 26:7507-7513. [PMID: 39207059 DOI: 10.1021/acs.orglett.4c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Here, we present a versatile method for forming C(sp3)-C(sp3) bonds, enabling the synthesis of a range of natural and non-natural amino acids. This approach utilizes readily available glycine derivatives and alkyl iodides, combining single-electron transfer and halogen-atom transfer processes. The utility of this step-economic and redox-economic C(sp3)-C(sp3) bond formation is further highlighted in the late-stage site-selective modifications of the glycine residue in short peptides.
Collapse
Affiliation(s)
- Peng Kong
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Youwan Ye
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xin Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| |
Collapse
|
7
|
Ren J, Xia XF. Visible-light-induced alkyl-arylation of olefins via a halogen-atom transfer process. Org Biomol Chem 2024; 22:6370-6375. [PMID: 39046012 DOI: 10.1039/d4ob00971a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Visible-light-induced three-component 1,2-alkyl-arylation of alkenes and alkyl radical addition/cyclization of acrylamides have been realized via a photocatalytic halogen-atom transfer (XAT) process. This metal-free protocol utilizes readily available tertiary alkylamine as both an electron donor and an XAT reagent for the activation of alkyl halides using naphthalimide (NI)-based organic photocatalysts. This process features broad substrate scope and good functional group tolerance under mild conditions, and could be effectively applied to a variety of medicinally relevant substrates.
Collapse
Affiliation(s)
- Juan Ren
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
8
|
Wu J, Purushothaman R, Kallert F, Homölle SL, Ackermann L. Electrochemical Glycosylation via Halogen-Atom-Transfer for C-Glycoside Assembly. ACS Catal 2024; 14:11532-11544. [PMID: 39114086 PMCID: PMC11301629 DOI: 10.1021/acscatal.4c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Glycosyl donor activation emerged as an enabling technology for anomeric functionalization, but aimed primarily at O-glycosylation. In contrast, we herein disclose mechanistically distinct electrochemical glycosyl bromide donor activations via halogen-atom transfer and anomeric C-glycosylation. The anomeric radical addition to alkenes led to C-alkyl glycoside synthesis under precious metal-free reaction conditions from readily available glycosyl bromides. The robustness of our e-XAT strategy was further mirrored by C-aryl and C-acyl glycosides assembly through nickela-electrocatalysis. Our approach provides an orthogonal strategy for glycosyl donor activation with expedient scope, hence representing a general method for direct C-glycosides assembly.
Collapse
Affiliation(s)
| | | | - Felix Kallert
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| | - Simon L. Homölle
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| |
Collapse
|
9
|
Wan T, Ciszewski ŁW, Ravelli D, Capaldo L. Photoinduced Intermolecular Radical Hydroalkylation of Olefins via Ligated Boryl Radicals-Mediated Halogen Atom Transfer. Org Lett 2024; 26:5839-5843. [PMID: 38950385 PMCID: PMC11250028 DOI: 10.1021/acs.orglett.4c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Light-mediated Halogen-Atom Transfer (XAT) has become a significant methodology in contemporary synthesis. Unlike α-aminoalkyl and silyl radicals, ligated boryl radicals (LBRs) have not been extensively explored as halogen atom abstractors. In this study, we introduce NHC-ligated boranes as optimal radical chain carriers for the intermolecular reductive radical hydroalkylation and hydroarylation of electron-deficient olefins by using direct UV-A light irradiation. DFT analysis allowed us to rationalize the critical role of the NHC ligand in facilitating efficient chain propagation.
Collapse
Affiliation(s)
- Ting Wan
- Flow
Chemistry Group, van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- The
Research Center of Chiral Drugs, Innovation Research Institute of
Traditional Chinese Medicine, Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
| | - Łukasz W. Ciszewski
- Flow
Chemistry Group, van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Davide Ravelli
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, 27100 Pavia, Italy
| | - Luca Capaldo
- Flow
Chemistry Group, van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- SynCat
Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
10
|
Li X, Deng W, Wen Y, Wang Z, Zhou J, Li Z, Li Y, Hu J, Huang Y. Electrochemically Driven para-Selective C(sp 2)-H Alkylation Enabled by Activation of Alkyl Halides without Sacrificial Anodes. Chemistry 2024; 30:e202400010. [PMID: 38389032 DOI: 10.1002/chem.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
With alkyl halides (I, Br, Cl) as a coupling partner, an electrochemically driven strategy for para-selective C(sp2)-H alkylation of electron-deficient arenes (aryl esters, aldehydes, nitriles, and ketones) has been achieved to access diverse alkylated arenes in one step. The reaction enables the activation of alkyl halides in the absence of sacrificial anodes, achieving the formation of C(sp2)-C(sp3) bonds under mild electrolytic conditions. The utility of this protocol is reflected in high site selectivity, broad substrate scope, and scalable.
Collapse
Affiliation(s)
- Xinling Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Weijie Deng
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Yating Wen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Ziliang Wang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Jianfeng Zhou
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Zhenjie Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Yibiao Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Jinhui Hu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Yubing Huang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| |
Collapse
|
11
|
Lu YN, Che C, Zhen G, Chang X, Dong XQ, Wang CJ. Visible-light-enabled stereoselective synthesis of functionalized cyclohexylamine derivatives via [4 + 2] cycloadditions. Chem Sci 2024; 15:6507-6514. [PMID: 38699278 PMCID: PMC11062095 DOI: 10.1039/d4sc00667d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
An unprecedented intermolecular [4 + 2] cycloaddition of benzocyclobutylamines with α-substituted vinylketones, enabled by photoredox catalysis, has been developed. The current method enables facile access to highly functionalized cyclohexylamine derivatives that were otherwise inaccessible, in moderate to good yields with excellent diastereoselectivities. This protocol has some excellent features, such as full atom economy, good functional-group compatibility, mild reaction conditions, and an overall redox-neutral process. Additionally, an asymmetric version of this cycloaddition was preliminarily investigated via the incorporation of a chiral phosphoric acid (CPA), and moderate to good enantioselectivity could be effectively realized with excellent diastereoselectivity. Synthetic applications were demonstrated via a scale-up experiment and elaborations to access amino alcohol and cyclobutene derivatives. Based on the results of control experiments, a reasonable reaction mechanism was proposed to elucidate the reaction pathway.
Collapse
Affiliation(s)
- Yi-Nan Lu
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
| | - Chao Che
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
| | - Guangjin Zhen
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|