1
|
Qu Y, Zeng A, Cheng Y, Li S. Natural killer cell memory: challenges and opportunities for cancer immunotherapy. Cancer Biol Ther 2024; 25:2376410. [PMID: 38987282 PMCID: PMC11238922 DOI: 10.1080/15384047.2024.2376410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Substantial advancements have been made in recent years in comprehending immune memory, which enhances the secondary response through prior infections. The ability of vertebrate T and B lymphocytes to exhibit classic recall responses has long been regarded as a distinguishing characteristic. However, natural killer (NK) cells have been found to acquire immunological memory in a manner akin to T and B cells. The fundamental principles derived from the investigation of NK cell memory offer novel insights into innate immunity and have the potential to pave the way for innovative strategies to enhance therapeutic interventions against multiple diseases including cancer. Here, we reviewed the fundamental characteristics, memory development and regulatory mechanism of NK cell memory. Moreover, we will conduct a comprehensive evaluation of the accomplishments, obstacles, and future direction pertaining to the utilization of NK cell memory in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Yuhua Qu
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anhui Zeng
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulu Cheng
- Department of Disinfection Supply Center, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengchun Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Deborah EA, Nabekura T, Shibuya K, Shibuya A. THEMIS2 Impairs Antitumor Activity of NK Cells by Suppressing Activating NK Receptor Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1819-1828. [PMID: 38619282 DOI: 10.4049/jimmunol.2300771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
NK cells are cytotoxic innate lymphocytes that play a critical role in antitumor immunity. NK cells recognize target cells by using a repertoire of activating NK receptors and exert the effector functions. Although the magnitude of activation signals through activating NK receptors controls NK cell function, it has not been fully understood how these activating signals are modulated in NK cells. In this study, we found that a scaffold protein, THEMIS2, inhibits activating NK receptor signaling. Overexpression of THEMIS2 attenuated the effector function of human NK cells, whereas knockdown of THEMIS2 enhanced it. Mechanistically, THEMIS2 binds to GRB2 and phosphorylated SHP-1 and SHP-2 at the proximity of activating NK receptors DNAM-1 and NKG2D. Knockdown of THEMIS2 in primary human NK cells promoted the effector functions. Furthermore, Themis2-deficient mice showed low metastatic burden in an NK cell-dependent manner. These findings demonstrate that THEMIS2 has an inhibitory role in the antitumor activity of NK cells, suggesting that THEMIS2 might be a potential therapeutic target for NK cell-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Elfira Amalia Deborah
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Doctoral Program in Medical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tsukasa Nabekura
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuko Shibuya
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Shibuya
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Hermans L, O’Sullivan TE. No time to die: Epigenetic regulation of natural killer cell survival. Immunol Rev 2024; 323:61-79. [PMID: 38426615 PMCID: PMC11102341 DOI: 10.1111/imr.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
NK cells are short-lived innate lymphocytes that can mediate antigen-independent responses to infection and cancer. However, studies from the past two decades have shown that NK cells can acquire transcriptional and epigenetic modifications during inflammation that result in increased survival and lifespan. These findings blur the lines between the innate and adaptive arms of the immune system, and suggest that the homeostatic mechanisms that govern the persistence of innate immune cells are malleable. Indeed, recent studies have shown that NK cells undergo continuous and strictly regulated adaptations controlling their survival during development, tissue residency, and following inflammation. In this review, we summarize our current understanding of the critical factors regulating NK cell survival throughout their lifespan, with a specific emphasis on the epigenetic modifications that regulate the survival of NK cells in various contexts. A precise understanding of the molecular mechanisms that govern NK cell survival will be important to enhance therapies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Leen Hermans
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Jiang B, Zhou H, Xie X, Xia T, Ke C. Down-regulation of zinc finger protein 335 undermines natural killer cell function in mouse colitis-associated colorectal carcinoma. Heliyon 2024; 10:e25721. [PMID: 38375265 PMCID: PMC10875430 DOI: 10.1016/j.heliyon.2024.e25721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Natural killer (NK) cells constitute an active and potent anti-tumor effector population against multiple malignancies. NK cells exploit tumoricidal machinery to restrain colorectal carcinoma (CRC) expansion and invasion. Nonetheless, it is becoming increasingly evident that functional exhaustion considerably compromises the potency of NK cells in patients with CRC. To elucidate the factors that impair NK cell function in the context of CRC, we determined the role of zinc finger protein 335 (ZFP335) in modulating NK cell activity in mouse CRC induced by azoxymethane and dextran sulfate sodium. ZFP335 was profoundly decreased in NK cells in mesenteric lymph nodes of CRC-bearing mice. ZFP335 was especially diminished in NK cells that were both phenotypically and functionally exhausted. Besides, effective ZFP335 knockdown markedly undermined NK cell proliferation, tumoricidal protein production, degranulation, and cytotoxic efficacy on malignant cells, strongly suggesting that ZFP335 reinforces NK cell function. Importantly, ZFP335 knockdown lowered the expression of Janus kinase 1 (JAK1) and Janus kinase 3 (JAK3), both of which play crucial roles in NK cell homeostasis and activation. Collectively, ZFP335 down-regulation is essential for NK cell exhaustion in mesenteric lymph nodes of mice with CRC. We discovered a new ZFP335-JAK1/3 signaling pathway that modulates NK cell exhaustion.
Collapse
Affiliation(s)
- Bin Jiang
- The Department of Gastrointestinal, Hernia, and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, 430060, China
| | - Hongjian Zhou
- The Department of Gastrointestinal, Hernia, and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, 430060, China
| | - Xingwang Xie
- The Department of Gastrointestinal, Hernia, and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, 430060, China
| | - Tian Xia
- The Department of Gastrointestinal, Hernia, and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, 430060, China
| | - Chao Ke
- The Department of Gastrointestinal, Hernia, and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, 430060, China
| |
Collapse
|