1
|
Wang G. Trikafta rescues F508del-CFTR by tightening specific phosphorylation-dependent interdomain interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624197. [PMID: 39605627 PMCID: PMC11601583 DOI: 10.1101/2024.11.20.624197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Trikafta is well-known for correcting the thermal and gating defects caused by the most common cystic fibrosis mutation F508del in the human cystic fibrosis transmembrane conductance regulator even at physiological temperature. However, the exact pathway is still unclear. Here, the noncovalent interactions among two transmembrane domains (TMD 1 and TMD2), the regulatory (R) domain and two nucleotide binding domains (NBD1 and NBD2), along with the thermoring structures of NBD1, were analyzed around the active gating center. The results demonstrated that Trikafta binding to TMD1 and TMD2 rearranged their interactions with the R domain, releasing the C-terminal region from NBD1 for its tight ATP-dependent dimerization with NBD2, stabilizing NBD1. Taken together, although the deletion of F508 induces the primary thermal defect of NBD1 and then the gating defect at the TMD1-TMD2 interface, Trikafta rescued them in a reverse manner allosterically. Thus, the thermoring structure can be used to uncover the pathway of a drug to correct the thermal defect of health-related protein. Significance Trikafta modulators have been approved by the FDA to treat the most common cystic fibrosis- causing mutation F508del CFTR. However, the molecular action mechanisms of these modulators are still unknown. Following the identification of the gating center in CFTR, this study further revealed that the specific noncovalent interactions of the phosphorylated S813 site with cytoplasmic loops 1 and 4 and N-/C- terminal tails of TMD1 upon Trikafta-triggered tight TMD1- TMD2 interactions at the gating center play a pivotal role in rescuing the primary gating defect and then the thermal defect of F508del CFTR. Highlights Trikafta strengthened TMD1-TMD2 interactions at the gating center of ΔF508-CFTR Tight TMD1-TMD2 interactions allowed specific interactions of the R domain with the ICL1- ICL4 interface and the N-/C- terminal tails of TMD1 Subsequently, the C-terminal region was released from NBD1 for tight ATP-dependent NBD1-NBD2 dimerization, stabilizing NBD1 of ΔF508-CFTR.
Collapse
|
2
|
Vaccarin C, Veit G, Hegedus T, Torres O, Chilin A, Lukacs GL, Marzaro G. Synthesis and Biological Evaluation of Pyrazole-Pyrimidones as a New Class of Correctors of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J Med Chem 2024; 67:13891-13908. [PMID: 39137389 DOI: 10.1021/acs.jmedchem.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Cystic fibrosis (CF) is caused by the functional expression defect of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Despite the recent success in CFTR modulator development, the available correctors only partially restore the F508del-CFTR channel function, and several rare CF mutations show resistance to available drugs. We previously identified compound 4172 that synergistically rescued the F508del-CFTR folding defect in combination with the existing corrector drugs VX-809 and VX-661. Here, novel CFTR correctors were designed by applying a classical medicinal chemistry approach on the 4172 scaffold. Molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted to propose a plausible binding site and design more potent and effective analogs. We identified three optimized compounds, which, in combination with VX-809 and the investigational corrector 3151, increased the plasma membrane density and function of F508del-CFTR and other rare CFTR mutants resistant to the currently approved therapies.
Collapse
Affiliation(s)
- Christian Vaccarin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Guido Veit
- Department of Physiology and Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Tamas Hegedus
- Institute of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN Biophysical Virology Research Group, Hungarian Research Network, Budapest 1052, Hungary
| | - Odalys Torres
- Institute of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Gergely L Lukacs
- Department of Physiology and Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
3
|
Meng X, Ford RC. Investigation of F508del CFTR unfolding and a search for stabilizing small molecules. Arch Biochem Biophys 2024; 758:110050. [PMID: 38876247 DOI: 10.1016/j.abb.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 06/16/2024]
Abstract
Mutation of phenylalanine at position 508 in the cystic fibrosis transmembrane conductance regulator (F508del CFTR) yields a protein unstable at physiological temperatures that is rapidly degraded in the cell. This mutation is present in about 90% of cystic fibrosis patients, hence there is great interest in compounds reversing its instability. We have previously reported the expression of the mutated protein at low temperature and its purification in detergent. Here we describe the use of the protein to screen compounds present in a library of Federal Drug Administration (FDA) - approved drugs and also in a small natural product library. The kinetics of unfolding of F508del CFTR at 37 °C were probed by the increase in solvent-exposed cysteine residues accessible to a fluorescent reporter molecule. This occurred in a bi-exponential manner with a major (≈60%) component of half-life around 5 min and a minor component of around 60 min. The faster kinetics match those observed for loss of channel activity of F508del CFTR in cells at 37 °C. Most compounds tested had no effect on the fluorescence increase, but some were identified that significantly slowed the kinetics. The general properties of these compounds, and any likely mechanisms for inducing stability in purified CFTR are discussed. These experimental data may be useful for artificial intelligence - aided design of CFTR-specific drugs and in the identification of stabilizing additives for membrane proteins (in general).
Collapse
Affiliation(s)
- Xin Meng
- University of Manchester, School of Biological Sciences, Oxford Road, Manchester, M13 9PL, UK; The Francis Crick Institute, Cellular Degradation Systems Lab, 1 Midland Road, London, NW1 1AT, UK
| | - Robert C Ford
- University of Manchester, School of Biological Sciences, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
4
|
Bernetti M, Bosio S, Bresciani V, Falchi F, Masetti M. Probing allosteric communication with combined molecular dynamics simulations and network analysis. Curr Opin Struct Biol 2024; 86:102820. [PMID: 38688074 DOI: 10.1016/j.sbi.2024.102820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Understanding the allosteric mechanisms within biomolecules involved in diseases is of paramount importance for drug discovery. Indeed, characterizing communication pathways and critical hotspots in signal transduction can guide a rational approach to leverage allosteric modulation for therapeutic purposes. While the atomistic signatures of allosteric processes are difficult to determine experimentally, computational methods can be a remarkable resource. Network analysis built on Molecular Dynamics simulation data is particularly suited in this respect and is gradually becoming of routine use. Herein, we collect the recent literature in the field, discussing different aspects and available options for network construction and analysis. We further highlight interesting refinements and extensions, eventually providing our perspective on this topic.
Collapse
Affiliation(s)
- Mattia Bernetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy.
| | - Stefano Bosio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy. https://twitter.com/Stefano__Bosio
| | - Veronica Bresciani
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy. https://twitter.com/V_Bresciani
| | - Federico Falchi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| |
Collapse
|
5
|
Tordai H, Torres O, Csepi M, Padányi R, Lukács GL, Hegedűs T. Analysis of AlphaMissense data in different protein groups and structural context. Sci Data 2024; 11:495. [PMID: 38744964 PMCID: PMC11094042 DOI: 10.1038/s41597-024-03327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Single amino acid substitutions can profoundly affect protein folding, dynamics, and function. The ability to discern between benign and pathogenic substitutions is pivotal for therapeutic interventions and research directions. Given the limitations in experimental examination of these variants, AlphaMissense has emerged as a promising predictor of the pathogenicity of missense variants. Since heterogenous performance on different types of proteins can be expected, we assessed the efficacy of AlphaMissense across several protein groups (e.g. soluble, transmembrane, and mitochondrial proteins) and regions (e.g. intramembrane, membrane interacting, and high confidence AlphaFold segments) using ClinVar data for validation. Our comprehensive evaluation showed that AlphaMissense delivers outstanding performance, with MCC scores predominantly between 0.6 and 0.74. We observed low performance on disordered datasets and ClinVar data related to the CFTR ABC protein. However, a superior performance was shown when benchmarked against the high quality CFTR2 database. Our results with CFTR emphasizes AlphaMissense's potential in pinpointing functional hot spots, with its performance likely surpassing benchmarks calculated from ClinVar and ProteinGym datasets.
Collapse
Affiliation(s)
- Hedvig Tordai
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Odalys Torres
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Máté Csepi
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Rita Padányi
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Gergely L Lukács
- Department of Physiology and Biochemistry, McGill University, Montréal, QC, Canada
| | - Tamás Hegedűs
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
- HUN-REN-SU Biophysical Virology Research Group, Budapest, Hungary.
| |
Collapse
|
6
|
Premchandar A, Ming R, Baiad A, Da Fonte DF, Xu H, Faubert D, Veit G, Lukacs GL. Readthrough-induced misincorporated amino acid ratios guide mutant-specific therapeutic approaches for two CFTR nonsense mutations. Front Pharmacol 2024; 15:1389586. [PMID: 38725656 PMCID: PMC11079177 DOI: 10.3389/fphar.2024.1389586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Premature termination codons (PTCs) represent ∼9% of CF mutations that typically cause severe expression defects of the CFTR anion channel. Despite the prevalence of PTCs as the underlying cause of genetic diseases, understanding the therapeutic susceptibilities of their molecular defects, both at the transcript and protein levels remains partially elucidated. Given that the molecular pathologies depend on the PTC positions in CF, multiple pharmacological interventions are required to suppress the accelerated nonsense-mediated mRNA decay (NMD), to correct the CFTR conformational defect caused by misincorporated amino acids, and to enhance the inefficient stop codon readthrough. The G418-induced readthrough outcome was previously investigated only in reporter models that mimic the impact of the local sequence context on PTC mutations in CFTR. To identify the misincorporated amino acids and their ratios for PTCs in the context of full-length CFTR readthrough, we developed an affinity purification (AP)-tandem mass spectrometry (AP-MS/MS) pipeline. We confirmed the incorporation of Cys, Arg, and Trp residues at the UGA stop codons of G542X, R1162X, and S1196X in CFTR. Notably, we observed that the Cys and Arg incorporation was favored over that of Trp into these CFTR PTCs, suggesting that the transcript sequence beyond the proximity of PTCs and/or other factors can impact the amino acid incorporation and full-length CFTR functional expression. Additionally, establishing the misincorporated amino acid ratios in the readthrough CFTR PTCs aided in maximizing the functional rescue efficiency of PTCs by optimizing CFTR modulator combinations. Collectively, our findings contribute to the understanding of molecular defects underlying various CFTR nonsense mutations and provide a foundation to refine mutation-dependent therapeutic strategies for various CF-causing nonsense mutations.
Collapse
Affiliation(s)
| | - Ruiji Ming
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Abed Baiad
- Department of Physiology, McGill University, Montréal, QC, Canada
| | | | - Haijin Xu
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Denis Faubert
- IRCM Mass Spectrometry and Proteomics Platform, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Guido Veit
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
7
|
Corrao F, Kelly-Aubert M, Sermet-Gaudelus I, Semeraro M. Unmet challenges in cystic fibrosis treatment with modulators. Expert Rev Respir Med 2024; 18:145-157. [PMID: 38755109 DOI: 10.1080/17476348.2024.2357210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION 'Highly effective' modulator therapies (HEMTs) have radically changed the Cystic Fibrosis (CF) therapeutic landscape. AREAS COVERED A comprehensive search strategy was undertaken to assess impact of HEMT in life of pwCF, treatment challenges in specific populations such as very young children, and current knowledge gaps. EXPERT OPINION HEMTs are prescribed for pwCF with definite genotypes. The heterogeneity of variants complicates treatment possibilities and around 10% of pwCF worldwide remains ineligible. Genotype-specific treatments are prompting theratyping and personalized medicine strategies. Improvement in lung function and quality of life increase survival rates, shifting CF from a pediatric to an adult disease. This implies new studies addressing long-term efficacy, side effects, emergence of adult co-morbidities and possible drug-drug interactions. More sensitive and predictive biomarkers for both efficacy and toxicity are warranted. As HEMTs cross the placenta and are found in breast milk, studies addressing the potential consequences of treatment during pregnancy and breastfeeding are urgently needed. Finally, although the treatment and expected outcomes of CF have improved dramatically in high- and middle-income countries, lack of access in low-income countries to these life-changing medicines highlights inequity of care worldwide.
Collapse
Affiliation(s)
- Federica Corrao
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
- INSERM, Institut Necker Enfants Malades, Paris, France
| | | | - Isabelle Sermet-Gaudelus
- INSERM, Institut Necker Enfants Malades, Paris, France
- Centre de Référence Maladies Rares Mucoviscidose et maladies apparentées. Site constitutif, Université de Paris, Paris, France
- European Reference Lung Center, Frankfurt, Germany
- Université Paris Cité, Paris, France
| | - Michaela Semeraro
- Université Paris Cité, Paris, France
- Centre Investigation Clinique, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
8
|
Ferreira FC, Buarque CD, Lopes-Pacheco M. Organic Synthesis and Current Understanding of the Mechanisms of CFTR Modulator Drugs Ivacaftor, Tezacaftor, and Elexacaftor. Molecules 2024; 29:821. [PMID: 38398574 PMCID: PMC10891718 DOI: 10.3390/molecules29040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The monogenic rare disease Cystic Fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance (CFTR) protein, an anion channel expressed at the apical plasma membrane of epithelial cells. The discovery and subsequent development of CFTR modulators-small molecules acting on the basic molecular defect in CF-have revolutionized the standard of care for people with CF (PwCF), thus drastically improving their clinical features, prognosis, and quality of life. Currently, four of these drugs are approved for clinical use: potentiator ivacaftor (VX-770) alone or in combination with correctors lumacaftor, (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Noteworthily, the triple combinatorial therapy composed of ivacaftor, tezacaftor, and elexacaftor constitutes the most effective modulator therapy nowadays for the majority of PwCF. In this review, we exploit the organic synthesis of ivacaftor, tezacaftor, and elexacaftor by providing a retrosynthetic drug analysis for these CFTR modulators. Furthermore, we describe the current understanding of the mechanisms of action (MoA's) of these compounds by discussing several studies that report the key findings on the molecular mechanisms underlying their action on the CFTR protein.
Collapse
Affiliation(s)
- Filipa C. Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Camilla D. Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22435-900, RJ, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
9
|
Krasnova M, Efremova A, Mokrousova D, Bukharova T, Kashirskaya N, Kutsev S, Kondratyeva E, Goldshtein D. Advances in the Study of Common and Rare CFTR Complex Alleles Using Intestinal Organoids. J Pers Med 2024; 14:129. [PMID: 38392563 PMCID: PMC10890655 DOI: 10.3390/jpm14020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Complex alleles (CAs) arise when two or more nucleotide variants are present on a single allele. CAs of the CFTR gene complicate the cystic fibrosis diagnosis process, classification of pathogenic variants, and determination of the clinical picture of the disease and increase the need for additional studies to determine their pathogenicity and modulatory effect in response to targeted therapy. For several different populations around the world, characteristic CAs of the CFTR gene have been discovered, although in general the prevalence and pathogenicity of CAs have not been sufficiently studied. This review presents examples of using intestinal organoid models for assessments of the two most common and two rare CFTR CAs in individuals with cystic fibrosis in Russia.
Collapse
Affiliation(s)
- Maria Krasnova
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | - Anna Efremova
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | | | | | - Nataliya Kashirskaya
- Research Centre for Medical Genetics, Moscow 115522, Russia
- Moscow Regional Research and Clinical Institute ("MONIKI"), Schepkina Street, 61/2, 1, Moscow 129110, Russia
| | - Sergey Kutsev
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | | | | |
Collapse
|