1
|
Cang J, Chen C, Li C, Liu Y. Genetically defined neuron types underlying visuomotor transformation in the superior colliculus. Nat Rev Neurosci 2024; 25:726-739. [PMID: 39333418 DOI: 10.1038/s41583-024-00856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/29/2024]
Abstract
The superior colliculus (SC) is a conserved midbrain structure that is important for transforming visual and other sensory information into motor actions. Decades of investigations in numerous species have made the SC and its nonmammalian homologue, the optic tectum, one of the best studied structures in the brain, with rich information now available regarding its anatomical organization, its extensive inputs and outputs and its important functions in many reflexive and cognitive behaviours. Excitingly, recent studies using modern genomic and physiological approaches have begun to reveal the diverse neuronal subtypes in the SC, as well as their unique functions in visuomotor transformation. Studies have also started to uncover how subtypes of SC neurons form intricate circuits to mediate visual processing and visually guided behaviours. Here, we review these recent discoveries on the cell types and neuronal circuits underlying visuomotor transformations mediated by the SC. We also highlight the important future directions made possible by these new developments.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
- Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| | - Chen Chen
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Chuiwen Li
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Yuanming Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
2
|
Guillamón-Vivancos T, Favaloro F, Dori F, López-Bendito G. The superior colliculus: New insights into an evolutionarily ancient structure. Curr Opin Neurobiol 2024; 89:102926. [PMID: 39383569 DOI: 10.1016/j.conb.2024.102926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
The superior colliculus is a structure located in the dorsal midbrain with well conserved function and connectivity across species. Essential for survival, the superior colliculus has evolved to trigger rapid orientation and avoidance movements in response to external stimuli. The increasing recognition of the widespread connectivity of the superior colliculus, not only with brainstem and spinal cord, but also with virtually all brain structures, has rekindled the interest on this structure and revealed novel roles in the past few years. In this review, we focus on the most recent advancements in understanding its cellular composition, connectivity and function, with a particular focus on how the cellular diversity and connectivity arises during development, as well as on its recent role in the emergence of sensory circuits.
Collapse
Affiliation(s)
- Teresa Guillamón-Vivancos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain.
| | - Fabrizio Favaloro
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain. https://twitter.com@F_Favaloro22
| | - Francesco Dori
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain. https://twitter.com@francesco_dori
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
3
|
Sugino H, Tanno S, Yoshida T, Isomura Y, Hira R. Functional segregation and dynamic integration of the corticotectal descending signal in rat. Neurosci Res 2024:S0168-0102(24)00111-1. [PMID: 39306244 DOI: 10.1016/j.neures.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
The superior colliculus (SC) receives inputs from various brain regions in a layer- and radial subregion-specific manner, but whether the SC exhibits subregion-specific dynamics remains unclear. To address this issue, we recorded the spiking activity of single SC neurons while photoactivating cortical areas in awake head-fixed Thy1-ChR2 rats. We classified 309 neurons that responded significantly into 8 clusters according to the response dynamics. Among them, neurons with monophasic excitatory responses (7-12 ms latency) that returned to baseline within 20 ms were commonly observed in the optic and intermediate gray layers of centromedial and centrolateral SC. In contrast, neurons with complex polyphasic responses were commonly observed in the deep layers of the anterolateral SC. Cross-correlation analysis suggested that the complex pattern could be only partly explained by an internal circuit of the deep gray layer. Our results indicate that medial to centrolateral SC neurons simply relay cortical activity, whereas neurons in the deep layers of the anterolateral SC dynamically integrate inputs from the cortex, SNr, CN, and local circuits. These findings suggest a spatial gradient in SC integration, with a division of labor between simple relay circuits and those integrating complex dynamics.
Collapse
Affiliation(s)
- Hikaru Sugino
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sho Tanno
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsumi Yoshida
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Riichiro Hira
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
4
|
Kim JH, Daie K, Li N. A combinatorial neural code for long-term motor memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597627. [PMID: 38895416 PMCID: PMC11185691 DOI: 10.1101/2024.06.05.597627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Motor skill repertoire can be stably retained over long periods, but the neural mechanism underlying stable memory storage remains poorly understood. Moreover, it is unknown how existing motor memories are maintained as new motor skills are continuously acquired. Here we tracked neural representation of learned actions throughout a significant portion of a mouse's lifespan, and we show that learned actions are stably retained in motor memory in combination with context, which protects existing memories from erasure during new motor learning. We used automated home-cage training to establish a continual learning paradigm in which mice learned to perform directional licking in different task contexts. We combined this paradigm with chronic two-photon imaging of motor cortex activity for up to 6 months. Within the same task context, activity driving directional licking was stable over time with little representational drift. When learning new task contexts, new preparatory activity emerged to drive the same licking actions. Learning created parallel new motor memories while retaining the previous memories. Re-learning to make the same actions in the previous task context re-activated the previous preparatory activity, even months later. At the same time, continual learning of new task contexts kept creating new preparatory activity patterns. Context-specific memories, as we observed in the motor system, may provide a solution for stable memory storage throughout continual learning. Learning in new contexts produces parallel new representations instead of modifying existing representations, thus protecting existing motor repertoire from erasure.
Collapse
|
5
|
Chen S, Liu Y, Wang ZA, Colonell J, Liu LD, Hou H, Tien NW, Wang T, Harris T, Druckmann S, Li N, Svoboda K. Brain-wide neural activity underlying memory-guided movement. Cell 2024; 187:676-691.e16. [PMID: 38306983 PMCID: PMC11492138 DOI: 10.1016/j.cell.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/19/2023] [Accepted: 12/27/2023] [Indexed: 02/04/2024]
Abstract
Behavior relies on activity in structured neural circuits that are distributed across the brain, but most experiments probe neurons in a single area at a time. Using multiple Neuropixels probes, we recorded from multi-regional loops connected to the anterior lateral motor cortex (ALM), a circuit node mediating memory-guided directional licking. Neurons encoding sensory stimuli, choices, and actions were distributed across the brain. However, choice coding was concentrated in the ALM and subcortical areas receiving input from the ALM in an ALM-dependent manner. Diverse orofacial movements were encoded in the hindbrain; midbrain; and, to a lesser extent, forebrain. Choice signals were first detected in the ALM and the midbrain, followed by the thalamus and other brain areas. At movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.
Collapse
Affiliation(s)
- Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yi Liu
- Stanford University, Palo Alto, CA, USA
| | | | - Jennifer Colonell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Liu D Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Baylor College of Medicine, Houston, TX, USA
| | - Han Hou
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Nai-Wen Tien
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tim Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Timothy Harris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Johns Hopkins University, Baltimore, MD, USA
| | - Shaul Druckmann
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Stanford University, Palo Alto, CA, USA.
| | - Nuo Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Baylor College of Medicine, Houston, TX, USA.
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Allen Institute for Neural Dynamics, Seattle, WA, USA.
| |
Collapse
|