1
|
Lika J, Fan J. Carbohydrate metabolism in supporting and regulating neutrophil effector functions. Curr Opin Immunol 2024; 91:102497. [PMID: 39366310 PMCID: PMC11609006 DOI: 10.1016/j.coi.2024.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Neutrophils, the first responders of the innate immune system, can turn on a range of effector functions upon activation. Emerging research shows activated neutrophils undergo highly dynamic metabolic rewiring. This metabolic rewiring provides energy and reducing power to fuel effector functions and modulate signaling molecules to regulate neutrophil functions. Here, we review the current understanding of the specific metabolic requirements and regulators of neutrophil migration, neutrophil extracellular traps release, and pathogen killing. Particularly, we discuss how major carbohydrate metabolic pathways, including glycolysis, glycogen cycling, pentose phosphate pathway, and TCA cycle, are rewired upon neutrophil activation to support these functions. Continued investigation into the metabolic regulators of neutrophil functions can lead to therapeutic opportunities in various diseases.
Collapse
Affiliation(s)
- Jorgo Lika
- Morgridge Institute for Research, Madison, WI, USA; Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Han NR, Park HJ, Ko SG, Moon PD. Tryptanthrin Down-Regulates Oncostatin M by Targeting GM-CSF-Mediated PI3K-AKT-NF-κB Axis. Nutrients 2024; 16:4109. [PMID: 39683503 DOI: 10.3390/nu16234109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Oncostatin M (OSM) is involved in several inflammatory responses. Tryptanthrin (TRYP), as a natural alkaloid, is a bioactive compound derived from indigo plants. Objectives/ Methods: The purpose of this study is to investigate the potential inhibitory activity of TRYP on OSM release from neutrophils using neutrophils-like differentiated (d)HL-60 cells and neutrophils from mouse bone marrow. RESULTS The results showed that TRYP reduced the production and mRNA expression levels of OSM in the granulocyte-macrophage colony-stimulating factor (GM-CSF)-stimulated neutrophils-like dHL-60 cells. In addition, TRYP decreased the OSM production levels in the GM-CSF-stimulated neutrophils from mouse bone marrow. TRYP inhibited the phosphorylation of phosphatidylinositol 3-kinase (PI3K), AKT, and nuclear factor (NF)-κB in the GM-CSF-stimulated neutrophils-like dHL-60 cells. CONCLUSIONS Therefore, these results reveal for the first time that TRYP inhibits OSM release via the down-regulation of PI3K-AKT-NF-κB axis from neutrophils, presenting its potential as a therapeutic agent for inflammatory responses.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Ghosh S, Tuz AA, Stenzel M, Singh V, Richter M, Soehnlein O, Lange E, Heyer R, Cibir Z, Beer A, Jung M, Nagel D, Hermann DM, Hasenberg A, Grüneboom A, Sickmann A, Gunzer M. Proteomic Characterization of 1000 Human and Murine Neutrophils Freshly Isolated From Blood and Sites of Sterile Inflammation. Mol Cell Proteomics 2024; 23:100858. [PMID: 39395581 PMCID: PMC11630641 DOI: 10.1016/j.mcpro.2024.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024] Open
Abstract
Neutrophils are indispensable for defense against pathogens. Injured tissue-infiltrated neutrophils can establish a niche of chronic inflammation and promote degeneration. Studies investigated transcriptome of single-infiltrated neutrophils which could misinterpret molecular states of these post mitotic cells. However, neutrophil proteome characterization has been challenging due to low harvests from affected tissues. Here, we present a workflow to obtain proteome of 1000 murine and human tissue-infiltrated neutrophils. We generated spectral libraries containing ∼6200 mouse and ∼5300 human proteins from circulating neutrophils. 4800 mouse and 3400 human proteins were recovered from 1000 cells with 102-108 copies/cell. Neutrophils from stroke-affected mouse brains adapted to the glucose-deprived environment with increased mitochondrial activity and ROS-production, while cells invading inflamed human oral cavities increased phagocytosis and granule release. We provide an extensive protein repository for resting human and mouse neutrophils, identify proteins lost in low input samples, thus enabling the proteomic characterization of limited tissue-infiltrated neutrophils.
Collapse
Affiliation(s)
- Susmita Ghosh
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Ali Ata Tuz
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Martin Stenzel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Mathis Richter
- Institute for Experimental Pathology, University of Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, University of Münster, Münster, Germany
| | - Emanuel Lange
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Robert Heyer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Multidimensional Omics Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, Bielefeld, Germany
| | - Zülal Cibir
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Alexander Beer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Marcel Jung
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dennis Nagel
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK.
| | - Matthias Gunzer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
4
|
Huerta MÁ, Molina-Álvarez M, García MM, Tejada MA, Goicoechea C, Ghasemlou N, Ruiz-Cantero MC, Cobos EJ. The role of neutrophils in pain: systematic review and meta-analysis of animal studies. Pain 2024:00006396-990000000-00754. [PMID: 39450928 DOI: 10.1097/j.pain.0000000000003450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024]
Abstract
ABSTRACT The peripheral inflammatory response is an attractive therapeutic target for pain treatment. Neutrophils are the first circulating inflammatory cells recruited to sites of injury, but their contribution to pain outcomes is unclear. We performed a systematic review and meta-analysis of original preclinical studies, which evaluated the effect of preemptive neutrophil depletion on pain outcomes (PROSPERO registration number: CRD42022364004). Literature search (PubMed, January 19, 2023) identified 49 articles, which were meta-analyzed using a random-effects model. The risk of bias was evaluated using SYRCLE's tool. The pooled effect considering all studies showed that neutrophil depletion induced a consistent pain reduction. Inflammatory, joint, neuropathic, and visceral pain showed significant pain alleviation by neutrophil depletion with medium-large effect sizes. However, muscle and postoperative pain were not significantly alleviated by neutrophil depletion. Further analysis showed a differential contribution of neutrophils to pain outcomes. Neutrophils had a higher impact on mechanical hyperalgesia, followed by nociceptive behaviors and mechanical allodynia, with a smaller contribution to thermal hyperalgesia. Interspecies (mice or rats) differences were not appreciated. Analyses regarding intervention unveiled a lower pain reduction for some commonly used methods for neutrophil depletion, such as injection of antineutrophil serum or an anti-Gr-1 antibody, than for other agents such as administration of an anti-Ly6G antibody, fucoidan, vinblastine, CXCR1/2 inhibitors, and etanercept. In conclusion, the contribution of neutrophils to pain depends on pain etiology (experimental model), pain outcome, and the neutrophil depletion strategy. Further research is needed to improve our understanding on the mechanisms of these differences.
Collapse
Affiliation(s)
- Miguel Á Huerta
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Miguel Molina-Álvarez
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Miguel M García
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Miguel A Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Carlos Goicoechea
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Nader Ghasemlou
- Pain Chronobiology & Neuroimmunology Laboratory, Departments of Anesthesiology and Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - M Carmen Ruiz-Cantero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
- Teófilo Hernando Institute for Drug Discovery, Madrid, Spain
| |
Collapse
|
5
|
Iliopoulou L, Lianopoulou E, Kollias G. IL-23 exerts dominant pathogenic functions in Crohn's disease-ileitis. Mucosal Immunol 2024; 17:769-776. [PMID: 38844209 DOI: 10.1016/j.mucimm.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
Crohn's disease (CD), a main form of Inflammatory Bowel Disease (IBD) is a chronic inflammatory disorder, mainly affecting the ileum. Interleukin (IL)-12 and IL-23 are both targeted by Ustekinumab, a commonly used monoclonal antibody for IBD treatment. However, their specific roles in ileitis have not been extensively explored. Here, we utilized the TnfΔΑRE model of CD-ileitis to probe the functions of IL-12 and IL-23 by employing genetically deficient mice for their respective subunits. Our findings highlight that IL-23, rather than IL-12, plays a pivotal role in the progression of ileitis. IL-23 deficiency resulted in reduced immune cell infiltration in the ileum, and decreased expression of effector cytokines downstream of IL-23 signaling. Interestingly, expanding CD14+ neutrophils were highly expressing Il23a in the inflamed ileum. Furthermore, the deletion of IL-12 conferred modest additional protection only in the absence of IL-23, suggesting potential compensatory mechanisms between these cytokines. Furthermore, our study suggests that IL-23 may function independently of IL-17, as Il17a deletion exacerbated murine ileitis, consistent with clinical studies in human CD patients using anti-IL-17 inhibitors. This research underscores the significance of targeting IL-23 in CD-ileitis, while the concurrent targeting of both IL-12 and IL-23 should be also considered as an advantageous therapeutic approach.
Collapse
Affiliation(s)
- Lida Iliopoulou
- Institute for BioInnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Erifili Lianopoulou
- Institute for BioInnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - George Kollias
- Institute for BioInnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece; Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
6
|
Yao X, Redekar NR, Keeran KJ, Qu X, Jeffries KR, Soria-Florido M, Saxena A, Dagur PK, Lin WC, McCoy JP, Levine SJ. Neutrophil Heterogeneity Is Modified during Acute Lung Inflammation in Apoa1-/- Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:456-468. [PMID: 38912868 PMCID: PMC11300144 DOI: 10.4049/jimmunol.2300459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/01/2024] [Indexed: 06/25/2024]
Abstract
Neutrophils play important roles in inflammatory airway diseases. In this study, we assessed whether apolipoprotein A-I modifies neutrophil heterogeneity as part of the mechanism by which it attenuates acute airway inflammation. Neutrophilic airway inflammation was induced by daily intranasal administration of LPS plus house dust mite (LPS+HDM) to Apoa1-/- and Apoa1+/+ mice for 3 d. Single-cell RNA sequencing was performed on cells recovered from bronchoalveolar lavage fluid on day 4. Unsupervised profiling identified 10 clusters of neutrophils in bronchoalveolar lavage fluid from Apoa1-/- and Apoa1+/+ mice. LPS+HDM-challenged Apoa1-/- mice had an increased proportion of the Neu4 neutrophil cluster that expressed S100a8, S100a9, and Mmp8 and had high maturation, aggregation, and TLR4 binding scores. There was also an increase in the Neu6 cluster of immature neutrophils, whereas neutrophil clusters expressing IFN-stimulated genes were decreased. An unsupervised trajectory analysis showed that Neu4 represented a distinct lineage in Apoa1-/- mice. LPS+HDM-challenged Apoa1-/- mice also had an increased proportion of recruited airspace macrophages, which was associated with a reciprocal reduction in resident airspace macrophages. Increased expression of a common set of proinflammatory genes, S100a8, S100a9, and Lcn2, was present in all neutrophils and airspace macrophages from LPS+HDM-challenged Apoa1-/- mice. These findings show that Apoa1-/- mice have increases in specific neutrophil and macrophage clusters in the lung during acute inflammation mediated by LPS+HDM, as well as enhanced expression of a common set of proinflammatory genes. This suggests that modifications in neutrophil and macrophage heterogeneity contribute to the mechanism by which apolipoprotein A-I attenuates acute airway inflammation.
Collapse
Affiliation(s)
- Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Critical Care Medicine and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Neelam R. Redekar
- NIAID Collaborative Bioinformatics Resource, Integrated Data Sciences Section, Research Technologies Branch, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland
| | - Karen J. Keeran
- Animal Surgery and Resources Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Xuan Qu
- Laboratory of Asthma and Lung Inflammation, Critical Care Medicine and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Kenneth R. Jeffries
- Animal Surgery and Resources Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - M.T. Soria-Florido
- Laboratory of Asthma and Lung Inflammation, Critical Care Medicine and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Ankit Saxena
- Flow Cytometry Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Pradeep K. Dagur
- Flow Cytometry Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Wan-Chi Lin
- Flow Cytometry Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - J. Philip McCoy
- Flow Cytometry Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Stewart J. Levine
- Laboratory of Asthma and Lung Inflammation, Critical Care Medicine and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| |
Collapse
|
7
|
Bammidi S, Koontz V, Gautam P, Hose S, Sinha D, Ghosh S. Neutrophils in Ocular Diseases. Int J Mol Sci 2024; 25:7736. [PMID: 39062975 PMCID: PMC11276787 DOI: 10.3390/ijms25147736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Neutrophils, traditionally viewed as first responders to infection or tissue damage, exhibit dynamic and diverse roles in ocular health and disease. This review elaborates on previous findings that showed how neutrophils contribute to ocular diseases. In ocular infections, neutrophils play a pivotal role in host defense by orchestrating inflammatory responses to combat pathogens. Furthermore, in optic nerve neuropathies and retinal degenerative diseases like age-related macular degeneration (AMD) and diabetic retinopathy (DR), neutrophils are implicated in neuroinflammation and tissue damage owing to their ability to undergo neutrophil extracellular trap formation (NETosis) and secretion of inflammatory molecules. Targeting neutrophil-dependent processes holds promise as a therapeutic strategy, offering potential avenues for intervention in ocular infections, cancers, and retinal degenerative diseases. Understanding the multifaceted roles of neutrophils in ocular diseases is crucial for developing targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Sridhar Bammidi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (S.B.); (V.K.); (P.G.); (S.H.); (D.S.)
| | - Victoria Koontz
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (S.B.); (V.K.); (P.G.); (S.H.); (D.S.)
| | - Pooja Gautam
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (S.B.); (V.K.); (P.G.); (S.H.); (D.S.)
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (S.B.); (V.K.); (P.G.); (S.H.); (D.S.)
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (S.B.); (V.K.); (P.G.); (S.H.); (D.S.)
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (S.B.); (V.K.); (P.G.); (S.H.); (D.S.)
| |
Collapse
|
8
|
Luisetto R, Scanu A. The translational value of calcium pyrophosphate deposition disease experimental mouse models. Front Med (Lausanne) 2024; 11:1417318. [PMID: 38846138 PMCID: PMC11153760 DOI: 10.3389/fmed.2024.1417318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
The deposition of calcium pyrophosphate (CPP) crystals in joint tissues causes acute and chronic arthritis that commonly affect the adult and elderly population. Experimental calcium pyrophosphate deposition disease (CPPD) models are divided into genetically modified models and crystal-induced inflammation models. The former do not reproduce phenotypes overlapping with the human disease, while in the latter, the direct injection of crystals into the ankles, dorsal air pouch or peritoneum constitutes a useful and reliable methodology that resembles the CPP induced-inflammatory condition in humans. The translational importance of the induced model is also strengthened by the fact that the key molecular and cellular mediators involved in inflammation are shared between humans and laboratory rodents. Although, in vivo models are indispensable tools for studying the pathogenesis of the CPPD and testing new therapies, their development is still at an early stage and major efforts are needed to address this issue. Here, we analyze the strenghts and limitations of each currently available CPPD in vivo model, and critically discuss their translational value.
Collapse
Affiliation(s)
- Roberto Luisetto
- Experimental Surgery Research Center, Department of Surgery, Oncology and Gastroenterology-DISCOG, University of Padova, Padova, Italy
| | - Anna Scanu
- Department of Women's and Children's Health-SDB, University of Padova, Padova, Italy
- Departement of Neuroscience-DNS, University of Padova, Padova, Italy
| |
Collapse
|
9
|
Shafqat A, Khan JA, Alkachem AY, Sabur H, Alkattan K, Yaqinuddin A, Sing GK. How Neutrophils Shape the Immune Response: Reassessing Their Multifaceted Role in Health and Disease. Int J Mol Sci 2023; 24:17583. [PMID: 38139412 PMCID: PMC10744338 DOI: 10.3390/ijms242417583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neutrophils are the most abundant of the circulating immune cells and are the first to be recruited to sites of inflammation. Neutrophils are a heterogeneous group of immune cells from which are derived extracellular traps (NETs), reactive oxygen species, cytokines, chemokines, immunomodulatory factors, and alarmins that regulate the recruitment and phenotypes of neutrophils, macrophages, dendritic cells, T cells, and B cells. In addition, cytokine-stimulated neutrophils can express class II major histocompatibility complex and the internal machinery necessary for successful antigen presentation to memory CD4+ T cells. This may be relevant in the context of vaccine memory. Neutrophils thus emerge as orchestrators of immune responses that play a key role in determining the outcome of infections, vaccine efficacy, and chronic diseases like autoimmunity and cancer. This review aims to provide a synthesis of current evidence as regards the role of these functions of neutrophils in homeostasis and disease.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia (K.A.); (A.Y.); (G.K.S.)
| | | | | | | | | | | | | |
Collapse
|